Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38988172

RESUMO

BACKGROUND: Melatonin (MT) has been demonstrated to have cardioprotective effects. Nevertheless, the precise mechanism through which MT provides protection against the etiology of LPS-induced myocardial injury remains uncertain. In this investigation, our objective was to explore the impact of MT on LPS-induced myocardial injury in an in vitro setting. METHODS: H9C2 cells were categorized into four groups: a control group (H9C2 group), an MT group, an LPS group, and an MT + LPS group. The H9C2 group received treatment with sterile saline solution, the LPS group was exposed to 5 µg/mL LPS for 24 hours, the MT + LPS group underwent pretreatment with 150 µmol/L MT for 2 hours, followed by exposure to 5 µg/mL LPS for 24 hours, and the MT group received only 150 µmol/L MT for 2 hours. Cell viability and lactate dehydrogenase (LDH) release were assessed using the CCK-8 assay and LDH activity assay, respectively. The levels of reactive oxygen species (ROS) were quantified in each group of cells, and the percentage of propidium iodide (PI)-stained apoptotic cells was determined by flow cytometry. The mRNA levels of caspase11, GSDMD, and IL-18 in each group of cells were quantified. RESULTS: MT treatment significantly protected H9C2 cells from LPS-induced damage, as evidenced by decreased LDH release. LPS treatment markedly increased ROS levels in H9C2 cells, which were subsequently reduced by MT. LPS caused a substantial decrease in superoxide dismutase (SOD) activity and a significant increase in malondialdehyde (MDA) levels, while MT treatment significantly reversed these effects. Additionally, MT markedly enhanced the proportion of viable H9C2 cells compared to LPS-treated controls, as evidenced by the PI staining assay. LPS upregulated both mRNA levels and protein levels of IL-18 in H9C2 cells. However, MT treatment effectively mitigated this LPS-induced increase. Furthermore, MT significantly decreased LPS-induced protein levels of cleaved-caspase 11 and GSDMD-N in H9C2 cells. CONCLUSION: Overall, our findings suggest that MT inhibits the Caspase11-GSDMD signaling pathway via pyroptosis-related proteins (caspase-11 and GSDMD-N) and reduces the expression of inflammation-related cytokines (IL-18), thereby exerting a protective effect on H9C2 cells after LPS injury.

2.
Int Immunopharmacol ; 134: 112193, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723372

RESUMO

Retinal neurodegenerative diseases are a category of refractory blinding eye conditions closely associated with oxidative stress induced by mitochondrial dysfunction in retinal cells. SARM1, a core driver molecule leading to axonal degeneration, possesses NAD+ enzyme (NADase) activity. However, the role of the SARM1-NAD+ axis in oxidative stress-induced retinal cell death remains unclear. Here, we employed the SARM1 NADase inhibitor DSRM-3716 and established a glucose oxidase (GOx)-induced oxidative stress cell model. We found that compared to the GOx group, the DSRM-3716 pre-treated group reduced the hydrolysis of NAD+, inhibited the elevation of oxidative stress markers induced by GOx, decreased mitochondrial dysfunction, lowered the phosphorylation level of JNK, and attenuated the occurrence of pyroptosis in retinal and nerve cells, thereby providing protection for neurite growth. Further utilization of the JNK activator Anisomycin activated JNK, revealed that the JNK/c-Jun pathway down-regulated NMNAT2 expression. Consequently, it reduced cellular NAD+ synthesis, exacerbated mitochondrial dysfunction and cell pyroptosis, and reversed the protective effect of DSRM-3716 on cells. In summary, the inhibition of SARM1 NADase activity substantially mitigates oxidative damage to retinal cells and mitochondrial damage. Additionally, JNK simultaneously serves as both an upstream and downstream regulator in the SARM1-NAD+ axis, regulating retinal cell pyroptosis and neurite injury. Thus, this study provides new insights into the pathological processes of retinal cell oxidative stress and identifies potential therapeutic targets for retinal neurodegenerative diseases.


Assuntos
Proteínas do Domínio Armadillo , Proteínas do Citoesqueleto , NAD , Estresse Oxidativo , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Domínio Armadillo/genética , Estresse Oxidativo/efeitos dos fármacos , Animais , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , NAD/metabolismo , Retina/patologia , Retina/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Linhagem Celular , Piroptose/efeitos dos fármacos , Humanos , NAD+ Nucleosidase/metabolismo
3.
Talanta ; 274: 126120, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640603

RESUMO

Peroxynitrite (ONOO-) and cell plasma membrane (CPM) are two key factors in cell pyroptosis during the progression of abdominal aortic aneurysm (AAA). However, their combined temporal and spatial roles in initiating AAA pathogenesis remain unclear. Herein, we developed a two-photon fluorescence probe, BH-Vis, enabling real-time dynamic detection of CPM and ONOO- changes, and revealing their interplay in AAA. BH-Vis precisely targets CPM with reduced red fluorescence intensity correlating with diminished CPM tension. Concurrently, a blue shift of the fluorescence signal of BH-Vis occurs in response to ONOO- offering a reliable ratiometric detection mode with enhanced accuracy by minimizing external testing variables. More importantly, two photon confocal imaging with palmitic acid (PA) and ganglioside (GM1) manipulation, which modulating cell pyroptosis, showcases reliable fluorescence fluctuations. This groundbreaking application of BH-Vis in a mouse AAA model demonstrates its significant potential for accurately identifying cell pyroptosis levels during AAA development.


Assuntos
Aneurisma da Aorta Abdominal , Membrana Celular , Imagem Óptica , Ácido Peroxinitroso , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/patologia , Ácido Peroxinitroso/metabolismo , Animais , Camundongos , Membrana Celular/metabolismo , Membrana Celular/química , Humanos , Corantes Fluorescentes/química , Piroptose/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino , Fótons
4.
J Cardiothorac Surg ; 19(1): 208, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616256

RESUMO

BACKGROUND: Cardiac fibroblasts (CFs) are activated after initial injury, and then differentiate into myofibroblasts (MFs), which play a pivotal role as the primary mediator cells in pathological remodeling. Sodium butyrate (NaB), being a metabolite of gut microbiota, exhibits anti-inflammatory property in local therapies on sites other than the intestine. Thus, this study aimed to probe the mechanism by which NaB regulates CFs transdifferentiation through the NLRP3/Caspase-1 pyroptosis pathway. METHODS: CFs were cultured in vitro and induced into MFs by TGFß1. CFs were identified by immunofluorescence labelling technique of vimentin and α-SMA, followed by treatment with NaB or NLRP3 inflammasome inhibitor (CY-09) and its activator [nigericin sodium salt (NSS)]. The expression levels of α-SMA, GSDMD-N/NLRP3/cleaved Caspase-1 proteins, and inflammatory factors IL-1ß/IL-18/IL-6/IL-10 were determined using immunofluorescence, Western blot and ELISA. Cell proliferation and migration were evaluated using the CCK-8 assay and the cell scratch test, respectively. RESULTS: Following the induction of TGFß1, CFs exhibited increased expression levels of α-SMA proteins and IL-6/IL-10, as well as cell proliferative and migratory abilities. TGFß1 induced CFs to differentiate into MFs, while NaB inhibited this differentiation. NaB inactivated the NLRP3/Caspase-1 pyroptosis pathway. CY-09 demonstrated inhibitory effects on the NLRP3/Caspase-1 pyroptosis pathway, leading to a reduction in TGFß1-induced CFs transdifferentiation. NSS activated the NLRP3/Caspase-1 pyroptosis pathway, and thus partially counteracting the inhibitory effect of intestinal microbiota metabolite NaB on CFs transdifferentiation. CONCLUSION: NaB, a metabolite of the gut microbiota, inhibited the activation of the NLRP3/Caspase-1 pyroptosis pathway in TGFß1-induced CFs, repressed the transdifferentiation of CFs into MFs.


Assuntos
Microbioma Gastrointestinal , Humanos , Caspase 1 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ácido Butírico , Interleucina-10 , Transdiferenciação Celular , Interleucina-6 , Piroptose , Fibroblastos
5.
Cell Insight ; 3(3): 100153, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38464416

RESUMO

Peripheral tumor-specific CD8+ T cells often fail to infiltrate into tumor parenchyma due to the immunosuppression of tumor microenvironment (TME). Meanwhile, a significant portion of tumor-specific CD8+ T cells infiltrated into TME are functionally exhausted. Despite the enormous success of anti-PD-1/PD-L1 immune-checkpoint blockade (ICB) treatment in a wide variety of cancer types, the majority of patients do not respond to this treatment largely due to the failure to efficiently drive tumor-specific CD8+ T cell infiltration and reverse their exhaustion states. Nowadays, tumor cell pyroptosis, a unique cell death executed by pore-forming gasdermin (GSDM) family proteins dependent or independent on inflammatory caspase activation, has been shown to robustly promote immune-killing of tumor cells by enhancing tumor immunogenicity and altering the inflammatory state in the TME, which would be beneficial in overcoming the shortages of anti-PD-1/PD-L1 ICB therapy. Therefore, in this review we summarize the current progresses of tumor cell pyroptosis in enhancing immune function and modulating TME, which synergizes anti-PD-1/PD-L1 ICB treatment to achieve better anti-tumor effect. We also enumerate several strategies to better amply the efficiency of anti-PD-1/PD-L1 ICB therapy by inducing tumor cell pyroptosis.

6.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(2): 317-323, 2024 Feb 20.
Artigo em Chinês | MEDLINE | ID: mdl-38501417

RESUMO

OBJECTIVE: To investigate the role of caspase-1-medicated canonical pyroptosis pathway in chlorogenic acid (CGA) treatment of acute kidney injury (AKI) in mice. METHOD: Twenty-four C57Bl/6J mice were randomized into sham-operated group, cecal ligation and puncture (CLP) group, CLP+dexamethasone group (CLP+DXM group), and CLP+CGA group (n=6) and subjected to either sham operation (laparotomy only) or CLP. After modeling the mice received intravenous infusion of 10 mg/kg normal saline (in sham and CLP groups), 1 µg/kg dexamethasone or 15 mg/kg of chlorogenic acid for 6 h delivered using an intravenous pump. Eight hours after the infusion, renal morphology and histology, renal cell apoptosis, and the renal function parameters such as urea nitrogen (BUN), creatinine (Scr), and kidney injury molecule 1 (KIM-1) were compared among the 4 groups; the 7-day survival rates of the mice were recorded, and the expressions of NLRP3 inflammasomes and key proteins of the caspase-1 pathway in the renal tissue were detected. RESULTS: CGA treatment significantly improved the 7-day survival rate, reduced renal pathologies of the septic mice (P < 0.05), and lowered the levels of BUN, Scr, KIM-1, NLRP3 inflammasome and expressions of key proteins of the caspase-1 pathway. CONCLUSION: CGA alleviates AKI in mice with CLP-induced sepsis by inhibiting NLRP3 inflammasomes and the caspase-1 signaling pathway.


Assuntos
Injúria Renal Aguda , Sepse , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Caspase 1/metabolismo , Piroptose , Ácido Clorogênico/uso terapêutico , Injúria Renal Aguda/metabolismo , Sepse/tratamento farmacológico , Sepse/metabolismo , Dexametasona/uso terapêutico , Camundongos Endogâmicos C57BL
7.
ACS Appl Mater Interfaces ; 16(10): 12244-12262, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421312

RESUMO

Acute respiratory distress syndrome (ARDS) is a serious respiratory condition characterized by a damaged pulmonary endothelial barrier that causes protein-rich lung edema, an influx of proinflammatory cells, and treatment-resistant hypoxemia. Damage to pulmonary endothelial cells and inflammation are pivotal in ARDS development with a key role played by endothelial cell pyroptosis. Disulfiram (DSF), a drug that has long been used to treat alcohol addiction, has recently been identified as a potent inhibitor of gasdermin D (GSDMD)-induced pore formation and can thus prevent pyroptosis and inflammatory cytokine release. These findings indicate that DSF is a promising treatment for inflammatory disorders. However, addressing the challenge posed by its intrinsic physicochemical properties, which hinder intravenous administration, and effective delivery to pulmonary vascular endothelial cells are crucial. Herein, we used biocompatible liposomes incorporating a lung endothelial cell-targeted peptide (CGSPGWVRC) to produce DSF-loaded nanoparticles (DTP-LET@DSF NPs) for targeted delivery and reactive oxygen species-responsive release facilitated by the inclusion of thioketal (TK) within the liposomal structure. After intravenous administration, DTP-LET@DSF NPs exhibited excellent cytocompatibility and minor systemic toxicity, effectively inhibited pyroptosis, mitigated lipopolysaccharide (LPS)-induced ARDS, and prevented cytokine storms resulting from excessive immune reactions in ARDS mice. This study presents a straightforward nanoplatform for ARDS treatment that potentially paves the way for the clinical use of this nanomedicine.


Assuntos
Dissulfiram , Síndrome do Desconforto Respiratório , Animais , Camundongos , Dissulfiram/farmacologia , Células Endoteliais , Reposicionamento de Medicamentos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Pulmão , Lipossomos/farmacologia , Lipopolissacarídeos/farmacologia
8.
PeerJ ; 12: e16818, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348100

RESUMO

Objective: Cerebral infarction is the main cause of death in patients with cerebrovascular diseases. Our research aimed to screen and validate pyroptosis-related genes in cerebral infarction for the targeted therapy of cerebral infarction. Methods and results: A total of 1,517 differentially expressed genes (DEGs) were obtained by DESeq2 software analysis. Gene set enrichment analysis results indicated that genes of middle cerebral artery occlusion (MCAO) mice aged 3 months and 18 months were enriched in pyroptosis, respectively. Differentially expressed pyroptosis-related genes (including Aim2, Casp8, Gsdmd, Naip2, Naip5, Naip6 and Trem2) were obtained through intersection of DEGs and genes from pyroptosis Gene Ontology Term (GO:0070269), and they were up-regulated in the brain tissues of MCAO mice in GSE137482. In addition, Casp8, Gsdmd, and Trem2 were verified to be significantly up-regulated in MCAO mice in GSE93376. The evaluation of neurologic function and triphenyltetrazolium chloride staining showed that the MCAO mouse models were successfully constructed. Meanwhile, the expressions of TNF-α, pyroptosis-related proteins, Casp8, Gsdmd and Trem2 in MCAO mice were significantly up-regulated. We selected Trem2 for subsequent functional analysis. OGD treatment of BV2 cell in vitro significantly upregulated the expressions of Trem2. Subsequent downregulation of Trem2 expression in OGD-BV2 cells further increased the level of pyroptosis. Therefore, Trem2 is a protective factor regulating pyroptosis, thus influencing the progression of cerebral infarction. Conclusions: Casp8, Gsdmd and Trem2 can regulate pyroptosis, thus affecting cerebral infarction.


Assuntos
Infarto da Artéria Cerebral Média , Piroptose , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/genética , Glicoproteínas de Membrana/genética , Proteína Inibidora de Apoptose Neuronal , Piroptose/fisiologia , Receptores Imunológicos
9.
Comput Struct Biotechnol J ; 23: 990-1004, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38404710

RESUMO

Cell pyroptosis, a Gasdermin-dependent programmed cell death characterized by inflammasome, plays a complex and dynamic role in Gastric cancer (GC), a serious threat to human health. Therefore, the value of pyroptosis-related genes (PRGs) as prognostic biomarkers and therapeutic indicators for patients needs to be exploited in GC. This study integrates single-cell RNA sequencing (scRNA-seq) dataset GSE183904 with GC transcriptome data from the TCGA database, focusing on the expression and distribution of PRGs in GC at the single-cell level. The prognostic signature of PRGs was established by using Cox and LASSO analyses. The differences in long-term prognosis, immune infiltration, mutation profile, CD274 and response to chemotherapeutic drugs between the two groups were analyzed and evaluated. A tissue array was used to verify the expression of six PRGs, CD274, CD163 and FoxP3. C12orf75, VCAN, RGS2, MKNK2, SOCS3 and TNFAIP2 were successfully screened out to establish a signature to potently predict the survival time of GC patients. A webserver (https://pumc.shinyapps.io/GastricCancer/) for prognostic prediction in GC patients was developed based on this signature. High-risk score patients typically had worse prognoses, resistance to classical chemotherapy, and a more immunosuppressive tumor microenvironment. VCAN, TNFAIP2 and SOCS3 were greatly elevated in the GC while RGS2 and MKNK2 were decreased in the tumor samples. Further, VCAN was positively related to the infiltrations of Tregs and M2 TAMs in GC TME and the CD274 in tumor cells. In summary, a potent pyroptosis-related signature was established to accurately forecast the survival time and treatment responsiveness of GC patients.

10.
Angew Chem Int Ed Engl ; 63(12): e202317304, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38298089

RESUMO

Pyroptosis is an effective anti-tumor strategy. However, monometallic pyroptosis biotuners have not been explored until now. Here, we discover for the first time that biodegradable monometallic Al can act as a pyroptosis biotuner for tumor therapy. pH-sensitive Al nanoparticles (Al@P) are obtained by equipping polyethylene glycol-b-(poly(methyl methacrylate)-co-poly(4-vinylpyridine), which can exert their effect at the tumor site without affecting normal cells. The H2 and Al3+ release by Al@P in the acidic environment of tumors disrupts the redox balance and ionic homeostasis in tumor cells, thus generating large amounts of reactive oxygen species (ROS), leading to caspase-1 activation, gasdermin D cleavage, and IL-1ß/LDH release, which induces canonical pyroptotic death. Meanwhile, the prodrug Doxorubicin (Pro-DOX) is successfully loaded onto Al@P (Al@P-P) and can be activated by ROS to release DOX in the tumor cells, thus further improving the tumor-killing efficiency. Ultimately, Al@P-P is degradable and exhibits efficient tumor inhibition.


Assuntos
Metacrilatos , Neoplasias , Polietilenoglicóis , Piroptose , Humanos , Alumínio/farmacologia , Espécies Reativas de Oxigênio , Neoplasias/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico
11.
Brain Res ; 1831: 148828, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38408556

RESUMO

Intracerebral hemorrhage (ICH) induces severe neurological damage, and its progression is driven by METTL3. This study aimed to investigate the role of METTL3 in ICH via in vitro experiments. For this purpose, HT-22 cells were treated with hemin to mimic ICH in vitro, followed by evaluating cell pyroptosis using flow cytometry, lactic dehydrogenase release analysis, enzyme-linked immunosorbent assay, and western blotting. Moreover, N6-methyl adenosine (m6A) methylation of NEK7 was assessed using methylated RNA immunoprecipitation, RNA immunoprecipitation, dual-luciferase reporter assay, and quantitative real-time polymerase chain reaction. Results indicated that knockdown of METTL3 inhibited hemin-induced pyroptosis and suppressed m6A methylation of NEK7 due to METTL3 downregulation, reducing NEK7 mRNA stability. The effects on METTL3-induced cell pyroptosis were abrogated by overexpressing NEK7, while IGF2BP2 increased NEK7 expression. Similarly, IGF2BP2 silence downregulated NEK7 expression mediated by METTL3. In conclusion, silencing of METTL3 inhibited hemin-induced HT-22 cell pyroptosis by suppressing m6A methylation of NEK7, which was recognized by IGF2BP2. These findings are envisaged to identify a novel therapeutic strategy for ICH.


Assuntos
Adenina , Hemorragia Cerebral , Piroptose , Animais , Camundongos , Adenosina/metabolismo , Hemorragia Cerebral/induzido quimicamente , Hemorragia Cerebral/genética , Hemorragia Cerebral/metabolismo , Hemina/farmacologia , Metilação , Metiltransferases , Quinases Relacionadas a NIMA/genética , Piroptose/genética , Piroptose/fisiologia , RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
12.
J Transl Med ; 22(1): 26, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183100

RESUMO

BACKGROUND: (Pro)renin receptor (PRR) is highly expressed in renal tubules, which is involved in physiological and pathological processes. However, the role of PRR, expressed in renal tubular epithelial cells, in diabetic kidney disease (DKD) remain largely unknown. METHODS: In this study, kidney biopsies, urine samples, and public RNA-seq data from DKD patients were used to assess PRR expression and cell pyroptosis in tubular epithelial cells. The regulation of tubular epithelial cell pyroptosis by PRR was investigated by in situ renal injection of adeno-associated virus9 (AAV9)-shRNA into db/db mice, and knockdown or overexpression of PRR in HK-2 cells. To reveal the underlined mechanism, the interaction of PRR with potential binding proteins was explored by using BioGrid database. Furthermore, the direct binding of PRR to dipeptidyl peptidase 4 (DPP4), a pleiotropic serine peptidase which increases blood glucose by degrading incretins under diabetic conditions, was confirmed by co-immunoprecipitation assay and immunostaining. RESULTS: Higher expression of PRR was found in renal tubules and positively correlated with kidney injuries of DKD patients, in parallel with tubular epithelial cells pyroptosis. Knockdown of PRR in kidneys significantly blunted db/db mice to kidney injury by alleviating renal tubular epithelial cells pyroptosis and the resultant interstitial inflammation. Moreover, silencing of PRR blocked high glucose-induced HK-2 pyroptosis, whereas overexpression of PRR enhanced pyroptotic cell death of HK-2 cells. Mechanistically, PRR selectively bound to cysteine-enrich region of C-terminal of DPP4 and augmented the protein abundance of DPP4, leading to the downstream activation of JNK signaling and suppression of SIRT3 signaling and FGFR1 signaling, and then subsequently mediated pyroptotic cell death. CONCLUSIONS: This study identified the significant role of PRR in the pathogenesis of DKD; specifically, PRR promoted tubular epithelial cell pyroptosis via DPP4 mediated signaling, highlighting that PRR could be a promising therapeutic target in DKD.


Assuntos
Nefropatias Diabéticas , Receptor de Pró-Renina , Animais , Humanos , Camundongos , Diabetes Mellitus , Nefropatias Diabéticas/metabolismo , Dipeptidil Peptidase 4 , Células Epiteliais , Sistema de Sinalização das MAP Quinases , Receptor de Pró-Renina/metabolismo , Piroptose
13.
Chinese Pharmacological Bulletin ; (12): 401-405, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1013647

RESUMO

Receptor-interacting serine/threonine-protein kinase 3(RIPK3),a member of the RIP kinase family,plays an important role in cell death,especially in necroptosis. In addition,RIPK3 is also involved in apoptosis and pyroptosis,suggesting that RIPK3 may be the intersection of multiple cell death and it possesses the potential to be a target for precise regulation of cell death. According to the kinase binding mode,current RIPK3 inhibitors can be classified into type ,type Ⅱ and other types. This review summarizes the research progress in the role of RIPK3 in cell death and its inhibitors,which is of great significance in seeking drugs for the treatment of injury-related diseases.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38073382

RESUMO

OBJECTIVE: The present study probes into the role and mechanism of ubiquitin specific peptidase 14 (USP14) in coronary heart disease (CHD)-triggered endothelial cell pyroptosis. METHODS: An in vitro CHD model was established by inducing human coronary artery endothelial cells (HCAECs) with oxidized low-density lipoprotein (ox-LDL). HCAECs were transfected with si-USP14, followed by evaluation of cell viability by CCK-8 assay, detection of lactate dehydrogenase (LDH) activity by assay kit, detection of USP14, miR-15b-5p, NLRP3, GSDMD-N, and Cleaved-Caspase-1 expressions by qRT-PCR or Western blot, as well as IL-1ß and IL-18 concentrations by ELISA. Co-IP confirmed the binding between USP14 and NLRP3. The ubiquitination level of NLRP3 in cells was measured after protease inhibitor MG132 treatment. Dual-luciferase reporter assay verified the targeting relationship between miR-15b-5p and USP14. RESULTS: USP14 and NLRP3 were highly expressed but miR-15b-5p was poorly expressed in ox-LDL-exposed HCAECs. USP14 silencing strengthened the viability of ox-LDL-exposed HCAECs, reduced the intracellular LDH activity, and diminished the NLRP3, GSDMD-N, Cleaved-Caspase-1, IL-1ß, and IL-18 expressions. USP14 bound to NLRP3 protein and curbed its ubiquitination. Repression of NLRP3 ubiquitination counteracted the inhibitory effect of USP14 silencing on HCAEC pyroptosis. miR-15b-5p restrained USP14 transcription and protein expression. miR-15b-5p overexpression alleviated HCAEC pyroptosis by suppressing USP14/NLRP3. CONCLUSION: USP14 stabilizes NLRP3 protein expression through deubiquitination, thereby facilitating endothelial cell pyroptosis in CHD. miR-15b-5p restrains endothelial cell pyroptosis by targeting USP14 expression.

15.
Int Immunopharmacol ; 125(Pt A): 110950, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890377

RESUMO

BACKGROUND AND PURPOSE: Recent clinical studies have shown that serum high-density lipoprotein (HDL) levels are correlated with acute pancreatitis (AP) severity. We aimed to investigate the role of HDL in pancreatic necrosis in AP. EXPERIMENTAL APPROACH: ApoA-I is the main constitution and function component of HDL. The roles of healthy human-derived HDL and apoA-I mimic peptide D4F were demonstrated in AP models in vivo and in vitro. Constitutive Apoa1 genetic inhibition on AP severity, especially pancreatic necrosis was assessed in both caerulein and sodium taurocholate induced mouse AP models. In addition, constitutive (Casp1-/-) and acinar cell conditional (Pdx1CreNlrp3Δ/Δ and Pdx1CreGsdmdΔ/Δ) mice were used to explore the effects of HDL on acinar cell pyroptosis in AP. KEY RESULTS: Apoa1 knockout dramatically aggravated pancreatic necrosis. Human-derived HDL protected against acinar cell death in vivo and in vitro. We found that mimic peptide D4F also protected against AP very well. Constitutive Casp1 or acinar cell-conditional Nlrp3 and Gsdmd genetic inhibition could counteract the protective effects of HDL, implying HDL may exert beneficial effects on AP through inhibiting acinar cell pyroptosis. CONCLUSION AND IMPLICATIONS: This work demonstrates the protective role of HDL and apoA-I in AP pathology, potentially driven by the inhibition of NLRP3 inflammasome signaling and acinar cell pyroptosis. Mimic peptides have promise as specific therapies for AP.


Assuntos
Células Acinares , Pancreatite Necrosante Aguda , Animais , Humanos , Camundongos , Células Acinares/metabolismo , Doença Aguda , Apolipoproteína A-I/genética , Apolipoproteína A-I/farmacologia , Caspase 1 , Ceruletídeo/farmacologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pancreatite Necrosante Aguda/patologia , Piroptose
16.
Phytother Res ; 37(12): 5871-5882, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37646382

RESUMO

Renal tubular injury is a key factor in the progression of diabetic kidney disease to end-stage renal disease. Hyperoside, a natural flavonol glycoside in various plants, is a potentially effective drug for the clinical treatment of diabetic kidney disease. However, the specific mechanisms remain unknown. Therefore, this study will explore the effect and mechanism of hyperoside on renal tubulointerstitium in diabetic kidney disease. db/db mouse (C57BL/KsJ) is a model of type 2 diabetes resulting from Leptin receptor point mutations, with the appearance of diabetic kidney disease. Therefore, db/db mice were used for in vivo experimental studies. In vitro, human renal tubular epithelial cells were incubated with bovine serum albumin to simulate the injury of renal tubular epithelial cells caused by excessive albumin in primary urine. The experimental results showed that hyperoside could improve kidney function and reduce kidney tissue damage in mice, and could inhibit oxidative stress, extracellularly regulated protein kinases 1/2 signaling activation, and pyroptosis in human renal tubular epithelial cells. Therefore, hyperoside inhibited oxidative stress by regulating the activation of the extracellularly regulated protein kinases 1/2/mitogen-activated protein kinase signaling pathway, thereby alleviating proteinuria-induced pyroptosis in renal tubular epithelial cells. This study provides novel evidence that could facilitate the clinical application of hyperoside in diabetic kidney disease treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Camundongos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Piroptose , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Endogâmicos C57BL , Rim , Transdução de Sinais , Proteínas Quinases/metabolismo
17.
Biomaterials ; 301: 122293, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37639978

RESUMO

Inducing pyroptosis in cancer cells can result in a strong anti-tumor immune response. Our preliminary study indicates that pyroptosis can be temporarily strengthened by disrupting mitochondria, but ultimately diminished by defensive mitophagy. Here, this study reports a nano-system camouflaged with hybrid membranes consisting of homologous cell membrane and corresponding mitochondrial membrane, which is used to deliver a drug complex Ca@GOx consisting of calcium phosphate and glucose oxidase. By taking advantage of the homing effects of cell membrane and the orientated fusion mechanism of subcellular membrane, the nano-system is able to deliver Ca@GOx to mitochondria, induce mitochondrial Ca2+ overload and generate significant levels of ROS, thus leading to pyroptosis. However, it's found that this system exhibits limited anti-tumor effects in vivo due to the compensatory activation of mitophagy serving as negative feedback to pyroptosis. To address this issue, mitophagy-inhibiting chloroquine is loaded into nanoparticles to intensify pyroptosis. As a result, the combination significantly promotes tumor infiltration of CD8+T cells and improves anti-tumor effects. Together, this study establishes a rational combination of targeted mitochondria disruption and mitophagy blockage for effective pyroptosis-based therapy.


Assuntos
Biomimética , Nanopartículas , Mitofagia , Piroptose , Membrana Celular
18.
Semin Immunol ; 70: 101833, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37647772

RESUMO

The identification of gasdermin as the executor of pyroptosis has opened new avenues for the study of this process. Although pyroptosis research has mainly focused on immune cells since it was discovered three decades ago, accumulating evidence suggests that pyroptosis plays crucial roles in many biological processes. One example is the discovery of gasdermin-mediated cancer cell pyroptosis (CCP) which has become an important and frontier field in oncology. Recent studies have shown that CCP induction can heat tumor microenvironment (TME) and thereby elicit the robust anti-tumor immunity to suppress tumor growth. As a newly discovered form of tumor cell death, CCP offers promising opportunities for improving tumor treatment and developing new drugs. Nevertheless, the research on CCP is still in its infancy, and the molecular mechanisms underlying the expression, regulation and activation of gasdermins are not yet fully understood. In this review, we summarize the recent progress of gasdermin research in cancer area, and propose that the anti-tumor effect of immune cell pyroptosis (ICP) and CCP depends on their duration, intensity, and the type of cells undergoing pyroptosis within TME.


Assuntos
Gasderminas , Neoplasias , Humanos , Neoplasias/terapia , Carcinogênese , Microambiente Tumoral , Piroptose
19.
Pharmaceutics ; 15(7)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37514017

RESUMO

Cell pyroptosis has a reciprocal relationship with various cancer treatment modalities such as chemotherapy. However, the tumor microenvironment, characterized by hypoxia, substantially restricts the development and application of tumor therapies that integrate cell pyroptosis. Therefore, the cascade amplification of oxidative stress by interfering with redox homeostasis in tumors may be a promising approach. In this study, black phosphorus (BP) nanosheets and a glutathione peroxidase 4 inhibitor (RSL3) were coloaded into a thermosensitive PDLLA-PEG-PDLLA (PLEL) hydrogel (RSL3/BP@PLEL). Owing to the photothermal property of BP nanosheets, the RSL3/BP@PLEL hydrogel may trigger the release of loaded drugs in a more controllable and on-demand manner. Investigation of the antitumor effect in a mouse liver tumor model demonstrated that local injection of the hydrogel formulation in combination with near infrared laser irradiation could efficiently suppress tumor growth by interfering with the redox balance in tumors. Mechanistic study indicated that the combined treatment of photothermal therapy and glutathione depletion based on this hydrogel efficiently induced cell pyroptosis through both caspase-1/GSDMD and caspase-3/GSDME pathways, thereby triggering the repolarization of tumor-associated macrophages from M2 to M1. Overall, we developed a biocompatible and biodegradable hydrogel formulation for application in combination cancer treatment, providing a new platform for enhancing the efficacy of cancer therapy by amplifying cell pyroptosis and apoptosis.

20.
Cell Mol Immunol ; 20(5): 475-488, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36941318

RESUMO

The activation of NLRC4 is a major host response against intracellular bacteria infection. However, NLRC4 activation after a host senses diverse stimuli is difficult to understand. Here, we found that the lncRNA LNCGM1082 plays a critical role in the activation of NLRC4. LNCGM1082 in macrophages affects the maturation of interleukin (IL)-1ß and pyroptotic cell death only after exposure to an NLRC4 ligand. Similar to NLRC4-/- mice, LNCGM1082-/- mice were highly sensitive to Salmonella Typhimurium (S. T) infection. LNCGM1082 deficiency in mouse or human macrophages inhibited IL-1ß maturation and pyroptosis. Mechanistically, LNCGM1082 induced the binding of PKCδ with NLRC4 in both mice and humans. In contrast, NLRC4 did not bind PKCδ in LNCGM1082-/- macrophages. The activity of the lncRNA LNCGM1082 induced by S. T may be mediated through TLR5 in the macrophages of both mice and humans. In summary, our data indicate that TLR5-mediated LNCGM1082 activity can promote the binding of PKCδ with NLRC4 to activate NLRC4 and induce resistance to bacterial infection.


Assuntos
RNA Longo não Codificante , Infecções por Salmonella , Animais , Humanos , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/metabolismo , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Receptor 5 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...