Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Electrophoresis ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38794968

RESUMO

This study introduces a novel method for the quantification of malachite green (MG), a pervasive cationic dye, in surface water by synergizing multiphase electroextraction (MPEE) with digital image analysis (DIA) and partial least square discriminant analysis. Aimed at addressing the limitations of conventional DIA methods in terms of quantitation limits and selectivity, this study achieves a significant breakthrough in the preconcentration of MG using magnesium silicate as a novel sorbent. Demonstrating exceptional processing efficiency, the method allows for the analysis of 10 samples within 20 min, exhibiting remarkable sensitivity and specificity (over 0.95 and 0.90, respectively) across 156 samples in both training and test sets. Notably, the method detects MG at low concentrations (0.2 µg L-1) in complex matrices, highlighting its potential for broader application in environmental monitoring. This approach not only underscores the method's cost-effectiveness and simplicity but also its precision, making it a valuable tool for the preliminary testing of MG in surface waters. This study underscores the synergy among MPEE, DIA, and chemometric tools, presenting a cost-efficient and reliable alternative for the sensitive detection of water contaminants.

2.
Environ Sci Pollut Res Int ; 29(60): 90446-90462, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35871192

RESUMO

Waste rock from bentonite mining (WRBM) was evaluated as potential adsorbents for removing crystal violet (CV) and methylene blue (MB) cationic dyes from contaminated water. The waste samples (AM01, AM02, and AM03) were collected from different locations of the bentonite mine and characterized through X-ray diffraction, X-ray fluorescence, Fourier-transform infrared spectroscopy, N2 adsorption/desorption, and cation exchange capacity. The adsorption efficiency of CV and MB dyes was investigated through the effect of initial concentration, contact time, pH, the dosage of adsorbent, and temperature. Sample AM02 showed the largest surface area (69.13 m2/g) and the best adsorptive performance for both dyes, with removal more significant than 90%. The adsorption of CV and MB in the waste followed the Langmuir isothermal model. Samples AM01 and AM02 followed the pseudo-second-order (PSO) kinetic model, while AM03 better fitted the Elovich kinetic model. The enthalpy (ΔH), entropy (ΔS), and Gibbs energy (ΔG) were evaluated as adsorption parameters. The process of adsorption of CV and MB dyes in the waste was predominantly endothermic and occurred spontaneously. WRBM samples proved to be a promising candidate for removing cationic dyes present in water.


Assuntos
Bentonita , Corantes , Águas Residuárias , Cátions , Água
3.
Waste Manag ; 95: 466-475, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31351633

RESUMO

Hydrothermal carbonization (HTC) is a promising technique for the improved management and better use of agro-industrial wastes. In this study, the effects of temperature, reaction time, biomass/water ratio, feed-water pH, and agitation speed on the HTC of acerola wastes were investigated. The effects of these independent variables on process yield and on the total oxygenated functional groups of hydrochars were quantified. The best process conditions were obtained using the desirability function and the chemical-morphological properties of the hydrochar produced in these optimal conditions were investigated. The total number of oxygenated functional groups were found to be higher than those described in the literature for similar biomasses. The effects of temperature, solution pH, initial dye concentration, and adsorbent dosage on the adsorption of methylene blue using the obtained hydrochar were also investigated and the conditions necessary for the maximum removal and adsorption capacity were determined. Adsorption isotherms and thermodynamic studies have shown that methylene blue adsorption on the obtained hydrochar is endothermic and spontaneous. Thus, the HTC of acerola wastes may be a sustainable technology for the modification of underutilized wastes and their application as adsorbents of environmental contaminants.


Assuntos
Purificação da Água , Adsorção , Biomassa , Azul de Metileno , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA