Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Elife ; 132024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727716

RESUMO

PHOX2B is a transcription factor essential for the development of different classes of neurons in the central and peripheral nervous system. Heterozygous mutations in the PHOX2B coding region are responsible for the occurrence of Congenital Central Hypoventilation Syndrome (CCHS), a rare neurological disorder characterised by inadequate chemosensitivity and life-threatening sleep-related hypoventilation. Animal studies suggest that chemoreflex defects are caused in part by the improper development or function of PHOX2B expressing neurons in the retrotrapezoid nucleus (RTN), a central hub for CO2 chemosensitivity. Although the function of PHOX2B in rodents during development is well established, its role in the adult respiratory network remains unknown. In this study, we investigated whether reduction in PHOX2B expression in chemosensitive neuromedin-B (NMB) expressing neurons in the RTN altered respiratory function. Four weeks following local RTN injection of a lentiviral vector expressing the short hairpin RNA (shRNA) targeting Phox2b mRNA, a reduction of PHOX2B expression was observed in Nmb neurons compared to both naive rats and rats injected with the non-target shRNA. PHOX2B knockdown did not affect breathing in room air or under hypoxia, but ventilation was significantly impaired during hypercapnia. PHOX2B knockdown did not alter Nmb expression but it was associated with reduced expression of both Task2 and Gpr4, two CO2/pH sensors in the RTN. We conclude that PHOX2B in the adult brain has an important role in CO2 chemoreception and reduced PHOX2B expression in CCHS beyond the developmental period may contribute to the impaired central chemoreflex function.


Assuntos
Dióxido de Carbono , Proteínas de Homeodomínio , Hipoventilação , Fatores de Transcrição , Animais , Masculino , Ratos , Dióxido de Carbono/metabolismo , Células Quimiorreceptoras/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hipoventilação/genética , Hipoventilação/congênito , Hipoventilação/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Apneia do Sono Tipo Central/genética , Apneia do Sono Tipo Central/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
J Comp Physiol B ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758303

RESUMO

In this review, we explore the inconsistencies in the data and gaps in our knowledge that exist in what is currently known regarding gill chemosensors which drive the cardiorespiratory reflexes in fish. Although putative serotonergic neuroepithelial cells (NEC) dominate the literature, it is clear that other neurotransmitters are involved (adrenaline, noradrenaline, acetylcholine, purines, and dopamine). And although we assume that these agents act on neurons synapsing with the NECs or in the afferent or efferent limbs of the paths between chemosensors and central integration sites, this process remains elusive and may explain current discrepancies or species differences in the literature. To date it has been impossible to link the distribution of NECs to species sensitivity to different stimuli or fish lifestyles and while the gills have been shown to be the primary sensing site for respiratory gases, the location (gills, oro-branchial cavity or elsewhere) and orientation (external/water or internal/blood sensing) of the NECs are highly variable between species of water and air breathing fish. Much of what has been described so far comes from studies of hypoxic responses in fish, however, changes in CO2, ammonia and lactate have all been shown to elicit cardio-respiratory responses and all have been suggested to arise from stimulation of gill NECs. Our view of the role of NECs is broadening as we begin to understand the polymodal nature of these cells. We begin by presenting the fundamental picture of gill chemosensing that has developed, followed by some key unanswered questions about gill chemosensing in general.

3.
Function (Oxf) ; 5(3): zqae010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706960

RESUMO

The Olfr78 gene encodes a G-protein-coupled olfactory receptor that is expressed in several ectopic sites. Olfr78 is one of the most abundant mRNA species in carotid body (CB) glomus cells. These cells are the prototypical oxygen (O2) sensitive arterial chemoreceptors, which, in response to lowered O2 tension (hypoxia), activate the respiratory centers to induce hyperventilation. It has been proposed that Olfr78 is a lactate receptor and that glomus cell activation by the increase in blood lactate mediates the hypoxic ventilatory response (HVR). However, this proposal has been challenged by several groups showing that Olfr78 is not a physiologically relevant lactate receptor and that the O2-based regulation of breathing is not affected in constitutive Olfr78 knockout mice. In another study, constitutive Olfr78 knockout mice were reported to have altered systemic and CB responses to mild hypoxia. To further characterize the functional role of Olfr78 in CB glomus cells, we here generated a conditional Olfr78 knockout mouse strain and then restricted the knockout to glomus cells and other catecholaminergic cells by crossing with a tyrosine hydroxylase-specific Cre driver strain (TH-Olfr78 KO mice). We find that TH-Olfr78 KO mice have a normal HVR. Interestingly, glomus cells of TH-Olfr78 KO mice exhibit molecular and electrophysiological alterations as well as a reduced dopamine content in secretory vesicles and neurosecretory activity. These functional characteristics resemble those of CB neuroblasts in wild-type mice. We suggest that, although Olfr78 is not essential for CB O2 sensing, activation of Olfr78-dependent pathways is required for maturation of glomus cells.


Assuntos
Corpo Carotídeo , Receptores Odorantes , Tirosina 3-Mono-Oxigenase , Animais , Masculino , Camundongos , Corpo Carotídeo/metabolismo , Hipóxia/metabolismo , Hipóxia/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/genética
4.
Brain Struct Funct ; 229(5): 1121-1142, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38578351

RESUMO

In mammals, the ventral respiratory column (VRC) plays a pivotal role in integrating neurochemically diverse inputs from brainstem and forebrain regions to generate respiratory motor patterns. VRC microinjection of the neuropeptide galanin has been reported to dampen carbon dioxide (CO2)-mediated chemoreflex responses. Additionally, we previously demonstrated that galaninergic neurons in the retrotrapezoid nucleus (RTN) are implicated in the adaptive response to hypercapnic stimuli, suggesting a link between RTN neuroplasticity and increased neuronal drive to the VRC. VRC neurons express galanin receptor 1, suggesting potential regulatory action by galanin, however, the precise galaninergic chemoreceptor-VRC circuitry remains to be determined. This study aimed to identify sources of galaninergic input to the VRC that contribute to central respiratory chemoreception. We employed a combination of retrograde neuronal tracing, in situ hybridisation and immunohistochemistry to investigate VRC-projecting neurons that synthesise galanin mRNA. In an additional series of experiments, we used acute hypercapnia exposure (10% CO2, 1 h) and c-Fos immunohistochemistry to ascertain which galaninergic nuclei projecting to the VRC are activated. Our findings reveal that a total of 30 brain nuclei and 51 subnuclei project to the VRC, with 12 of these containing galaninergic neurons, including the RTN. Among these galaninergic populations, only a subset of the RTN neurons (approximately 55%) exhibited activation in response to acute hypercapnia. Our findings highlight that the RTN is the likely source of galaninergic transmission to the VRC in response to hypercapnic stimuli.


Assuntos
Galanina , Hipercapnia , Neurônios , Animais , Hipercapnia/metabolismo , Hipercapnia/fisiopatologia , Masculino , Galanina/metabolismo , Neurônios/metabolismo , Dióxido de Carbono/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Centro Respiratório/metabolismo , Ratos , Células Quimiorreceptoras/metabolismo , Ratos Sprague-Dawley , Tronco Encefálico/metabolismo
5.
Insect Mol Biol ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676460

RESUMO

Bumblebees are crucial pollinators, providing essential ecosystem services and global food production. The success of pollination services relies on the interaction between sensory organs and the environment. The antenna functions as a versatile multi-sensory organ, pivotal in mediating chemosensory/olfactory information, and governs adaptive responses to environmental changes. Despite an increasing number of RNA-sequencing studies on insect antenna, comprehensive antennal transcriptome studies at the different life stages were not elucidated systematically. Here, we quantified the expression profile and dynamics of coding/microRNA genes of larval head and antennal tissues from early- and late-stage pupa to the adult of Bombus terrestris as suitable model organism among pollinators. We further performed Pearson correlation analyses on the gene expression profiles of the antennal transcriptome from larval head tissue to adult stages, exploring both positive and negative expression trends. The positively correlated coding genes were primarily enriched in sensory perception of chemical stimuli, ion transport, transmembrane transport processes and olfactory receptor activity. Negatively correlated genes were mainly enriched in organic substance biosynthesis and regulatory mechanisms underlying larval body patterning and the formation of juvenile antennal structures. As post-transcriptional regulators, miR-1000-5p, miR-13b-3p, miR-263-5p and miR-252-5p showed positive correlations, whereas miR-315-5p, miR-92b-3p, miR-137-3p, miR-11-3p and miR-10-3p exhibited negative correlations in antennal tissue. Notably, based on the inverse expression relationship, positively and negatively correlated microRNA (miRNA)-mRNA target pairs revealed that differentially expressed miRNAs predictively targeted genes involved in antennal development, shaping antennal structures and regulating antenna-specific functions. Our data serve as a foundation for understanding stage-specific antennal transcriptomes and large-scale comparative analysis of transcriptomes in different insects.

7.
Insects ; 15(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535364

RESUMO

The house fly, Musca domestica L., is a significant human and livestock pest. Experiments used female adult house flies glued onto toothpicks for controlled exposure of their tarsi alone (tarsal assay) or their tarsi and proboscis (proboscis assay) with a sucrose solution containing imidacloprid at either a low (10 µg/mL) or high (4000 µg/mL) concentration. Proboscis extension response (PER) assays were used to characterize the response of imidacloprid-susceptible and behaviorally resistant house fly strains to contact with sucrose solutions containing either a low or high concentration of imidacloprid. In each assay, 150 female flies from each fly strain were individually exposed to sucrose solutions containing either a low or high concentration of imidacloprid by deliberate contact of the fly tarsi to the test solution. The PER for each fly was subsequently recorded at 0, 2, and 10 s following the initial tarsal contact. A significant and rapid reduction in PER was observed only for the behaviorally resistant fly strain and only following contact by the flies' proboscis with the sucrose solution containing the high imidacloprid concentration. The results suggest that chemoreceptors on the fly labellum or internally on the pharyngeal taste organs are involved in the detection of imidacloprid and discrimination of the concentration, resulting in an avoidance behavior (proboscis retraction) only when imidacloprid is at sufficient concentration. Further research is needed to identify the specific receptor(s) responsible for imidacloprid detection.

8.
Chem Senses ; 492024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38422390

RESUMO

Different animals have distinctive anatomical and physiological properties to their chemical senses that enhance detection and discrimination of relevant chemical cues. Humans and other vertebrates are recognized as having 2 main chemical senses, olfaction and gustation, distinguished from each other by their evolutionarily conserved neuroanatomical organization. This distinction between olfaction and gustation in vertebrates is not based on the medium in which they live because the most ancestral and numerous vertebrates, the fishes, live in an aquatic habitat and thus both olfaction and gustation occur in water and both can be of high sensitivity. The terms olfaction and gustation have also often been applied to the invertebrates, though not based on homology. Consequently, any similarities between olfaction and gustation in the vertebrates and invertebrates have resulted from convergent adaptations or shared constraints during evolution. The untidiness of assigning olfaction and gustation to invertebrates has led some to recommend abandoning the use of these terms and instead unifying them and others into a single category-chemical sense. In our essay, we compare the nature of the chemical senses of diverse animal types and consider their designation as olfaction, oral gustation, extra-oral gustation, or simply chemoreception. Properties that we have found useful in categorizing chemical senses of vertebrates and invertebrates include the nature of peripheral sensory cells, organization of the neuropil in the processing centers, molecular receptor specificity, and function.


Assuntos
Olfato , Paladar , Animais , Humanos , Olfato/fisiologia , Paladar/fisiologia , Percepção Gustatória , Peixes , Sinais (Psicologia)
9.
Brain Res ; 1822: 148608, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778648

RESUMO

The central leptin signaling system has been found to facilitate breathing and is linked to obesity-related hypoventilation. Activation of leptin signaling in the nucleus tractus solitarii (NTS) and retrotrapezoid nucleus (RTN) enhances respiratory drive. In this study, we investigated how medullary leptin signaling contributes to hypoventilation and whether respective deletion of SOCS3 in the NTS and RTN could mitigate hypoventilation in diet-induced obesity (DIO) male mice. Our findings revealed a decrease in the number of CO2-activated NTS neurons and downregulation of acid-sensing ion channels in DIO mice compared to lean control mice. Moreover, NTS leptin signaling was disrupted, as evidenced by the downregulation of phosphorylated STAT3 and the upregulation of SOCS3 in DIO mice. Importantly, deleting SOCS3 in the NTS and RTN significantly improved the diminished hypercapnic ventilatory response in DIO mice. In conclusion, our study suggests that disrupted medullary leptin signaling contributes to obesity-related hypoventilation, and inhibiting the upregulated SOCS3 in the NTS and RTN can alleviate this condition.


Assuntos
Hipoventilação , Leptina , Núcleo Solitário , Proteína 3 Supressora da Sinalização de Citocinas , Animais , Masculino , Camundongos , Dieta , Hipoventilação/genética , Obesidade/complicações , Núcleo Solitário/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
10.
J Exp Biol ; 226(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37975309

RESUMO

Sensory perception of chemical threats coming from an organism's environment relies on the coordination of numerous receptors and cell types. In many cases, the physiological processes responsible for driving behavioral responses to chemical cues are poorly understood. Here, we investigated the physiological response of fish to an unpalatable compound, formoside, which is employed as a chemical defense by marine sponges. Construction of fluorescent probe derivatives of formoside allowed visualization of this chemical defense molecule in vivo, interacting with the cells and tissues of the early larvae of a model predator, the zebrafish (Danio rerio). This revealed the precise chemosensory structures targeted by formoside to be in the taste buds and olfactory epithelium of developing zebrafish. Mechanosensory neuromasts were also targeted. This study supports the involvement of a previously identified co-receptor in detection of the chemical defense and provides a springboard for the long-term goal of identification of the cellular receptor of formoside. Extension of this approach to other predators and chemical defenses may provide insight into common mechanisms of chemoreception by predators as well as common strategies of chemical defense employed by prey.


Assuntos
Poríferos , Triterpenos , Animais , Peixe-Zebra/fisiologia , Glicosídeos/metabolismo , Triterpenos/metabolismo , Comportamento Predatório
11.
Artigo em Inglês | MEDLINE | ID: mdl-37946073

RESUMO

The carotid body (CB) is a polymodal chemosensory organ that plays an essential role in initiating respiratory and cardiovascular adjustments to maintain blood gas homeostasis. Much of the available evidence suggests that chronic hypoxia induces marked morphological and neurochemical changes within the CB, but the detailed molecular mechanisms by which these affect the hypoxic chemosensitivity still remain to be elucidated. Dysregulation of the CB function and altered oxygen saturation are implicated in various physiological and pathophysiological conditions. Knowledge of the morphological and functional aspects of the CB would improve our current understanding of respiratory and cardiovascular homeostasis in health and disease.


Assuntos
Corpo Carotídeo , Humanos , Corpo Carotídeo/fisiologia , Células Quimiorreceptoras/fisiologia , Hipóxia , Artérias , Coração
12.
Adv Anat Embryol Cell Biol ; 237: 161-163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37946083

RESUMO

Over the last century, the structure of the mammalian carotid body (CB) has repeatedly been studied, and our present understanding of its normal morphology is comprehensive. It has been demonstrated that the CB has an intricate internal structure and a remarkable ability to release a wide variety of neurotransmitters and neuromodulators in response to different chemical stimuli. The advances in modern cellular/molecular biological methods and newly developed single-cell electrophysiological techniques have provided an additional insight into the precise working mechanisms and roles of the CB in health and disease. Emerging experimental evidence has also shown that the CB exhibits an extraordinary structural and functional plasticity as a consequence of various environmental stimuli. Lately, the CB has attracted much clinical interest because its dysfunction relates to a number of cardiovascular and respiratory disorders. Expanding knowledge about the pathophysiological mechanisms that alter the CB cell function would certainly help to facilitate the translational research. Recent progress in cell fate experiments has further revealed that the CB is a neurogenic center with a functionally active germinal niche. This may lead to the development of promising new candidate therapies to combat these diseases and improve the quality of human life. Thus, the CB has entered the twenty-first century with its actual designation.


Assuntos
Corpo Carotídeo , Animais , Humanos , Corpo Carotídeo/fisiologia , Diferenciação Celular , Neurogênese , Mamíferos
13.
Insect Biochem Mol Biol ; 163: 104031, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918449

RESUMO

Odorant receptors (ORs) are key specialized units for mate and host finding in moths of the Ditrysia clade, to which 98% of the lepidopteran species belong. Moth ORs have evolved to respond to long unsaturated acetates, alcohols, or aldehydes (Type I sex pheromones), falling into conserved clades of pheromone receptors (PRs). These PRs might have evolved from old lineages of non-Ditrysian moths that use plant volatile-like pheromones. However, a Ditrysian moth called the greater wax moth, Galleria mellonella (a worldwide-distributed pest of beehives), uses C9-C11 saturated aldehydes as the main sex pheromone components (i.e., nonanal and undecanal). Thus, these aldehydes represent unusual components compared with the majority of moth species that use, for instance, Type I sex pheromones. Current evidence shows a lack of consensus in the amount of ORs for G. mellonella, although consistent in that the moth does not have conserved PRs. Using genomic data, 62 OR candidates were identified, 16 being new genes. Phylogeny showed no presence of ORs in conserved PR clades. However, an OR with the highest transcript abundance, GmelOR4, appeared in a conserved plant volatile-detecting clade. Functional findings from the HEK system showed the OR as sensitive to nonanal and 2-phenylacetaldehyde, but not to undecanal. It is believed that to date GmelOR4 represents the first, but likely not unique, OR with a stable function in detecting aldehydes that help maintain the life cycle of G. mellonella around honey bee colonies.


Assuntos
Mariposas , Receptores Odorantes , Atrativos Sexuais , Animais , Abelhas/genética , Mariposas/genética , Atrativos Sexuais/genética , Aldeídos , Receptores de Feromônios/genética , Receptores Odorantes/genética
14.
Behav Processes ; 213: 104969, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37989455

RESUMO

This study was conducted to determine the senses that facilitate prey detection in the marble goby (Oxyeleotris marmorata) larvae. The ingestion ratios of live (generate chemical and mechanical stimuli) or frozen Artemia nauplii (generate chemical but no mechanical stimuli) by the intact or free neuromast (mechanoreceptor)-ablated O. marmorata larvae (11 mg/L streptomycin treatment before feeding) under the light or dark (fish vision was obstructed) condition were examined. Vision, mechano-, and chemoreceptions were all found to be essential in prey detection of the O. marmorata larvae. Prey movement has a significant influence as a visual stimuli on the O. marmorata larval feeding as the Artemia nauplii ingestion ratio was approximately 40% higher with significant (p = 0.001, d = 3.0), when the intact larvae were fed with the live (78.1 ± 1.5%), rather than the frozen (40.9 ± 2.8%) Artemia nauplii, under the light condition. This result was assured when no significant difference (p = 0.572, d = 0.2) was found between the ingestion ratios of frozen Artemia nauplii by the intact O. marmorata larvae under light and dark conditions. These findings demonstrate that prey detection in the O. marmorata larvae was facilitated by multi-modal senses, allowing O. marmorata larvae to survive in their natural habitats.


Assuntos
Perciformes , Animais , Larva , Peixes , Comportamento Alimentar
15.
J Nematol ; 55(1): 20230038, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38026552

RESUMO

The infective juveniles (IJs) of entomopathogenic nematode (EPN) Heterorhabditis bacteriophora find and infect their host insects in heterogeneous soil ecosystems by sensing a universal host cue (CO2) or insect/plant-derived odorants, which bind to various sensory receptors, including G protein-coupled receptors (GPCRs). Nematode chemosensory GPCRs (NemChRs) bind to a diverse set of ligands, including odor molecules. However, there is a lack of information on the NemChRs in EPNs. Here we identified 21 GPCRs in the H. bacteriophora genome sequence in a triphasic manner, combining various transmembrane detectors and GPCR predictors based on different algorithms, and considering inherent properties of GPCRs. The pipeline was validated by reciprocal BLAST, InterProscan, GPCR-CA, and NCBI CDD search. Functional classification of predicted GPCRs using Pfam revealed the presence of four NemChRs. Additionally, GPCRs were classified into various families based on the reciprocal BLAST approach into a frizzled type, a secretin type, and 19 rhodopsin types of GPCRs. Gi/o is the most abundant kind of G-protein, having a coupling specificity to all the fetched GPCRs. As the 21 GPCRs identified are expected to play a crucial role in the host-seeking behavior, these might be targeted to develop novel insect-pest management strategies by tweaking EPN IJ behavior, or to design novel anthelminthic drugs. Our new and stringent GPCR detection pipeline may also be used to identify GPCRs from the genome sequence of other organisms.

17.
Physiol Genomics ; 55(11): 487-503, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37602394

RESUMO

Chronic hypercapnia (CH) is a hallmark of respiratory-related diseases, and the level of hypercapnia can acutely or progressively become more severe. Previously, we have shown time-dependent adaptations in steady-state physiology during mild (arterial Pco2 ∼55 mmHg) and moderate (∼60 mmHg) CH in adult goats, including transient (mild CH) or sustained (moderate CH) suppression of acute chemosensitivity suggesting limitations in adaptive respiratory control mechanisms as the level of CH increases. Changes in specific markers of glutamate receptor plasticity, interleukin-1ß, and serotonergic modulation within key nodes of cardiorespiratory control do not fully account for the physiological adaptations to CH. Here, we used an unbiased approach (bulk tissue RNA sequencing) to test the hypothesis that mild or moderate CH elicits distinct gene expression profiles in important brain stem regions of cardiorespiratory control, which may explain the contrasting responses to CH. Gene expression profiles from the brain regions validated the accuracy of tissue biopsy methodology. Differential gene expression analyses revealed greater effects of CH on brain stem sites compared with the medial prefrontal cortex. Mild CH elicited an upregulation of predominantly immune-related genes and predicted activation of immune-related pathways and functions. In contrast, moderate CH broadly led to downregulation of genes and predicted inactivation of cellular pathways related to the immune response and vascular function. These data suggest that mild CH leads to a steady-state activation of neuroinflammatory pathways within the brain stem, whereas moderate CH drives the opposite response. Transcriptional shifts in immune-related functions may underlie the cardiorespiratory network's capability to respond to acute, more severe hypercapnia when in a state of progressively increased CH.NEW & NOTEWORTHY Mild chronic hypercapnia (CH) broadly upregulated immune-related genes and a predicted activation of biological pathways related to immune cell activity and the overall immune response. In contrast, moderate CH primarily downregulated genes related to major histocompatibility complex signaling and vasculature function that led to a predicted inactivation of pathways involving the immune response and vascular endothelial function. The severity-dependent effect on immune responses suggests that neuroinflammation has an important role in CH and may be important in the maintenance of proper ventilatory responses to acute and chronic hypercapnia.


Assuntos
Hipercapnia , Transcriptoma , Humanos , Hipercapnia/genética , Hipercapnia/metabolismo , Hipercapnia/patologia , Transcriptoma/genética , Encéfalo/metabolismo , Perfilação da Expressão Gênica , Imunidade
18.
Life (Basel) ; 13(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37511884

RESUMO

Sea urchins rely on chemical senses to localize suitable food resources, therefore representing model species for chemosensory studies. In the present study, we investigated the chemical sensitivity of the Mediterranean sea urchin Paracentrotus lividus to the blue-green alga Aphanizomenon flos-aquae, namely "Klamath", and to a few amino acids chosen from the biochemical composition of the same algae. To this end, we used the "urchinogram" method, which estimates the movement rate of the sea urchins in response to chemicals. Our results showed that Klamath represents a strong chemical stimulus for P. lividus as it elicits an overall movement of spines, pedicellariae, and tube feet coupled, in some cases, to a coordinated locomotion of the animals. Sea urchins also displayed a sensitivity, even if to a lesser extent, to leucine, threonine, arginine, and proline, thus implying that the amino acids contained in Klamath may account, at least in part, for the stimulating effects exerted by the whole algae. Additionally, our results show that Klamath, as well as spirulina, another blue-green alga with high nutritional value, is very attractive for this sea urchin species. These findings gain further importance considering the potential profit of echinoderms for commercial consumers and their growing role in aquaculture. Klamath and spirulina combine high nutritional profiles with attractive and stimulating abilities and may be considered potential valuable feed supplements in sea urchin aquaculture.

19.
Insects ; 14(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37504644

RESUMO

Chemical communication is widespread among insects and exploited to adjust their behavior, such as food and habitat seeking and preferences, recruitment, defense, and mate attraction. Recently, many studies have revealed that microbial symbionts could regulate host chemical communication by affecting the synthesis and perception of insect semiochemicals. In this paper, we review recent studies of the influence of microbial symbionts on insect chemoreception. Microbial symbionts may influence insect sensitivity to semiochemicals by regulating the synthesis of odorant-binding proteins or chemosensory proteins and olfactory or gustatory receptors and regulating host neurotransmission, thereby adjusting insect behavior. The manipulation of insect chemosensory behavior by microbial symbionts is conducive to their proliferation and dispersal and provides the impetus for insects to change their feeding habits and aggregation and dispersal behavior, which contributes to population differentiation in insects. Future research is necessary to reveal the material and information exchange between both partners to improve our comprehension of the evolution of chemoreception in insects. Manipulating insect chemoreception physiology by inoculating them with microbes could be utilized as a potential approach to managing insect populations.

20.
Insect Biochem Mol Biol ; 159: 103988, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437853

RESUMO

Mosquitoes rely mainly on the sense of smell to decipher their environment and locate suitable food sources, hosts for blood feeding and oviposition sites. The molecular bases of olfaction involve multigenic families of olfactory proteins that have evolved to interact with a narrow set of odorants that are critical for survival. Understanding the complex interplay between diversified repertoires of olfactory proteins and ecologically-relevant odorant signals, which elicit important behaviors, is fundamental for the design of novel control strategies targeting the sense of smell of disease vector mosquitoes. Previously, large multigene families of odorant receptor and ionotropic receptor proteins, as well as a subset of odorant-binding proteins have been shown to mediate the selectivity and sensitivity of the mosquito olfactory system. In this study, we identify a mosquito-specific antennal protein (MSAP) gene as a novel molecular actor of odorant reception. MSAP is highly conserved across mosquito species and is transcribed at an extremely high level in female antennae. In order to understand its role in the mosquito olfactory system, we generated knockout mutant lines in Anopheles gambiae, and performed comparative analysis of behavioral and physiological responses to human-associated odorants. We found that MSAP promotes female mosquito attraction to human odor and enhances the sensitivity of the antennae to a variety of odorants. These findings suggest that MSAP is an important component of the mosquito olfactory system, which until now has gone completely unnoticed.


Assuntos
Anopheles , Malária , Receptores Odorantes , Humanos , Feminino , Animais , Odorantes , Anopheles/metabolismo , Mosquitos Vetores/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...