Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.549
Filtrar
1.
Chem Biodivers ; : e202400833, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959122

RESUMO

Seaweeds of the red algal genus Laurencia are widely distributed worldwide in tropical, subtropical to temperate zones, and grow in Japan from Hokkaido to Okinawa. Laurencia is one of the most studied seaweeds by organic chemists because it produces a variety of compounds with unique structures. In Japan, various halogenated compounds have been found in Laurencia, while some species do not produce any halogenated compounds. Laurencia is one of the most difficult seaweeds to classify morphologically; however, the major halogenated secondary metabolites produced tend to be species-specific, and these compounds can be used as chemical markers for chemical systematics (chemotaxonomy). Similarly, it has been confirmed that domestic Laurencia species produce species-specific halogenated compounds of certain types. Laurencia is one of the "weedy seaweeds" that have not been effectively utilized at present, but it produces a wide variety of metabolites, so there is a good possibility that compounds with specific activity may be found. Thus, it can be seen that the secondary metabolites in Laurencia have many interesting aspects. In this review, we reported significant morphological features to distinguish species in this genus, and the morphological features, habitat, distribution, and chemical composition that help discriminate Japanese Laurencia species.

2.
J Food Sci Technol ; 61(8): 1439-1456, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966796

RESUMO

Aquafaba is the residual water from cooking chickpea in water. It has a high gelling ability, allowing it to create stable gels. However, those functional properties depend on the legume composition, genotype, cooking time, pressure, and temperature. This study aimed to evaluate the different processes for obtaining aquafaba and compare their nutritional composition and technological characteristics using a systematic review. The authors performed the systematic review by performing specific search strategies for Scopus, Web of Science, Pubmed, Lilacs, Google Scholar, and ProQuest. A total of 17 studies were analyzed. Of them, 17.64% (n = 3) used the wastewater from canned chickpeas, 17.64% (n = 3) compared the wastewater of canned chickpeas and dry grains, and 58.82% (n = 10) used dry chickpeas. Studies used different methods to analyze the protein content. The most used (n = 5) was the Association of Official Analytical Chemists (AOAC). The aquafaba presented carbohydrates at 2.03-2.59 g/100ml; protein at 0.0.8-2.8 g/100ml; and fat at 0.07-0.1 g/100ml. In general, preparing aquafaba followed: soaking (8-10 h at 4 °C-1 chickpea: 4 water), pressure cooking (30 min-2 chickpea: 3 water), and refrigerating (24h/4 °C). In general, the results showed the following steps to prepare aquafaba: soaking for 8-10 h at 4 °C at the proportion of 1:4 (chickpea:water), pressure cooking for 30 min in the proportion of 2:3 (chickpea: water), and refrigerating 24 h/4 °C. These procedures in a homemade aquafaba presented the best results, considering foam development and higher stability. The aquafaba from canned chickpeas has a higher foam-ability and lower emulsion properties than homemade cooking aquafaba. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05920-y.

3.
Environ Pollut ; : 124505, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38968986

RESUMO

The frequency and intensity of forest fires are amplified by climate change. Substantial quantities of PM1 emitted from forest fires can undergo gradual atmospheric dispersion and long-range transport, thus impacting air quality far from the source. However, the chemical composition and physical properties of PM emitted from forest fires and its changes during atmospheric transport remain uncertain. In this study, the evolution of organic carbon (OC), elemental carbon (EC), water-soluble ions, and water-soluble metals in the particulate phase of smoke emitted from the typical forest vegetation combustion in Southwest China before and after photo-oxidation was investigated in the laboratory. Two aging periods of 5 and 9 days were selected. The OC and TC mass concentrations tended to decrease after 9-days aged compared to fresh emissions. OP, OC2, and OC3 in PM1 are expected to be potential indicators of fresh smoke, while OC3 and OC4 may serve as suitable markers for identifying aged carbon sources from the typical forest vegetation combustion in Southwest China. K+ exhibited the highest abundant water-soluble ion in fresh PM1, whereas NO3- became the most abundant water-soluble ion in aged PM1. NH4NO3 emerged as the primary secondary inorganic aerosol emitted from typical forest vegetation combustion in Southwest China. Notably, a 5-day aging period proved insufficient for the complete formation of the secondary inorganic aerosols NH4NO3 and (NH4)2SO4. After aging, the mass concentration of the water-soluble metal Ni in PM1 from typical forest vegetation combustion in Southwest China decreased, while the mean mass concentrations of all other water-soluble metals increased in varying degrees. These findings provide valuable data support and theoretical guidance for studying the atmospheric evolution of forest fire aerosols, as well as contribute to policy formulation and management of atmospheric environment safety and human health.

4.
Fitoterapia ; : 106114, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971331

RESUMO

Morus alba L. is a plant with a long history of dietary and medicinal uses. We hypothesized that M. alba possesses a significant biological potential. In that sense, we aimed to generate the chemical, antimicrobial, toxicological, and molecular profile of M. alba leaf and fruit extracts. Our results showed that extracts were rich in vitamin C, phenols, and flavonoids, with quercetin and pterostilbene concentrated in the leaf, while fisetin, hesperidin, resveratrol, and luteolin were detected in fruit. Extracts exhibited antimicrobial activity against all tested bacteria, including multidrug-resistant strains. The widest inhibition zones were in Staphylococcus aureus ATCC 33591. The values of the minimum inhibitory concentration ranged from 15.62 µg/ml in Enterococcus faecalis to 500 µg/ml in several bacteria. Minimum bactericidal concentration ranged from 31.25 µg/ml to 1000 µg/ml. Extracts impacted the biofilm formation in a concentration-dependent and species-specific manner. A significant difference in the frequency of nucleoplasmic bridges between the methanolic extract of fruit (0.5 µg/ml, 1 µg/ml, 2 µg/ml), as well as for the frequency of micronuclei between ethanolic extract of leaf (2 µg/ml) and the control group was observed. Molecular docking suggested that hesperidin possesses the highest binding affinity for multidrug efflux transporter AcrB and acyl-PBP2a from MRSA, as well as for the SARS-CoV-2 Mpro. This study, by complementing previous research in this field, gives new insights that could be of great value in obtaining a more comprehensive picture of the Morus alba L. bioactive potential, chemical composition, antimicrobial and toxicological features, as well as molecular profile.

5.
Food Chem X ; 23: 101462, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38974195

RESUMO

Purple-fleshed sweet potato (PFSP) and yellow-fleshed sweet potato (YFSP) are crops highly valued for their nutritional benefits and rich bioactive compounds. These compounds include carotenoids, flavonoids (including anthocyanins), and phenolic acids etc. which are present in both the leaves and roots of these sweet potatoes. PFSP and YFSP offer numerous health benefits, such as antioxidant, anti-inflammatory, anti-cancer, and neuroprotective properties. The antioxidant activity of these sweet potatoes holds significant potential for various industries, including food, pharmaceutical, and cosmetics. However, a challenge in utilizing PFSP and YFSP is their susceptibility to rapid oxidation and color fading during processing and storage. To address this issue and enhance the nutritional value and shelf life of food products, researchers have explored preservation methods such as co-pigmentation and encapsulation. While YFSP has not been extensively studied, this review provides a comprehensive summary of the nutritional value, phytochemical composition, health benefits, stabilization techniques for phytochemical, and industrial applications of both PFSP and YFSP in the food industry. Additionally, the comparison between PFSP and YFSP highlights their similarities and differences, shedding light on their potential uses and benefits in various food products.

6.
Heliyon ; 10(12): e32321, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38948036

RESUMO

As an abundant marine bioresource, tunicates could be exploited in the food industry. However, limited knowledge of their chemical composition and nutritional profiles prohibited further application. In this study, two common edible tunicate species, Halocynthia roretzi (HR) and Halocynthia aurantium (HA), were subjected to comprehensive composition analysis in terms of moisture, protein, lipids, cellulose, ash, amino acids, fatty acids, non-cellulose carbohydrates and minerals. Reddish HR was much bigger than purple HA with respect to body length and weight, and their moisture fell within 82.98 %-90.92 %. The non-edible outer shell part (OS) and edible internal organs part (IO) had a dry weight ratio of around 3:2 for both two species. Generally, for both HR and HA, IO was more abundant in protein and lipids. In contrast, OS had much higher cellulose contents, confirming the better suitability of IO as a nutritional seafood. IO was richer in essential amino acids and unsaturated fatty acids, while OS had more abundant saturated fatty acids. The detected non-cellulose monosugars ranged from 0.47 % to 1.18 % and indicated the presence of some sulfated glycans. IO of HR had higher contents of essential minerals, such as Cu, Zn, and Fe, while IO of HA showed a higher K content. To sum up, this study identified the chemical composition and nutritional profile variations among different tunicate species and various dissected parts, guiding the development of specific strategies to exploit tunicates for proper food applications.

7.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 636-644, jul. 2024. graf, tab
Artigo em Inglês | LILACS | ID: biblio-1538072

RESUMO

Thechemical composition, antioxidant and antimicrobial activities of the essential oil from aerial parts (leaves and flowers) of Chuquiraga arcuataHarling grown in the Ecuadorian Andes were studied. One hundred and twenty-six compounds were identified in the essential oil. Monoterpene hydrocarbons (45.8%) and oxygenated monoterpenes (44.1%) had the major percentages. The most abundant compounds were camphor (21.6%), myrcene (19.5%), and 1,8-cineole (13.4%). Antioxidant activity was examined using DPPH, ABTS,and FRAP assays. The essential oil had a moderate scavenging effect and reduction of ferric ion capacity through FRAP assay. Antimicrobial activity of the essential oil was observed against four pathogenic bacteria and a fungus. The essential oil exhibited activity against all microorganism strains under test, particularly against Candida albicansand Staphylococcus aureuswith MICs of 2.43-12.10 µg/mL.


Se estudió la composición química, actividades antioxidantes y antimicrobianas del aceite esencial procedente de las partes aérea (hojas y flores) de Chuquiraga arcuataHarling cultivadas en los Andes ecuatorianos. Se identificaron 126 compuestos en el aceite esencial. Los hidrocarburos monoterpénicos (45,8%) y los monoterpenos oxigenados (44,1%) tuvieron el mayor porcentaje. Los compuestos más abundantes fueron alcanfor (21,6%), mirceno (19,5%) y 1,8-cineol (13,4%). La actividadantioxidante se examinó mediante ensayos DPPH, ABTS y FRAP. El aceite esencial tuvo un efecto eliminador moderado y una reducción de la capacidad de iones férricos mediante el ensayo FRAP. Se observó actividad antimicrobiana del aceite esencial contra cuatro bacterias y un hongo patógenos. El aceite esencial mostró actividad contra todas las cepas de microorganismos bajo prueba, particularmente contra Candida albicansy Staphylococcus aureuscon CMI de 2,43-12,10 µg/mL.


Assuntos
Óleos Voláteis/química , Extratos Vegetais/química , Antioxidantes/química , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Flores/química , Equador , Antioxidantes/farmacologia
8.
Food Res Int ; 190: 114633, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945584

RESUMO

The Frankfurter sausages smoked with beech, oak, and alder, respectively, were used to clarify the underlying impact of the smoke chemical composition on the levels of heterocyclic amines (HAs) and polycyclic aromatic hydrocarbons (PAHs). The result indicated that different wood types significantly affected the profiles of target substances in food matrices. The beech-smoked samples had lower contents of total free HAs (5.98-6.80 ng/g dry-weight-DW), PAH4 (3.31-3.83 ng/g DW), and PAH8 (10.0-10.8 ng/g DW), whereas the alder pyrolysis usually led to higher hazardous residues (8.26-9.19 ng/g DW of total free HAs, 4.24-6.60 ng/g DW of PAH4 and 14.1-23.3 ng/g DW of PAH8). In addition, the differences in smoke chemical composition were attributed to the different proportions of 15 key identified substances. Among them, two aldehydes (5-methyl-furfural & furfural) and two phenols (phenol & 5-hydroxymaltol) may have synergistic or competitive inhibitory effects on the formation of HAs and PAHs in smoked meat products.


Assuntos
Aminas , Produtos da Carne , Hidrocarbonetos Policíclicos Aromáticos , Fumaça , Madeira , Hidrocarbonetos Policíclicos Aromáticos/análise , Produtos da Carne/análise , Fumaça/análise , Madeira/química , Aminas/análise , Compostos Heterocíclicos/análise , Contaminação de Alimentos/análise , Animais
9.
Mar Drugs ; 22(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38921591

RESUMO

This study aimed to improve the conventional procedure of alginate isolation from the brown seaweed (Laminaria digitata L.) biomass and investigate the possibility of further valorization of the ethanolic fraction representing the byproduct after the degreasing and depigmentation of biomass. The acid treatment of biomass supported by ultrasound was modeled and optimized regarding the alginate yield using a response surface methodology based on the Box-Behnken design. A treatment time of 30 min, a liquid-to-solid ratio of 30 mL/g, and a treatment temperature of 47 °C were proposed as optimal conditions under which the alginate yield related to the mass of dry biomass was 30.9%. The use of ultrasonic radiation significantly reduced the time required for the acid treatment of biomass by about 4 to 24 times compared to other available conventional procedures. The isolated alginate had an M/G ratio of 1.08, which indicates a greater presence of M-blocks in its structure and the possibility of forming a soft and elastic hydrogel with its use. The chemical composition of the ethanolic fraction including total antioxidant content (293 mg gallic acid equivalent/g dry weight), total flavonoid content (14.9 mg rutin equivalent/g dry weight), contents of macroelements (the highest content of sodium, 106.59 mg/g dry weight), and microelement content (the highest content of boron, 198.84 mg/g dry weight) was determined, and the identification of bioactive compounds was carried out. The results of ultra high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis confirmed the presence of 48 compounds, of which 41 compounds were identified as sugar alcohol, phenolic compounds, and lipids. According to the 2,2-diphenyl-1-picrylhydrazyl assay, the radical scavenging activity of the ethanolic fraction (the half-maximal inhibitory concentration of 42.84 ± 0.81 µg/mL) indicated its strong activity, which was almost the same as in the case of the positive control, synthetic antioxidant butylhydroxytoluene (the half-maximal inhibitory concentration of 36.61 ± 0.79 µg/mL). Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis, and Bacillus cereus) were more sensitive to the ethanolic fraction compared to Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Shigella sonnei). The obtained results indicated the possibility of the further use of the ethanolic fraction as a fertilizer for plant growth in different species and antifouling agents, applicable in aquaculture.


Assuntos
Alginatos , Antioxidantes , Etanol , Laminaria , Alga Marinha , Alginatos/química , Laminaria/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Etanol/química , Alga Marinha/química , Biomassa , Flavonoides/química , Flavonoides/isolamento & purificação , Algas Comestíveis
10.
J Med Food ; 27(6): 563-574, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38868932

RESUMO

Antioxidant-related parameters and anti-inflammatory and antimicrobial activities against Listeria monocytogenes were assessed in eight North East Spain poplar propolis samples. Propolis extracts (PEs) were obtained using 70% ethanol (PEE) and methanol (PME). Yield and total phenol compounds were higher in PEE. Phenolic acids were analyzed by a high-performance liquid chromatograph-diode array detector. Caffeic and ferulic acids were quantified in all PEE and PME. All samples contained p-coumaric acid (quantified in 6 PEE and in 3 PME). Ascorbic acid was detected in all propolis, but mainly quantified in PME (≤0.37 mg/g PE). Biological properties were tested on PEE. As for antiradical activities, trolox equivalent antioxidant capacity (TEAC) [against 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)•+], ranged between 578 and 4620 µmol trolox/g, 2,2-diphenyl-1-picrylhydrazyl (DPPH) (against DPPH free radical), between 0.049 and 0.094 mg/mL, antioxidant activity against hydroxyl (•OH) radical (AOA), between 0.04 and 11.01 mmol uric acid/g, and oxygen radical absorbance capacity (ORAC) against peroxyl (ROO•) radical between 122 and 3282 µmol trolox/g. Results of TEAC, AOA, and ORAC were significantly correlated. IC50 anti-inflammatory activity ranged from 1.08 to 6.19 mg/mL. Propolis showed higher inhibitory activity against L. monocytogenes CECT934 and L. monocytogenes CP101 by agar well diffusion (P < .05) (10.5 and 10.2 mm, respectively) than against L. monocytogenes CP102 (7.0 mm). Data of this research show that North East Spain propolis may be of interest for pharmaceutical and food industry use.


Assuntos
Anti-Inflamatórios , Antioxidantes , Listeria monocytogenes , Fenóis , Própole , Própole/química , Própole/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Fenóis/análise , Fenóis/farmacologia , Fenóis/química , Listeria monocytogenes/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/análise , Espanha , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/química
11.
Chem Biodivers ; : e202400946, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869958

RESUMO

A new monoterpene, (-)-10-hydroxydihydroactinidiolide (1), along with two known monoterpenes, loliolide (2) and (+)-isololiolide (3), three known megastigmanes, 3a-hydroxy-5ß,6ß-epoxy-ß-ionone (4), 3a-hydroxy-5a,6a-epoxy-ß-ionone (5), and (+)-dehydrovomifoliol (6), an eudesmane-type sesquiterpene, 4a-hydroxy-4ß-methyldihydrocostol (7), a monoterpene, 8-hydroxycarvotanacetone (8), two flavonoids,  chrysoeriol (9) and apigenin (10), and a phenylpropanoid, 3-(4-hydroxyphenyl)-1-propanol (11), were isolated from the whole plant of Achillea millefolium. The structure of compound 1 was identified according to spectroscopic data of HRMS and NMR, and its absolute configuration was assigned by 13C NMR calculations with DP4+ probability analyses and ECD calculations. The absolute configuration of compound 6 was determined by ECD calculations. Compounds 3, 6, 9 and 10 could dose-dependently inhibited the NO release in LPS-induced RAW267.4 cells.

12.
Materials (Basel) ; 17(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38894024

RESUMO

Aluminum, traditionally the primary material for battery casings, is increasingly being replaced by UNS S 30400 for enhanced safety. UNS S 30400 offers superior strength and corrosion resistance compared to aluminum; however, it undergoes a phase transformation owing to stress during processing and a lower high-temperature strength. Duplex stainless steel UNS S 32750, consisting of both austenite and ferrite phases, exhibits excellent strength and corrosion resistance. However, it also precipitates secondary phases at high temperatures, which are known to form through the segregation of Cr and Mo. Various studies have investigated the corrosion resistance of UNS S 32750; however, discrepancies exist regarding the formation and thickness of the passivation layer. This study analyzed the oxygen layer on the surface of UNS S 32750 after secondary-phase precipitation. The microstructure, volume fraction, chemical composition, and depth of O after the precipitation of the secondary phases in UNS S 32750 was examined using FE-SEM, EDS, EPMA and XRD, and the surface chemical composition and passivation layer thickness were analyzed using electron probe microanalysis and glow-discharge spectroscopy. This study demonstrated the segregation of alloy elements and a reduction in the passivation-layer thickness after precipitation from 25 µm to 20 µm. The findings of the analysis aid in elucidating the impact of secondary-phase precipitation on the passivation layer.

13.
Foods ; 13(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38890911

RESUMO

In this study, tomato seed (TS) samples were subjected to different roasting conditions (90-170 °C and 10-30 min) to compare their effects on the chemical composition and oxidative stability of tomato seed oil (TSO). Unroasted TS was considered as a control sample. Our results revealed that moderate roasting (130 °C/20 min) can significantly increase the content of linoleic acid (54.01-54.89%), linolenic acid (2.17-2.41%), phytosterols (2789.56-3037.31 mg/kg), squalene (5.06-13.10 mg/kg), total phenols (22.37-22.67 mg GAE/100 g), and other functional components (p < 0.05) in TSO, while the antioxidant activity (via DPPH, ABTS, and FRAP assays) also increased. In addition, the tocopherol content decreased significantly (758.53-729.50 mg/kg). Accelerated oxidation experiments showed that roasting (170 °C/30 min) increased the oxidative stability index (OSI) of TSO from 5.35 to 7.07 h (p < 0.05). Furthermore, roasting gradually increased the content of 5-hydroxymethylfurfural (HMF) (0-1.74 mg/kg), which indicates that the oxidative stability and the degree of the Maillard reaction increased upon roasting. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) showed that moderate roasting (130 °C/20 min) improved the chemical composition, antioxidant activity, and oxidative stability of TSO. Furthermore, this work provides a useful theoretical basis for the processing and wide application of TSO in the pharmaceutical and food industries.

14.
Animals (Basel) ; 14(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891618

RESUMO

The study material consisted of 360 eggs from a reproductive flock of meat-type hens; 240 were double-yolked eggs and 120 were single-yolked as a control group. The eggs were numbered individually and then analysed for their quality in terms of characteristics of the whole egg (weight, shape index, specific gravity), shell (colour, strength, weight, density), albumen (pH, height, weight, Haugh units) and yolk (colour, weight, shape index, pH). During the analyses, yolks were sampled for analyses including basic composition, fatty acid profile (by gas chromatography) and fatty acid indices. It was found that double-yolked eggs differed significantly from single-yolked ones in terms of weight, proportion of individual elements in the egg weight, total protein content in the yolks as well as in terms of the fatty acid profile and their indices both due to the presence or absence of two yolks and in the context of the individual yolks analysed. The results indicate the possibility of using double-yolked eggs as table eggs due to the absence of negative effects stemming from being double-yolked and the increased content of biologically important components such as fatty acids.

15.
Animals (Basel) ; 14(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891744

RESUMO

The purpose of this study was to assess the following effects: (1) the inclusion of olive in the animal's diet on the dry-cured shoulder; (2) the effect of curing on three different muscles (infraspinatus, supraspinatus, and subscapular); (3) the effect of different curing times (fresh shoulder, 6 months curing, and 12 months curing). For this purpose, forty shoulders were used, followed by a cold nitrite-free curing process with controlled humidity and temperature, according to the flowchart of a company that implements highly stringent standards in terms of food safety and quality. Samples were evaluated for their physicochemical composition and lipid profile. All the physicochemical composition parameters were significantly different (p < 0.001) in the three muscles studied. As might be expected, the curing times from the fresh product to the final product were also significantly different for all the parameters studied in this work. Regarding the inclusion of olive cake, it was found that treatment with a base diet + 10% exhausted olive cake (T4) showed higher levels for the parameters NaCl, collagen, and total fat. As for the fatty acid profile, in general, the olive did not influence the final product. On the other hand, we found that the type of muscle and the curing time of the cured shoulder had a significant influence on the fatty acid profile. We should also point out that there are significant differences in the interaction between curing time and muscle, particularly in saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs), as well as the lipid quality indices. Canonical discriminant analysis is viable for evaluating the evolution of the curing process, discriminating and classifying curing times, and evaluating the muscles of the Bísaro pork shoulder. Also, the introduction of olive cake into the animal diet does not affect the final product obtained.

16.
Heliyon ; 10(10): e31661, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38826723

RESUMO

The fast economic growth, urbanization, and industrialization of Ethiopia led to the requirement for the establishment of various infrastructures and many residential building constructions consuming different types of materials. Reinforced steel bar is one of the most consumed construction materials in Ethiopia. The demand for reinforced steel bars in Ethiopia is satisfied by the local production and international market. However, most people lack trust to the use local products without justified reasons. This investigation work was done to evaluate the performance of the locally produced rebar concerning the Compulsory Ethiopian Standard (CES) to develop trust in contractors and consultants of different projects. A Compulsory Ethiopian Standard (CES) is an Ethiopian standard that has been prepared under the direction of the Technical Committee for Concrete and Concrete Products and published by the Ethiopian Standards Agency (ESA). Experimental works were done on rebar of grades B400BWR and B500BWR with different diameters collected from four different factories. The collected samples were investigated based on their yield strength, ultimate tensile strength, elongation, hardness, chemical composition, and microstructure formation of the product. The yield strength, ultimate tensile strength, and elongation of the rebar were analyzed based on the tension test results obtained from the 2000 KN Universal Testing Machine (UTM), and the chemical composition analysis was done using the Spark Emission Spectrometer Analyzer. The micro-hardness test was done using the Vickers Hardness Tester with 3kgf and 15-s dwell time at a 0.5 mm gap along the cross-section of the rebar. Microstructure analysis is done using EDX scanning electron microscope (SEM) and optical microscopy with different magnifications and resolutions on the cross-section of the rebar. From the tested samples one sample failed from B400BWR to achieve the minimum required yield strength of 400 MPa stated by CES 101, 2017. Samples of B500BWR satisfy all the requirements stated by the standard even if there is an increment up to 41 % beyond the minimum requirement.

17.
Environ Sci Ecotechnol ; 21: 100432, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38832301

RESUMO

The size and composition of particulate matter (PM) are pivotal in determining its adverse health effects. It is important to understand PM's retention by plants to facilitate its atmospheric removal. However, the distinctions between the size and composition of naturally fallen PM (NFPM) and leaf-deposited PM (LDPM) are not well-documented. Here we utilize a single-particle aerosol mass spectrometer, coupled with a PM resuspension chamber, to analyze these differences. We find that LDPM particles are 6.8-97.3 % larger than NFPM. Employing a neural network algorithm based on adaptive resonance theory, we have identified distinct compositional profiles: NFPM predominantly consists of organic carbon (OC; 31.2 %) and potassium-rich components (19.1 %), whereas LDPM are largely composed of crustal species (53.9-60.6 %). Interestingly, coniferous species retain higher OC content (11.5-13.7 %) compared to broad-leaved species (0.5-1.2 %), while the levoglucosan content exhibit an opposite trend. Our study highlights the active role of tree leaves in modifying PM composition beyond mere passive capture, advocating for a strategic approach to species selection in urban greening initiatives to enhance PM mitigation. These insights provide guidance for urban planners and environmentalists in implementing nature-based solutions to improve urban air quality.

18.
J Hazard Mater ; 474: 134763, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843639

RESUMO

Ambient fine particulate matter (PM2.5) is associated with numerous health complications, yet the specific PM2.5 chemical components and their emission sources contributing to these health outcomes are understudied. Our study analyzes the chemical composition of PM2.5 collected from five distinct locations at urban, roadside and rural environments in midwestern region of the United States, and associates them with five acellular oxidative potential (OP) endpoints of water-soluble PM2.5. Redox-active metals (i.e., Cu, Fe, and Mn) and carbonaceous species were correlated with most OP endpoints, suggesting their significant role in OP. We conducted a source apportionment analysis using positive matrix factorization (PMF) and found a strong disparity in the contribution of various emission sources to PM2.5 mass vs. OP. Regional secondary sources and combustion-related aerosols contributed significantly (> 75 % in total) to PM2.5 mass, but showed weaker contribution (43-69 %) to OP. Local sources such as parking emissions, industrial emissions, and agricultural activities, though accounting marginally to PM2.5 mass (< 10 % for each), significantly contributed to various OP endpoints (10-50 %). Our results demonstrate that the sources contributing to PM2.5 mass and health effects are not necessarily same, emphasizing the need for an improved air quality management strategy utilizing more health-relevant PM2.5 indicators.

19.
Front Nutr ; 11: 1399888, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863589

RESUMO

Turmeric (Curcuma longa) has been extensively studied for its diverse pharmacological properties, including its potential role as an anticancer agent, antioxidant, and radioprotector. This review provides an overview of the chemical composition of turmeric, focusing on its main bioactive compounds, such as curcuminoids and volatile oils. Curcumin, the most abundant curcuminoid in turmeric, has been widely investigated for its various biological activities, including anti-inflammatory, antioxidant, and anticancer effects. Numerous in vitro and in vivo studies have demonstrated the ability of curcumin to modulate multiple signaling pathways involved in carcinogenesis, leading to inhibition of cancer cell proliferation, induction of apoptosis, and suppression of metastasis. Furthermore, curcumin has shown promising potential as a radioprotective agent by mitigating radiation-induced oxidative stress and DNA damage. Additionally, turmeric extracts containing curcuminoids have been reported to exhibit potent antioxidant activity, scavenging free radicals and protecting cells from oxidative damage. The multifaceted pharmacological properties of turmeric make it a promising candidate for the development of novel therapeutic strategies for cancer prevention and treatment, as well as for the management of oxidative stress-related disorders. However, further research is warranted to elucidate the underlying mechanisms of action and to evaluate the clinical efficacy and safety of turmeric and its bioactive constituents in cancer therapy and radioprotection. This review consolidates the most recent relevant data on turmeric's chemical composition and its therapeutic applications, providing a comprehensive overview of its potential in cancer prevention and treatment, as well as in radioprotection.

20.
Sci Total Environ ; 942: 173403, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38844217

RESUMO

With 24 million inhabitants and 6.6 million vehicles on the roads, Karachi, Pakistan ranks among the world's most polluted cities due to high levels of fine particulate matter (PM2.5). This study aims to investigate PM2.5 mass, seasonal and temporal variability, chemical characterization, source apportionment, and health risk assessment at two urban sites in Karachi. Samples were analyzed using ion chromatography and dual-wavelength optical transmissometer for various inorganic components (anions, cations, and trace elements) and black carbon (BC). Several PM2.5 pollution episodes were frequently observed, with annual mean concentrations at Kemari (140 ± 179 µg/m3) and Malir (95 ± 40.9 µg/m3) being significantly above the World Health Organization's guidelines of 5 µg/m3. Chemical composition at both sites exhibited seasonal variability, with higher pollution levels in winter and fall and lower concentrations in summer. The annual average BC concentrations were 4.86 ± 5.29 µg/m3 and 4.52 ± 3.68 µg/m3, respectively. A Positive Matrix Factorization (PMF) analysis identified 5 factors, crustal, sea salt, vehicular exhaust, fossil-fuel combustion, and industrial emission. The health risk assessment indicated a higher number of deaths in colder seasons (fall and winter) at the Kemari (328,794 and 287,814) and Malir (228,406 and 165,737) sites and potential non-carcinogenic and carcinogenic risks to children from metals. The non-carcinogenic risk of PM2.5 bound Pb, Fe, Zn, Mn, Cr, Cu and Ni via inhalation exposure were within the acceptable level (<1) for adults. However, potential non-carcinogenic and carcinogenic health risk posed by Pb and Cr through inhalation were observed for children. The findings exhibit critical levels of air pollution that exceed the safe limits in Karachi, posing significant health risks to children and sensitive groups. Our study underscores the urgent need for effective emission control strategies and policy interventions to mitigate these air pollution risks.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Poluição do Ar/estatística & dados numéricos , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Paquistão , Medição de Risco , Cidades , Exposição Ambiental/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...