Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 12: 1367451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549839

RESUMO

This work refers to the synthesis and characterization of poly (3-hydroxybutyrate)-b-oligo (2-ethyl oxazoline) (oligoEtOx). Cationic ring-opening polymerization of 2-ethyl oxazoline yielded poly (2-ethyl oxazoline) (oligoEtOx) with a hydroxyl end. Carboxylic acid-terminated PHB was reacted with oligoEtOx via dicyclohexylcarbodiimide chemistry to obtain PHB-b-oligoEtOx conjugates. The obtained PHB-b-oligoEtOx conjugates were successfully characterized by 1H- and 13C NMR, FTIR, DSC, and size exclusion chromatography. PHB-b-oligoEtOx conjugates can be promising biologic active materials.

2.
Gels ; 10(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38247763

RESUMO

Electrolytes play a critical role in battery performance. They are associated with an increased risk of safety issues. The main challenge faced by many researchers is how to balance the physical and electrical properties of electrolytes. Gel polymer electrolytes (GPEs) have received increasing attention due to their satisfactory properties of ionic conductivity, mechanical stability, and safety. Herein, we develop a gel network polymer electrolyte (GNPE) to address the challenge mentioned earlier. This GNPE was formed by tri-epoxide monomer and bis(fluorosulfonyl)imide lithium salt (LiFSI) via an in situ cationic polymerization under mild thermal conditions. The obtained GNPE exhibited a relatively high ionic conductivity (σ) of 2.63 × 10-4 S cm-1, lithium transference number (tLi+, 0.58) at room temperature (RT), and intimate electrode compatibility with LiFePO4 and graphite. The LiFePO4/GNPE/graphite battery also showed a promising cyclic performance at RT, e.g., a suitable discharge specific capacity of 127 mAh g-1 and a high Coulombic efficiency (>97%) after 100 cycles at 0.2 C. Moreover, electrolyte films showed good mechanical stability and formed the SEI layer on the graphite anode. This study provides a facile method for preparing epoxy-based electrolytes for high-performance lithium-ion batteries (LIBs).

3.
Angew Chem Int Ed Engl ; 62(43): e202307791, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37527192

RESUMO

A series of exo-olefin compounds ((CH3 )2 C(PhY)-CH2 C(=CH2 )PhY) were prepared by selective cationic dimerization of α-methylstyrene (αMS) derivatives (CH2 =C(CH3 )PhY) with p-toluenesulfonic acid (TsOH) via ß-C-H scission. They were subsequently used as reversible chain transfer agents for sulfur-free cationic RAFT polymerization of αMS via ß-C-C scission in the presence of Lewis acid catalysts such as SnCl4 . In particular, exo-olefin compounds with electron-donating substituents, such as a 4-MeO group (Y) on the aromatic ring, worked as efficient cationic RAFT agents for αMS to produce poly(αMS) with controlled molecular weights and exo-olefin terminals. Other exo-olefin compounds (R-CH2 C(=CH2 )(4-MeOPh)) with various R groups were prepared by different methods to examine the effects of R groups on the cationic RAFT polymerization. A sulfur-free cationic RAFT polymerization also proceeded for isobutylene (IB) with the exo-olefin αMS dimer ((CH3 )2 C(Ph)-CH2 C(=CH2 )Ph). Furthermore, telechelic poly(IB) with exo-olefins at both terminals was obtained with a bifunctional RAFT agent containing two exo-olefins. Finally, block copolymers of αMS and methyl methacrylate (MMA) were prepared via mechanistic transformation from cationic to radical RAFT polymerization using exo-olefin terminals containing 4-MeOPh groups as common sulfur-free RAFT groups for both cationic and radical polymerizations.

4.
Polymers (Basel) ; 15(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37631472

RESUMO

The polymerization of isobutylene allows us to obtain a wide spectrum of polyisobutylenes (PIBs) which differ in their molecular weight characteristics and the chemical structure of chain-end groups. The bulk of the PIBs manufactured worldwide are highly reactive polyisobutylenes (HRPIBs) with -C(Me)=CH2 end-groups and low-molecular weights (Mn < 5 kDa). HRPIBs are feedstocks that are in high demand in the manufacturing of additives for fuels and oils, adhesives, detergents, and other fine chemicals. In addition, HRPIBs and CMe2Cl-terminated PIBs are intensively studied with the aim of finding biomedical applications and for the purpose of developing new materials. Both chain control (molecular weight and dispersity) and chemoselectivity (formation of exo-olefinic or -CMe2Cl groups) should be achieved during polymerization. This review highlights the fundamental issues in the mechanisms of isobutylene polymerization and PIB analysis, examines actual catalytic approaches to PIBs, and describes recent studies on the functionalization and applications of HRPIBs and halogen-terminated PIBs.

5.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445729

RESUMO

Photopolymerization is a growing field with an extensive range of applications and is environmentally friendly owing to its energy-efficient nature. Such light-assisted curing methods were initially used to cure the coatings. However, it has become common to use photopolymerization to produce 3D objects, such as bridges or dental crowns, as well as to cure dental fillings. In this study, polymer nanocomposites containing inorganic nanofillers (such as zinc nano-oxide and zinc nano-oxide doped with two wt.% aluminum, titanium nano-oxide, kaolin nanoclay, zirconium nano-oxide, aluminum nano-oxide, and silicon nano-oxide) were fabricated and studied using Real Time FT-IR to investigate the effects of these nanoadditives on the final conversion rates of the obtained nanocomposites. The effects of the fillers on the viscosity of the produced nanocomposites were also investigated, and 3D prints of the selected nanocomposites were presented.


Assuntos
Alumínio , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Impressão Tridimensional , Odontologia , Zinco
6.
Polymers (Basel) ; 15(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37514450

RESUMO

The effect of semiconducting tungsten disulfide (WS2) nanoparticles (NPs), functionalized by either methacryloxy, glycidyl, vinyl, or amino silanes, has been studied in photocuring of acrylate and epoxy resins (the latter photocured according to a cationic mechanism). The curing time, degree of curing (DC), thermal effects, and mechanical properties of the radiation-cured resins were investigated. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analyses confirmed that a silane coating was formed (1-4 nm) on the NPs' surface having a thickness of 1-4 nm. Fourier transition infrared (FTIR) was used to determine the DC of the nanocomposite resin. The curing time of the epoxy resin, at 345-385 nm wavelength, was 10 to 20 s, while for acrylate, the curing time was 7.5 min, reaching 92% DC in epoxy and 84% in acrylate. The glass transition temperature (Tg) of the photocured acrylates in the presence of WS2 NPs increased. In contrast to the acrylate, the epoxy displayed no significant variations of the Tg. It was found that the silane surface treatments enhanced the DC. Significant increases in impact resistance and enhancement in shear adhesion strength were observed when the NPs were treated with vinyl silane. A previous study has shown that the addition of WS2 NPs at a concentration of 0.5 wt.% is the optimal loading for improving the resin's mechanical properties. This study supports these earlier findings not only for the unmodified NPs but also for those functionalized with silane moieties. This study opens new vistas for the photocuring of resins and polymers in general when incorporating WS2 NPs.

7.
Angew Chem Int Ed Engl ; 62(26): e202303237, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37186410

RESUMO

Exploiting non-covalent interactions to catalyze challenging ionic polymerizations is an ambitious goal but is in its infancy. We recently demonstrated non-covalent anion-binding catalysis as an effective methodology to enable living cationic polymerization (LCP) of vinyl ethers in an environmentally benign manner. Here, we further elucidate the structure-reactivity relationships of the elaborately designed seleno-cyclodiphosph(V)azanes catalysts and the roles of anion-binding interactions by a combined theoretical DFT study and experimental study. The investigation suggests that the distinct cis-cyclodiphosph(V)azane framework combined with "selenium effect" and electron-withdrawing 3,5-(CF3 )2 -Phenyl substitution pattern in catalyst enables a critical contribution to accessing excellent stability, anion affinity and solubility under polymerization conditions. Thus, the catalyst could leverage anion-binding interactions to precisely control reversible and transient dormant-active species equilibrium, allowing it to dynamically bind, recognize and pre-organize propagating ionic species and monomer, thereby facilitating efficient chain propagation and minimizing irreversible chain transfer events under mild conditions. The more in-depth understanding of the mechanism for anion-binding catalytic LCP reported herein should help to guide future catalyst design and to extend this concept to broader polymerization systems where ionic species serve as crucial intermediates.


Assuntos
Polimerização , Cátions , Catálise
8.
ACS Appl Mater Interfaces ; 15(15): 19403-19413, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37027250

RESUMO

Addition of fillers to formulations can generate composites with improved mechanical properties and lower the overall cost through a reduction of chemicals needed. In this study, fillers were added to resin systems consisting of epoxies and vinyl ethers that frontally polymerized through a radical-induced cationic frontal polymerization (RICFP) mechanism. Different clays, along with inert fumed silica, were added to increase the viscosity and reduce the convection, results of which did not follow many trends present in free-radical frontal polymerization. The clays were found to reduce the front velocity of RICFP systems overall compared to systems with only fumed silica. It is hypothesized that chemical effects and water content produce this reduction when clays are added to the cationic system. Mechanical and thermal properties of composites were studied, along with filler dispersion in the cured material. Drying the clays in an oven increased the front velocity. Comparing thermally insulating wood flour to thermally conducting carbon fibers, we observed that the carbon fibers resulted in an increase in front velocity, while the wood flour reduced the front velocity. Finally, it was shown that acid-treated montmorillonite K10 polymerizes RICFP systems containing vinyl ether even in the absence of an initiator, resulting in a short pot life.

9.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982242

RESUMO

Polymers based on renewable monomers are projected to have a significant role in the sustainable economy, even in the near future. Undoubtedly, the cationically polymerizable ß-pinene, available in considerable quantities, is one of the most promising bio-based monomers for such purposes. In the course of our systematic investigations related to the catalytic activity of TiCl4 on the cationic polymerization of this natural olefin, it was found that the 2-chloro-2,4,4-trimethylpentane (TMPCl)/TiCl4/N,N,N',N'-tetramethylethylenediamine (TMEDA) initiating system induced efficient polymerization in dichloromethane (DCM)/hexane (Hx) mixture at both -78 °C and room temperature. At -78 °C, 100% monomer conversion was observed within 40 min, resulting in poly(ß-pinene) with relatively high Mn (5500 g/mol). The molecular weight distributions (MWD) were uniformly shifted towards higher molecular weights (MW) in these polymerizations as long as monomer was present in the reaction mixture. However, chain-chain coupling took place after reaching 100% conversion, i.e., under monomer-starved conditions, resulting in considerable molecular weight increase and MWD broadening at -78 °C. At room temperature, the polymerization rate was lower, but chain coupling did not occur. The addition of a second feed of monomer in the polymerization system led to increasing conversion and polymers with higher MWs at both temperatures. 1H NMR spectra of the formed polymers indicated high in-chain double-bond contents. To overcome the polarity decrease by raising the temperature, polymerizations were also carried out in pure DCM at room temperature and at -20 °C. In both cases, rapid polymerization occurred with nearly quantitative yields, leading to poly(ß-pinene)s with Mns in the range of 2000 g/mol. Strikingly, polymerization by TiCl4 alone, i.e., without any additive, also occurred with near complete conversion at room temperature within a few minutes, attributed to initiation by adventitious protic impurities. These results convincingly prove that highly efficient carbocationic polymerization of the renewable ß-pinene can be accomplished with TiCl4 as catalyst under both cryogenic conditions, applied widely for carbocationic polymerizations, and the environmentally benign, energy-saving room temperature, i.e., without any additive and cooling or heating. These findings enable TiCl4-catalyzed eco-friendly manufacturing of poly(ß-pinene)s, which can be utilized in various applications, and in addition, subsequent derivatizations could result in a range of high-added-value products.


Assuntos
Alcenos , Polímeros , Temperatura , Polimerização , Polímeros/química , Catálise
10.
Angew Chem Int Ed Engl ; 62(14): e202217812, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36757807

RESUMO

This contribution reports the efficient conversion of γ-valerolactone and its derivatives, abundant but unexplored renewable feedstocks, into sustainable and degradable polythioesters via the establishment of the first isomerization-driven ring-opening polymerizations (IROPs) of corresponding thionolactone intermediates. The key to this success relies on the development of a new simple and robust [Et3 O]+ [B(C6 F5 )4 ]- cationic initiator which possesses high activity, exclusive selectivity, living nature, and broad scope of thionolactones. A complete inversion of configuration during IROP of enantiopure γ-thionovalerolactone is also disclosed, affording isotactic semicrystalline polythioesters (Tm =87.0 °C) with mechanical property compared well to the representative commodity polyolefins. The formation of a highly crystalline supramolecular stereocomplex with enhanced thermal property (Tm =117.6 °C) has also been revealed.

11.
Angew Chem Int Ed Engl ; 62(11): e202215329, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36602285

RESUMO

Poly(1,2-dithiolane)s are a family of intrinsically recyclable polymers due to their dynamic covalent disulfide linkages. Despite the common use of thiolate-initiated anionic ring-opening polymerization (ROP) under basic condition, cationic ROP is still not exploited. Here we report that disulfide bond can act as a proton acceptor, being protonated by acids to form sulfonium cations, which can efficiently initiate the ROP of 1,2-dithiolanes and result in high-molecular-weight (over 1000 kDa) poly(disulfide)s. The reaction can be triggered by adding catalytic amounts of acids and non-coordinating anion salts, and completed in few minutes at room temperature. The acidic conditions allow the applicability for acidic monomers. Importantly, the reaction condition can be under open air without inert protection, enabling the nearly quantitative chemical recycling from bulk materials to original monomers.

12.
Chempluschem ; 88(1): e202200432, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36592006

RESUMO

Continuing efforts aimed at performing the 1-decene polymerization to low viscosity polyalphaolefins (PAO)s using a less hazardous AlCl3 catalyst than boron-based analogs, the basic mechanisms of this system were revealed in this research. In this aspect, neat AlCl3 and AlCl3 /toluene were carried out to perform 1-decene polymerizations. Microstructure analyses of the as-synthesized oils revealed low molecular weight (708 vs. 1529 g/mol), kinematic viscosity (KV100 =6.4 vs. 22.2 cSt), and long chain branching (82.1 vs. 84.7) of PAO from the system containing toluene solvent. Furthermore, NMR analysis confirmed various types of short chain branch (SCB) with the inclusion of toluene ring in the structure of final PAO chains. Then, to shed light on the basic mechanisms of cationic polymerization of 1-decene including: i) chain initiation, ii) chain transfer to the monomer, iii) isomerization of the carbocation via a chain walking mechanism (causes different SCB length), and iv) binding of toluene ring to the propagating PAO chain (to yield aromatic containing oligomers), molecular modeling at the DFT level was employed. The energies obtained confirmed the ease of carbocation isomerization and chain transfer mechanisms in toluene medium, which well confirms the highly branched structure experimentally obtained for related PAO.


Assuntos
Alcenos , Tolueno , Alcenos/química , Polimerização , Tolueno/química , Modelos Moleculares , Catálise
13.
Angew Chem Int Ed Engl ; 62(4): e202215021, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36369911

RESUMO

We report a novel method to synthesize degradable poly(vinyl ether)s with cleavable thioacetal bonds periodically arranged in the main chains using controlled cationic copolymerization of vinyl ethers with a 7-membered cyclic thioacetal (7-CTA) via degenerative chain transfer (DT) to the internal thioacetal bonds. The thioacetal bonds, which are introduced into the main chain by cationic ring-opening copolymerization of 7-CTA with vinyl ethers, serve as in-chain dormant species to allow homogeneous propagation of vinyl ethers for all internal segments to afford copolymers with controlled overall and segmental molecular weights. The obtained polymers can be degraded into low- and controlled-molecular-weight polymers with narrow molecular weight distributions via hydrolysis. Various vinyl ethers with hydrophobic, hydrophilic, and functional pendants are available. Finally, one-pot synthesis of multiblock copolymers and their degradation into diblock copolymers are also achieved.

14.
Angew Chem Int Ed Engl ; 62(7): e202217365, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36522304

RESUMO

The development of polymers with on-demand degradability is required to alleviate the current global issues on polymer-waste pollution. Therefore, we designed a vinyl ether monomer with an o-nitrobenzyl (oNBn) group as a photo-deprotectable pendant (oNBnVE) and synthesized an alternating copolymer with an oNBn-capped acetal backbone via cationic copolymerization with p-tolualdehyde (pMeBzA). The resultant alternating copolymer could be rapidly degraded into lower-molecular-weight compounds upon simple exposure to UV irradiation without any reactants or catalysts, while it was sufficiently stable toward heat and ambient light. This degradation proceeds via cleavage of the hemiacetal structure generated upon photo-deprotection of the oNBn pendant. The oNBn-peculiar degradability allowed the exclusive photo-degradation of the oNBnVE/pMeBzA segments in a diblock copolymer composed of oNBnVE/pMeBzA and benzyl vinyl ether (BnVE)/pMeBzA segments.

15.
ACS Catal ; 13(18): 12163-12172, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38469177

RESUMO

The synthesis of stereoregular polymers through ionic mechanisms using asymmetric ion-pairing (AIP) catalysis is emerging as an effective strategy to achieve differentiated material properties from readily available building blocks. Stereoselective cationic polymerization in particular is primed for advancement using AIP by leveraging the breadth of Brønsted and Lewis acid small-molecule catalysis literature; however, mechanistic studies that address polymer-specific phenomena are scarce and, as a result, the lack of mechanistic understanding has limited catalyst design. In a recent study, we demonstrated the only example of a stereoselective and helix-sense-selective cationic vinyl polymerization of N-vinylcarbazole using chiral scandium-bis(oxazoline) Lewis acids. To better understand the mechanism of this highly stereoselective polymerization and elicit design principles for future advances, we present a combined experimental and computational study into the relevant factors that determine tacticity and helicity control. Key mechanistic experiments suggest two competing elementary steps-chain-end conformation equilibration and propagation-whose relative rates can be influenced by monomer concentration, isotope effects, and catalyst design to tune tacticity. In contrast, helicity is influenced by complex relationships between the stereoselectivity of the first monomer propagation and a time-dependent initiator-catalyst mixing time. The more complete understanding of stereoselective cationic polymerization through AIP developed herein provides insights into polymer-specific mechanisms for stereocontrol, which we believe will motivate continued catalyst discovery and development for stereoselective vinyl polymerization.

16.
Polymers (Basel) ; 14(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956680

RESUMO

Ionic liquid (IL) as a green solvent is entirely composed of ions; thus, it may be more than a simple solvent for ionic polymerization. Here, the cationic polymerization of p-methylstyrene (p-MeSt) initiated by 1-chloro-1-(4-methylphenyl)-ethane (p-MeStCl)/tin tetrachloride (SnCl4) was systematically studied in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Bmim][NTf2]) IL at -25 °C. The results show that IL did not participate in cationic polymerization, but its ionic environment and high polarity were favorable for the polarization of initiator and monomer and facilitate the controllability. The gel permeation chromatography (GPC) trace of the poly(p-methylstyrene) (poly(p-MeSt)) changes from bimodal in dichloromethane (CH2Cl2) to unimodal in IL, and polydispersities Mw/Mn of the polymer in IL showed narrower (1.40-1.59). The reaction rate and heat release rate were milder in IL. The effects of the initiating system, Lewis acid concentration, and 2,6-di-tert-butylpyridine (DTBP) concentration on the polymerization were investigated. The controlled cationic polymerization initiated by p-MeStCl/SnCl4 was obtained. The polymerization mechanism of p-MeSt in [Bmim][NTf2] was also proposed.

17.
Polymers (Basel) ; 14(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35746024

RESUMO

Additive manufacturing or 3D printing of materials is a prominent process technology which involves the fabrication of materials layer-by-layer or point-by-point in a subsequent manner. With recent advancements in additive manufacturing, the technology has excited a great potential for extension of simple designs to complex multi-material geometries. Vat photopolymerization is a subdivision of additive manufacturing which possesses many attractive features, including excellent printing resolution, high dimensional accuracy, low-cost manufacturing, and the ability to spatially control the material properties. However, the technology is currently limited by design strategies, material chemistries, and equipment limitations. This review aims to provide readers with a comprehensive comparison of different additive manufacturing technologies along with detailed knowledge on advances in multi-material vat photopolymerization technologies. Furthermore, we describe popular material chemistries both from the past and more recently, along with future prospects to address the material-related limitations of vat photopolymerization. Examples of the impressive multi-material capabilities inspired by nature which are applicable today in multiple areas of life are briefly presented in the applications section. Finally, we describe our point of view on the future prospects of 3D printed multi-material structures as well as on the way forward towards promising further advancements in vat photopolymerization.

18.
Angew Chem Int Ed Engl ; 61(23): e202117377, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35128771

RESUMO

The application of photochemistry in polymer synthesis is of interest due to the unique possibilities offered compared to thermochemistry, including topological and temporal control, rapid polymerization, sustainable low-energy processes, and environmentally benign features leading to established and emerging applications in adhesives, coatings, adaptive manufacturing, etc. In particular, the utilization of photochemistry in controlled/living polymerizations often offers the capability for precise control over the macromolecular structure and chain length in addition to the associated advantages of photochemistry. Herein, the latest developments in photocontrolled living radical and cationic polymerizations and their combinations for application in polymer syntheses are discussed. This Review summarizes and highlights recent studies in the emerging area of photoinduced controlled/living polymerizations. A discussion of mechanistic details highlights differences as well as parallels between different systems for different polymerization methods and monomer applicability.


Assuntos
Polímeros , Estrutura Molecular , Fotoquímica , Polimerização , Polímeros/química
19.
Front Chem ; 9: 644547, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262892

RESUMO

The foremost limitation of block copolymer synthesis is to polymerize two or more different types of monomers with different reactivity profiles using a single polymerization technique. Controlled living polymerization techniques play a vital role in the preparation of wide range of block copolymers, thus are revolutionary techniques for polymer industry. Polymers with good control over molecular weight, molecular weight distribution, chain-end functionality and architectures can be prepared by these processes. In order to improve the existing applications and create new opportunities to design a new block copolymer system with improved physical and chemical properties, the combination of two different polymerization techniques have tremendous scope. Such kinds of macromolecules may be attended by combination of homopolymerization of different monomers by post-modification techniques using a macroinitiator or by using a dual initiator which allows the combination of two mechanistically distinct techniques. This review focuses on recent advances in synthesis of block copolymers by combination of living cationic polymerization with other polymerization techniques and click chemistry.

20.
Angew Chem Int Ed Engl ; 60(36): 19705-19709, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34189823

RESUMO

Polymer molecular weight distribution (MWD) is a key parameter of polymers. Here we present a robust method for controlling polymer MWD in controlled cationic polymerizations. A latent mediator strategy was designed and combined with temporal programming to regenerate mediators at different times during polymerization. Both the breadths and shapes of MWD curves were tuned easily by adjusting an external light source. Bimodal, trimodal, and tetramodal distributions were obtained, and the breadths could be varied from 1.06 to 2.09. Polymers with different MWDs prepared by this method had good chain end fidelity, which was demonstrated with successful chain-extension experiments. In addition, the introduction of temporal programming with a computer-controlled single chip for the light source opened an avenue for the use of artificial intelligence in polymer synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA