Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 822
Filtrar
1.
J Transl Med ; 22(1): 884, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354521

RESUMO

BACKGROUND: Radiation-induced liver fibrosis (RILF) is a common manifestation of radiation-induced liver injury (RILI) and is caused primarily by activated hepatic stellate cells (HSCs). Circular RNAs (circRNAs) play critical roles in various diseases, but little is known about the function and mechanism of circRNAs in RILF. METHODS: RNA pull-down and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to screen binding proteins of hsa_circ_0096498 (circ96498). RNA-binding protein immunoprecipitation, RNA pull-down and nuclear and cytoplasmic protein extraction were conducted to confirm the interaction between circ96498 and eukaryotic initiation factor 4A3 (EIF4A3). RNA sequencing was performed to screen target genes regulated by EIF4A3. HSCs with altered circ96498 and cell division cycle 42 (CDC42) expression were used to assess irradiated HSC activation. Circ96498 inhibition and CDC42 blockade were evaluated in RILF mouse models. RESULTS: In this study, we identified a radiation-sensitive circ96498, which was highly expressed in the irradiated HSCs of paracancerous tissues from RILI patients. Circ96498 inhibited the proliferation but promoted the apoptosis of irradiated HSCs, suppressed the secretion of proinflammatory cytokines IL-1ß, IL-6 and TNF-α, and decreased the expression of profibrotic markers (α-SMA and collagen 1) in irradiated HSCs. Mechanistically, irradiation induced the transport of EIF4A3 into the nucleus, and nuclear EIF4A3 increased the stability of CDC42 mRNA and increased CDC42 expression, thereby promoting HSC activation through the NF-κB and JNK/Smad2 pathways. However, the binding of circ96498 to EIF4A3 impeded the translocation of EIF4A3 into the nucleus, resulting in the inhibition of CDC42 expression and subsequent HSC activation. Furthermore, circ96498 knockdown promoted the development of the early and late stages of RILF in a mouse model, which was mitigated by CDC42 blockade. CONCLUSIONS: Collectively, our findings elucidate the involvement of the circ96498/EIF4A3/CDC42 axis in inhibiting irradiated HSC activation, which offers a novel approach for RILF prevention and treatment.


Assuntos
Núcleo Celular , Fator de Iniciação 4A em Eucariotos , Células Estreladas do Fígado , Cirrose Hepática , RNA Circular , Proteína cdc42 de Ligação ao GTP , Humanos , Animais , RNA Circular/genética , RNA Circular/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Núcleo Celular/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Masculino , Camundongos , Transporte Ativo do Núcleo Celular , Camundongos Endogâmicos C57BL , Proliferação de Células , Apoptose/efeitos da radiação , RNA Helicases DEAD-box
2.
Biochem Biophys Rep ; 40: 101828, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39380576

RESUMO

This study investigates the role of Rho GTPases, specifically Cdc42, Rac1, and RhoA, in platelet-derived growth factor receptors (PDGFRα and PDGFRß) signaling. Signal transducer and activator of transcription (STAT) proteins, essential for cellular processes such as proliferation and immune response, are activated downstream of PDGFRs. Dysregulation of these pathways is linked to various diseases, including cancer. The current study examines the effects of Rho GTPase depletion on PDGFR phosphorylation, STAT protein stability, and downstream signaling. Results indicate that depletion of Cdc42, Rac1, or RhoA impairs PDGFR phosphorylation and reduces STAT1 and STAT3 signaling, without significantly affecting AKT and ERK1/2 pathways. The findings highlight the critical regulatory roles of Rho GTPases in PDGFR-mediated STAT signaling.

3.
CNS Neurosci Ther ; 30(10): e70075, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39390804

RESUMO

BACKGROUND: Glioblastoma represents the most frequently diagnosed malignant neoplasm within the central nervous system. Human glioblastoma cells can be phenotypically reprogrammed into neuron-like cells through the forced expression of NEUROG2 and SOXC factors. NEUROG2 serves as a pioneer factor, establishing an initial framework for this transformation. However, the specific role of SOXC factors has not been fully elucidated. METHODS: In this study, we used ChIP-seq to determine the potential target gene of NGN2. RNA-seq has been used to evaluate the transcriptional change during NGN2-SOX11-mediated neuron reprogramming. Immunofluorescence was used to determine the neuron reprogramming efficacy and cell proliferation ability. ChIP-qPCR, Co-IP, and Western Blot were performed to investigate the mechanism. RESULTS: Our findings reveal that SOXC factors, in contrast to their previously identified function as transcriptional activators, act as transcriptional repressors. They achieve this by recruiting TRIM28 to suppress the expression of ECT2, a RhoGEF. This suppression results in the differential regulation of RhoA, RAC1, and CDC42 activities throughout the reprogramming process. We further establish that small molecules targeting RhoA and its effectors can substitute for SOXC factors in facilitating the neuronal reprogramming of glioblastoma cells. CONCLUSION: These results underscore the pivotal role of SOXC factors' transcriptional repression and illuminate one of their specific downstream targets.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Reprogramação Celular , Glioblastoma , Proteínas do Tecido Nervoso , Neurônios , Fatores de Transcrição SOXC , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP , Proteínas rac1 de Ligação ao GTP , Proteína rhoA de Ligação ao GTP , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Tumoral , Neurônios/metabolismo , Reprogramação Celular/fisiologia , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Transdução de Sinais/fisiologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo
4.
Biochem Biophys Res Commun ; 734: 150654, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39241623

RESUMO

Blood platelets result from differentiation of megakaryocytes (MKs) into the bone marrow. It culminates with the extension of proplatelets (PPT) through medullar sinusoids and release of platelets in the blood stream. Those processes are regulated by contact with the microenvironment mediated by podosomes. We previously demonstrated that contact of megakaryocytes to Collagen I fibers initiated the formation of linear podosomes required for proplatelets extension and release of mature platelets. MKs linear podosomes have the particularity of displaying mechanical pulling activity but, unlike other linear podosomes, they lack the ability of digesting the extracellular matrix (ECM), as we recently demonstrated. The Cdc42 small GTPase is required for actomyosin-dependent maturation of the demarcation membrane system (DMS), a membrane reservoir for PPT and platelets components. Cdc42 is a known protein of the podosomes core, and is instrumental to accurate platelets release into the sinusoids. Indeed, FRET analysis showed that Cdc42 activity was very high and central to DMS formation. Unexpectedly, even though we found the protein in linear podosomes, almost undetectable Cdc42 activity was detected in those structures. This observation suggests that Cdc42 could also act as scaffold to assemble proteins required for PPT formation/elongation along Collagen I fibers in MKs. Eventually, we demonstrated that linear podosomes appear as points of contact between Collagen I fibers and DMS membranes, to mechanically extend PPT along Collagen bundles, independently of Cdc42 activity.

5.
Ann Clin Lab Sci ; 54(4): 525-532, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39293840

RESUMO

OBJECTIVE: Cell division cycle 42 (CDC42) modulates inflammation and multiple organ dysfunction by regulating T-cell differentiation and macrophage polarization. This research intended to explore the association of blood CDC42 expression with septic risk, multi-organ dysfunctions, and mortality. METHODS: 145 sepsis patients and 50 health controls were recruited, then CDC42 expression in peripheral blood mononuclear cell (PBMC) from them was measured by RT-qPCR. RESULTS: CDC42 was decreased in sepsis patients versus health controls (P<0.001); meanwhile, the receiver operating characteristic (ROC) curve showed that CDC42 had a certain value to predict sepsis risk with an area under the curve (AUC) (95% confidence interval (CI): 0.797 (0.725-0.869). Furthermore, CDC42 was negatively correlated with C-reactive protein (P<0.001), tumor necrosis factor-alpha (P<0.001) and interleukin-17A (P<0.001) but less with interleukin-6 (P=0.056). Moreover, CDC42 was negatively related to the SOFA score (P<0.001) and its several subscales (respiratory system, liver, cardiovascular, and renal system) (P<0.05). Furthermore, CDC42 was lower in septic deaths versus survivors (P<0.001); meanwhile, the ROC curve exhibited a certain ability of CDC42 in estimating 28-day mortality with an AUC (95%CI) of 0.766 (0.676-0.855). CONCLUSION: Circulating CDC42 exhibits potency to be a prognostic biomarker reflecting multi-organ dysfunctions and higher mortality risk in sepsis.


Assuntos
Inflamação , Insuficiência de Múltiplos Órgãos , Sepse , Proteína cdc42 de Ligação ao GTP , Humanos , Sepse/mortalidade , Sepse/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/mortalidade , Insuficiência de Múltiplos Órgãos/sangue , Inflamação/sangue , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Suscetibilidade a Doenças , Curva ROC , Biomarcadores/sangue , Estudos de Casos e Controles , Idoso , Prognóstico , Adulto , Fatores de Risco , Leucócitos Mononucleares/metabolismo
6.
Aging Cell ; : e14333, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289787

RESUMO

Skin aging has been associated with the onset of various skin issues, and recent studies have identified an increase in Cdc42 activity in naturally aging mice. While previous literature has suggested that CASIN, a specific inhibitor of Cdc42 activity, may possess anti-aging properties, its specific effects on the epidermis and dermis, as well as the underlying mechanisms in naturally aging mice, remain unclear. Our study revealed that CASIN demonstrated the ability to increase epidermal and dermal thickness, enhance dermal-epidermal junction, and stimulate collagen and elastic fiber synthesis in 9-, 15-, and 24-month-old C57BL/6 mice in vivo. Moreover, CASIN was found to enhance the proliferation, differentiation, and colony formation and restore the cytoskeletal morphology of primary keratinocytes in naturally aging skin in vitro. Furthermore, the anti-aging properties of CASIN on primary fibroblasts in aging mice were mediated by the ribosomal protein RPL4 using proteomic sequencing, influencing collagen synthesis and cytoskeletal morphology both in vitro and in vivo. Meanwhile, both subcutaneous injection and topical application exhibited anti-aging effects for a duration of 21 days. Additionally, CASIN exhibited anti-inflammatory properties, while reduced expression of RPL4 was associated with increased inflammation in the skin of naturally aging mice. Taken together, our results unveil a novel function of RPL4 in skin aging, providing a foundational basis for future investigations into ribosomal proteins. And CASIN shows promise as a potential anti-aging agent for naturally aging mouse skin, suggesting potential applications in the field.

7.
Rev Med Interne ; 2024 Aug 17.
Artigo em Francês | MEDLINE | ID: mdl-39155178

RESUMO

Autoinflammatory diseases (AIDs) are conditions characterized by dysfunction of innate immunity, causing systemic inflammation and various clinical symptoms. The field of AIDs has expanded due to improved comprehension of pathophysiological mechanisms and advancements in genomics techniques. A new emerging category of AIDs is characterized by a significant increase in interleukin 18 (IL-18), a pro-inflammatory cytokine synthesized in macrophages and activated by caspase 1 via various inflammasomes. IL-18 plays a role in the regulation of innate and adaptive immunity. IL-18 is involved in various functions, such as the proliferation, survival, and differentiation of immune cells, tissue infiltration of immune cells, polarization of immune responses, and production of other pro-inflammatory cytokines. This review analyzes the literature on IL-18 regarding its functions and its implications in the diagnosis and treatment of AIDs. IL-18-associated AIDs comprise Still's disease and diseases associated with mutations in NLRC4, XIAP, CDC42, and PSTPIP1, as well as IL-18BP deficiencies. With the exception of PSTPIP1-associated diseases, these conditions all carry a risk of macrophagic activation syndrome. Measuring IL-18 levels in serum can aid in the diagnosis, prognosis, and monitoring of these diseases. Therapies targeting IL-18 and its signaling pathways are currently under investigation.

8.
Phytother Res ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152726

RESUMO

Harmine (HM), a ß-carboline alkaloid extracted from plants, is a crucial component of traditional Chinese medicine (TCM) known for its diverse pharmacological activities. Thrombocytopenia, a common and challenging hematological disorder, often coexists with serious illnesses. Previous research has shown a correlation between HM and thrombocytopenia, but the mechanism needs further elucidation. The aim of this study was to clarify the mechanisms underlying the effects of HM on thrombocytopenia and to develop new therapeutic strategies. Flow cytometry, Giemsa staining, and Phalloidin staining were used to assess HM's impact on Meg-01 and HEL cell differentiation and maturation in vitro. A radiation-induced thrombocytopenic mouse model was employed to evaluate HM's effect on platelet production in vivo. Network pharmacology, molecular docking, and protein blotting were utilized to investigate HM's targets and mechanisms. The results demonstrated that HM dose-dependently promoted Meg-01 and HEL cell differentiation and maturation in vitro and restored platelet levels in irradiated mice in vivo. Subsequently, HM was found to be involved in the biological process of platelet production by upregulating the expressions of Rac1, Cdc42, JNK, and 5-HTR2A. Furthermore, the targeting of HM to 5-HTR2A and its correlation with downstream Rac1/Cdc42/JNK were also confirmed. In conclusion, HM regulates megakaryocyte differentiation and thrombopoiesis through the 5-HTR2A and Rac1/Cdc42/JNK pathways, providing a potential treatment strategy for thrombocytopenia.

9.
Cells ; 13(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39195248

RESUMO

Cell polarity refers to the asymmetric distribution of proteins and other molecules along a specified axis within a cell. Polarity establishment is the first step in many cellular processes. For example, directed growth or migration requires the formation of a cell front and back. In many cases, polarity occurs in the absence of spatial cues. That is, the cell undergoes symmetry breaking. Understanding the molecular mechanisms that allow cells to break symmetry and polarize requires computational models that span multiple spatial and temporal scales. Here, we apply a multiscale modeling approach to examine the polarity circuit of yeast. In addition to symmetry breaking, experiments revealed two key features of the yeast polarity circuit: bistability and rapid dismantling of the polarity site following a loss of signal. We used modeling based on ordinary differential equations (ODEs) to investigate mechanisms that generate these behaviors. Our analysis revealed that a model involving positive and negative feedback acting on different time scales captured both features. We then extend our ODE model into a coarse-grained reaction-diffusion equation (RDE) model to capture the spatial profiles of polarity factors. After establishing that the coarse-grained RDE model qualitatively captures key features of the polarity circuit, we expand it to more accurately capture the biochemical reactions involved in the system. We convert the expanded model to a particle-based model that resolves individual molecules and captures fluctuations that arise from the stochastic nature of biochemical reactions. Our models assume that negative regulation results from negative feedback. However, experimental observations do not rule out the possibility that negative regulation occurs through an incoherent feedforward loop. Therefore, we conclude by using our RDE model to suggest how negative feedback might be distinguished from incoherent feedforward regulation.


Assuntos
Polaridade Celular , Modelos Biológicos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
10.
Mol Ther ; 32(10): 3669-3682, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39086134

RESUMO

Immune checkpoint blockade has been used to treat breast cancer, but the clinical responses remain relatively poor. We have used the CRISPR-Cas9 kinome knockout library consisting of 763 kinase genes to identify tumor-intrinsic kinases conferring resistance to anti-PD-1 immune checkpoint blockade. We have identified the CDC42BPB kinase as a potential target to overcome the resistance to anti-PD-1 immune checkpoint blockade immunotherapy. We found that CDC42BPB is highly expressed in breast cancer patients who are non-responsive to immunotherapy. Furthermore, a small-molecule pharmacological inhibitor, BDP5290, which targets CDC42BPB, synergized with anti-PD-1 and enhanced tumor cell killing by promoting T cell proliferation in both in vitro and in vivo assays. Moreover, anti-PD-1-resistant breast cancer cells showed higher expression of CDC42BPB, and its inhibition rendered the resistant cells more susceptible to T cell killing in the presence of anti-PD-1. We also found that CDC42BPB phosphorylated AURKA, which in turn upregulated PD-L1 through cMYC. Our results have revealed a robust link between tumor-intrinsic kinase and immunotherapy resistance and have provided a rationale for a unique combination therapy of CDC42BPB inhibition and anti-PD-1 immunotherapy for breast cancer.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos
11.
Am J Physiol Gastrointest Liver Physiol ; 327(4): G545-G557, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39104325

RESUMO

Increased intestinal permeability is a manifestation of cystic fibrosis (CF) in people with CF (pwCF) and in CF mouse models. CF transmembrane conductance regulator knockout (Cftr KO) mouse intestine exhibits increased proliferation and Wnt/ß-catenin signaling relative to wild-type mice (WT). Since the Rho GTPase Cdc42 plays a central role in intestinal epithelial proliferation and tight junction remodeling, we hypothesized that Cdc42 may be altered in the Cftr KO crypts. Immunofluorescence showed distinct tight junction localization of Cdc42 in Cftr KO fresh crypts and enteroids, the latter indicating an epithelial-autonomous feature. Quantitative PCR and immunoblots revealed similar expression of Cdc42 in the Cftr KO crypts/enteroids relative to WT, whereas pulldown assays showed increased GTP-bound (active) Cdc42 in proportion to total Cdc42 in Cftr KO enteroids. Cdc42 activity in the Cftr KO and WT enteroids could be reduced by inhibition of the Wnt transducer Disheveled. With the use of a dye permeability assay, Cftr KO enteroids exhibited increased paracellular permeability to 3 kDa dextran relative to WT. Leak permeability and Cdc42 tight junction localization were reduced to a greater extent by inhibition of Wnt/ß-catenin signaling with endo-IWR1 in Cftr KO relative to WT enteroids. Increased proliferation or inhibition of Cdc42 activity with ML141 in WT enteroids had no effect on permeability. In contrast, inhibition of Cdc42 with ML141 increased permeability to both 3 kDa dextran and tight junction impermeant 500 kDa dextran in Cftr KO enteroids. These data suggest that increased constitutive Cdc42 activity may alter the stability of paracellular permeability in Cftr KO crypt epithelium.NEW & NOTEWORTHY Increased tight junction localization and GTP-bound activity of the Rho GTPase Cdc42 was identified in small intestinal crypts and enteroids of cystic fibrosis (CF) transmembrane conductance regulator knockout (Cftr KO) mice. The increase in epithelial Cdc42 activity was associated with increased Wnt signaling. Paracellular flux of an uncharged solute (3 kDa dextran) in Cftr KO enteroids indicated a moderate leak permeability under basal conditions that was strongly exacerbated by Cdc42 inhibition. These findings suggest increased activity of Cdc42 in the Cftr KO intestine underlies alterations in intestinal permeability.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Mucosa Intestinal , Junções Íntimas , Proteína cdc42 de Ligação ao GTP , Animais , Camundongos , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Fibrose Cística/metabolismo , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Camundongos Knockout , Permeabilidade , Junções Íntimas/metabolismo , Via de Sinalização Wnt
12.
Biomed Pharmacother ; 179: 117329, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39180793

RESUMO

ZCL-278 is a selective small molecule specifically inhibiting the Cdc42-intersectin interaction, yet its in-vivo pharmacokinetic and pharmacodynamic properties against renal diseases had not been determined. Thus, our study explored the absorption, distribution and excretion of ZCL-278 as well as its pharmacological efficacy against chronic kidney disease (CKD). With the optimized detection method, absolute oral bioavailability of ZCL-278 was determined as 10.99 % in male and 17.34 % in female rats. ZCL-278 was rapidly and abundantly distributed in various tissues, especially the kidney and heart, while few excreted through urine and feces. In the adenine-induced CKD mice, the increased plasma creatinine and urea, the decreased body weight as well as the renal pathological alterations, including vacuolization of renal tubular epithelial cells, granular degeneration, cell flattening, luminal dilation, and cylindruria, were significantly ameliorated after ZCL-278 administration. Moreover, ZCL-278 could also reverse the increased intensities of renal inflammation and fibrosis in the CKD mice. These results clarified the pharmacokinetics of ZCL-278 in rats and preliminarily indicated that ZCL-278 has favorable pharmacodynamic properties for CKD primed for lead development and optimization, warranting further drug development.


Assuntos
Ratos Sprague-Dawley , Insuficiência Renal Crônica , Animais , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Masculino , Feminino , Camundongos , Ratos , Adenina/farmacocinética , Adenina/análogos & derivados , Distribuição Tecidual , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Disponibilidade Biológica
13.
Genes (Basel) ; 15(8)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39202455

RESUMO

Hypoxic-ischemic brain damage presents a significant neurological challenge, often manifesting during the perinatal period. Specifically, periventricular leukomalacia (PVL) is emerging as a notable contributor to cerebral palsy and intellectual disabilities. It compromises cerebral microcirculation, resulting in insufficient oxygen or blood flow to the periventricular region of the brain. As widely documented, these pathological conditions can be caused by several factors encompassing preterm birth (4-5% of the total cases), as well single cotwin abortion and genetic variants such as those associated with GTPase pathways. Whole exome sequencing (WES) analysis identified a de novo causative variant within the pleckstrin homology domain-containing family G member 1 (PLEKHG1) gene in a patient presenting with PVL. The PLEKHG1 gene is ubiquitously expressed, showing high expression patterns in brain tissues. PLEKHG1 is part of a family of Rho guanine nucleotide exchange factors, and the protein is essential for cell division control protein 42 (CDC42) activation in the GTPase pathway. CDC42 is a key small GTPase of the Rho-subfamily, regulating various cellular functions such as cell morphology, migration, endocytosis, and cell cycle progression. The molecular mechanism involving PLEKHG1 and CDC42 has an intriguing role in the reorientation of cells in the vascular endothelium, thus suggesting that disruption responses to mechanical stress in endothelial cells may be involved in the formation of white matter lesions. Significantly, CDC42 association with white matter abnormalities is underscored by its MIM phenotype number. In contrast, although PLEKHG1 has been recently associated with patients showing white matter hyperintensities, it currently lacks a MIM phenotype number. Additionally, in silico analyses classified the identified variant as pathogenic. Although the patient was born prematurely and subsequently to dichorionic gestation, during which its cotwin died, we suggest that the variant described can strongly contribute to PVL. The aim of the current study is to establish a plausible association between the PLEKHG1 gene and PVL.


Assuntos
Leucomalácia Periventricular , Humanos , Leucomalácia Periventricular/genética , Leucomalácia Periventricular/patologia , Recém-Nascido , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Feminino , Substância Branca/patologia , Substância Branca/metabolismo , Sequenciamento do Exoma , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Masculino
14.
Int Immunopharmacol ; 142(Pt A): 113039, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39216118

RESUMO

Ulcerative colitis (UC) poses a threat to human health. The present study attempts to unravel the efficacy and potential mechanisms of paeoniflorin (PF), a naturally sourced active ingredient, for the management of UC. By establishing a DSS (dextran sulphate sodium)-induced experimental rat model of UC, this study found that PF was effective in ameliorating UC symptoms, inhibiting oxidative stress, inflammation and apoptosis, and repairing colonic epithelial damage. In addition, metabolomics revealed that PF may alleviate UC by primarily improving linoleic acid metabolism. Mechanistically, PF inhibited the CDC42/JNK signaling pathway by targeting CDC42. In particular, HuProtTM20K proteomics, molecular docking and MST revealed that PF is a novel CDC42 inhibitor. In LPS-treated Caco-2 cells, PF similarly inhibited oxidative stress, inflammation, and apoptosis and down-regulated the CDC42/JNK signaling pathway. Overall, PF inhibits oxidative stress, inflammation and apoptosis and repairs colonic epithelial damage through modulation of serum metabolites and inhibition of the CDC42/JNK signaling pathway, leading to alleviation of UC.


Assuntos
Apoptose , Colite Ulcerativa , Sulfato de Dextrana , Glucosídeos , Sistema de Sinalização das MAP Quinases , Monoterpenos , Estresse Oxidativo , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Animais , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Monoterpenos/farmacologia , Monoterpenos/uso terapêutico , Humanos , Masculino , Ratos , Células CACO-2 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ratos Sprague-Dawley , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Colo/patologia , Colo/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/tratamento farmacológico
15.
Acta Pharm Sin B ; 14(7): 3068-3085, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027244

RESUMO

Sepsis progression is significantly associated with the disruption of gut eubiosis. However, the modulatory mechanisms of gut microbiota operating during sepsis are still unclear. Herein, we investigated how gut commensals impact sepsis development in a pre-clinical model. Cecal ligation and puncture (CLP) surgery was used to establish polymicrobial sepsis in mice. Mice depleted of gut microbiota by an antibiotic cocktail (ABX) exhibited a significantly higher level of mortality than controls. As determined by metabolomics analysis, ABX treatment has depleted many metabolites, and subsequent supplementation with l-rhamnose (rhamnose, Rha), a bacterial carbohydrate metabolite, exerted profound immunomodulatory properties with a significant enhancement in macrophage phagocytosis, which in turn improved organ damage and mortality. Mechanistically, rhamnose binds directly to and activates the solute carrier family 12 (potassium-chloride symporter), member 4 (SLC12A4) in macrophages and promotes phagocytosis by activating the small G-proteins, Ras-related C3 botulinum toxin substrate1 (Rac1) and cell division control protein 42 homolog (Cdc42). Interestingly, rhamnose has enhanced the phagocytosis capacity of macrophages from sepsis patients. In conclusion, by identifying SLC12A4 as the host interacting protein, we disclosed that the gut commensal metabolite rhamnose is a functional molecular that could promote the phagocytosis capacity of macrophages and protect the host against sepsis.

16.
Acta Pharm Sin B ; 14(7): 2942-2958, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027255

RESUMO

Breast phyllodes tumor (PT) is a rare fibroepithelial neoplasm with potential malignant behavior. Long non-coding RNAs (lncRNAs) play multifaceted roles in various cancers, but their involvement in breast PT remains largely unexplored. In this study, microarray was leveraged for the first time to investigate the role of lncRNA in PT. We identified lncRNA ZFPM2-AS1 was significantly upregulated in malignant PT, and its overexpression endowed PT with high tumor grade and adverse prognosis. Furthermore, we elucidated that ZFPM2-AS1 promotes the proliferation, migration, and invasion of malignant PT in vitro. Targeting ZFPM2-AS1 through nanomaterial-mediated siRNA delivery in patient-derived xenograft (PDX) model could effectively inhibit tumor progression in vivo. Mechanistically, our findings showed that ZFPM2-AS1 is competitively bound to CDC42, inhibiting ACK1 and STAT1 activation, thereby launching the transcription of TNFRSF19. In conclusion, our study provides evidence that ZFPM2-AS1 plays a pivotal role in the pathogenesis of breast PT, and suggests that ZFPM2-AS1 could serve as a prognostic indicator for patients with PT as well as a promising novel therapeutic target.

17.
Int Immunopharmacol ; 139: 112706, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39032473

RESUMO

Emu oil is the oil extracted from the body fat of the Australian bird emu. Although previous studies have reported that emu oil has anti-inflammatory effects, the effect and mechanism of emu oil on the treatment of atopic dermatitis have not been reported. Here, 2, 4-dinitrofluorobenzene was used to induce atopic dermatitis-like appearance on the back skin of C57BL/6 mice. And then, the effect of emu oil in the atopic dermatitis treatment was evaluated. We found that emu oil reduced the transdermal water loss in the atopic dermatitis model. Additionally, the epidermal thickness treated with emu oil was significantly thinner. The number of mast cells and inflammatory cells were significantly decreased. The thymic stromal lymphopoietin (TSLP), which is secreted by keratinocyte, was decreased significantly after treatment. Moreover, the serum levels of cytokines TSLP, interleukin-4, interleukin-13, and immunoglobulin (Ig) E were decreased after emu oil treatment. Surprisingly, we found that the high level of Cdc42 expression in the atopic dermatitis, which was decreased after emu oil treatment. To detect the role of Cdc42 in atopic dermatitis, we constructed atopic dermatitis model in mice with sustained activation of Cdc42 signaling. Furthermore, we have confirmed that emu oil demonstrates anti-inflammatory effects in atopic dermatitis by inhibiting the expression of Cdc42 signaling in keratinocytes. In conclusion, we discovered a new role of Cdc42 in the development of atopic dermatitis, which mediated the therapeutic effect of emu oil on atopic dermatitis.


Assuntos
Anti-Inflamatórios , Citocinas , Dermatite Atópica , Modelos Animais de Doenças , Queratinócitos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP , Animais , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/imunologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Proteína cdc42 de Ligação ao GTP/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Linfopoietina do Estroma do Timo , Óleos/farmacologia , Óleos/uso terapêutico , Imunoglobulina E/sangue , Dinitrofluorbenzeno , Pele/efeitos dos fármacos , Pele/patologia , Pele/metabolismo , Humanos , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Mastócitos/metabolismo , Masculino
18.
Cell Signal ; 122: 111321, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39067837

RESUMO

Cytokine release from airway epithelial cells is a key immunological process that coordinates an immune response in the lungs. We propose that the Rho GTPase, Cdc42, regulates both transcription and trafficking of cytokines, ultimately affecting the essential process of cytokine release and subsequent inflammation in the lungs. Here, we examined the pro-inflammatory transcriptional profile that occurs in bronchial epithelial cells (BEAS-2B) in response to TNF-α using RNA-Seq and differential gene expression analysis. To interrogate the role of Cdc42 in inflammatory gene expression, we used a pharmacological inhibitor of Cdc42, ML141, and determined changes in the transcriptomic profile induced by Cdc42 inhibition. Our results indicated that Cdc42 inhibition with ML141 resulted in a unique inflammatory phenotype concomitant with increased gene expression of ER stress genes, Golgi membrane and vesicle transport genes. To further interrogate the inflammatory pathways regulated by Cdc42, we made BEAS-2B knockdown strains for the signaling targets TRIB3, DUSP5, SESN2 and BMP4, which showed high differential expression in response to Cdc42 inhibition. Depletion of DUSP5 and TRIB3 reduced the pro-inflammatory response triggered by Cdc42 inhibition as shown by a reduction in cytokine transcript levels. Depletion of SESN2 and BMP4 did not affect cytokine transcript level, however, Golgi fragmentation was reduced. These results provide further evidence that in airway epithelial cells, Cdc42 is part of a signaling network that controls inflammatory gene expression and secretion by regulating Golgi integrity. Summary sentence:We define the Cdc42-regulated gene networks for inflammatory signaling in airway epithelial cells which includes regulation of ER stress response and vesicle trafficking pathways.


Assuntos
Células Epiteliais , Regulação da Expressão Gênica , Inflamação , Proteína cdc42 de Ligação ao GTP , Humanos , Proteína cdc42 de Ligação ao GTP/metabolismo , Células Epiteliais/metabolismo , Inflamação/genética , Inflamação/metabolismo , Linhagem Celular , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Estresse do Retículo Endoplasmático , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Complexo de Golgi/metabolismo , Brônquios/citologia , Brônquios/metabolismo
19.
Genes Dis ; 11(5): 101194, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39022131

RESUMO

Developmental defects of enamel are common due to genetic and environmental factors before and after birth. Cdc42, a Rho family small GTPase, regulates prenatal tooth development in mice. However, its role in postnatal tooth development, especially enamel formation, remains elusive. Here, we investigated Cdc42 functions in mouse enamel development and tooth repair after birth. Cdc42 showed highly dynamic temporospatial patterns in the developing incisors, with robust expression in ameloblast and odontoblast layers. Strikingly, epithelium-specific Cdc42 deletion resulted in enamel defects in incisors. Ameloblast differentiation was inhibited, and hypomineralization of enamel was observed upon epithelial Cdc42 deletion. Proteomic analysis showed that abnormal mitochondrial components, phosphotransferase activity, and ion channel regulator activity occurred in the Cdc42 mutant dental epithelium. Reactive oxygen species accumulation was detected in the mutant mice, suggesting that abnormal oxidative stress occurred after Cdc42 depletion. Moreover, Cdc42 mutant mice showed delayed tooth repair and generated less calcified enamel. Mitochondrial dysfunction and abnormal oxygen consumption were evidenced by reduced Apool and Timm8a1 expression, increased Atp5j2 levels, and reactive oxygen species overproduction in the mutant repair epithelium. Epithelium-specific Cdc42 deletion attenuated ERK1/2 signaling in the labial cervical loop. Aberrant Sox2 expression in the mutant labial cervical loop after clipping might lead to delayed tooth repair. These findings suggested that mitochondrial dysfunction, up-regulated oxidative stress, and abnormal ion channel activity may be among multiple factors responsible for the observed enamel defects in Cdc42 mutant incisors. Overall, Cdc42 exerts multidimensional and pivotal roles in enamel development and is particularly required for ameloblast differentiation and enamel matrix formation.

20.
J Nanobiotechnology ; 22(1): 357, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902755

RESUMO

BACKGROUND: Early angiogenesis provides nutrient supply for bone tissue repair, and insufficient angiogenesis will lead tissue engineering failure. Lanthanide metal nanoparticles (LM NPs) are the preferred materials for tissue engineering and can effectively promote angiogenesis. Holmium oxide nanoparticles (HNPs) are LM NPs with the function of bone tissue "tracking" labelling. Preliminary studies have shown that HNPs has potential of promote angiogenesis, but the specific role and mechanism remain unclear. This limits the biological application of HNPs. RESULTS: In this study, we confirmed that HNPs promoted early vessel formation, especially that of H-type vessels in vivo, thereby accelerating bone tissue repair. Moreover, HNPs promoted angiogenesis by increasing cell migration, which was mediated by filopodia extension in vitro. At the molecular level, HNPs interact with the membrane protein EphrinB2 in human umbilical vein endothelial cells (HUVECs), and phosphorylated EphrinB2 can bind and activate VAV2, which is an activator of the filopodia regulatory protein CDC42. When these three molecules were inhibited separately, angiogenesis was reduced. CONCLUSION: Overall, our study confirmed that HNPs increased cell migration to promote angiogenesis for the first time, which is beneficial for bone repair. The EphrinB2/VAV2/CDC42 signalling pathway regulates cell migration, which is an important target of angiogenesis. Thus, HNPs are a new candidate biomaterial for tissue engineering, providing new insights into their biological application.


Assuntos
Materiais Biocompatíveis , Movimento Celular , Hólmio , Células Endoteliais da Veia Umbilical Humana , Neovascularização Fisiológica , Engenharia Tecidual , Engenharia Tecidual/métodos , Humanos , Animais , Hólmio/química , Movimento Celular/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Camundongos , Nanopartículas Metálicas/química , Óxidos/química , Óxidos/farmacologia , Efrina-B2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA