Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
1.
Sci China Life Sci ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38987430

RESUMO

Recently, bispecific T-cell engagers (BiTEs) and chimeric antigen receptor-modified T cells (CAR-Ts) have been shown to have high therapeutic efficacy in hematological tumors. CD87 is highly expressed in solid tumors with an oncogenic function. To assess their cytotoxic effects on invasive nonfunctioning pituitary adenomas (iNFPAs), we first examined CD87 expression and its effects on the metabolism of iNFPA cells. We generated CD87-specific BiTE and CAR/IL-12 T cells, and their cytotoxic effects on iNFPAs cells and in mouse models were determined. CD87 had high expression in iNFPA tissue and cell samples but was undetected in noncancerous brain samples. CD87×CD3 BiTE and CD87 CAR/IL-12 T-cells showed antigenic specificity and exerted satisfactory cytotoxic effects, decreasing tumor cell proliferation in vitro and reducing existing tumors in experimental mice. Overall, the above findings suggest that CD87 is a promising target for the immunotherapeutic management of iNFPAs using anti-CD87 BiTE and CD87-specific CAR/IL-12 T cells.

2.
Cytotherapy ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38904586

RESUMO

BACKGROUND AIMS: Chimeric antigen receptor T (CAR-T) cells targeting single antigens show limited activity against solid tumors due to poor T cell persistence, low efficiency infiltration, and exhaustion together with heterogeneous tumor-associated antigen (TAA) expression. This is also true in high-risk neuroblastoma (HRNB), a lethal pediatric extracranial malignancy. To overcome these obstacles, a combinational strategy using GD2-specific and GPC2-specific CAR-T cells was developed to improve immunotherapeutic efficacy. METHODS: We individually developed GD2-specific and GPC2-specific CARs containing a selective domain (sCAR) which was a peptide of 10 amino acids derived from human nuclear autoantigen La/SS-B. These constructs allowed us to generate two different HRNB antigen-specific CAR-T cells with enhanced biological activity through stimulating sCAR-engrafted T cells via a selective domain-specific monoclonal antibody (SmAb). Binding affinity and stimulation of GD2- and GPC2-specific sCARs by SmAb were measured, and transient and persistent anti-tumor cytotoxicity of GD2sCAR-T and GPC2sCAR-T cells were quantified in neuroblastoma cell lines expressing different TAA levels. The anti-tumor pharmaceutical effects and cellular mechanisms mediated by single or combinational sCAR-T cells were evaluated in vitro and in vivo. RESULTS: GD2- and GPC2-specific sCARs had antigen-specific binding affinity similar to their parental counterparts and were recognized by SmAb. SmAb-mediated stimulation selectively activated sCAR-T proliferation and increased central memory T cells in the final products. SmAb-stimulated sCAR-T cells had enhanced transient cytolytic activity, and combination therapy extended long-term anti-tumor activity in vitro through TNF-α and IL-15 release. Stimulated sCAR-T cells overcame heterogeneous antigen expression in HRNB, and the multi-TAA-targeting strategy was especially efficacious in vivo, inducing apoptosis through the caspase-3/PARP pathway and inhibiting the release of several tumor-promoting cytokines. CONCLUSIONS: These data suggest that combined targeting of multiple TAAs is a promising strategy to overcome heterogenous antigen expression in solid tumors and extend CAR-T cell persistence for HRNB immunotherapy.

3.
Front Bioeng Biotechnol ; 12: 1379900, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882639

RESUMO

Efficient engineering of T cells to express exogenous tumor-targeting receptors such as chimeric antigen receptors (CARs) or T-cell receptors (TCRs) is a key requirement of effective adoptive cell therapy for cancer. Genome editing technologies, such as CRISPR/Cas9, can further alter the functional characteristics of therapeutic T cells through the knockout of genes of interest while knocking in synthetic receptors that can recognize cancer cells. Performing multiple rounds of gene transfer with precise genome editing, termed multiplexing, remains a key challenge, especially for non-viral delivery platforms. Here, we demonstrate the efficient production of primary human T cells incorporating the knockout of three clinically relevant genes (B2M, TRAC, and PD1) along with the non-viral transfection of a CAR targeting disialoganglioside GD2. Multiplexed knockout results in high on-target deletion for all three genes, with low off-target editing and chromosome alterations. Incorporating non-viral delivery to knock in a GD2-CAR resulted in a TRAC-B2M-PD1-deficient GD2 CAR T-cell product with a central memory cell phenotype and high cytotoxicity against GD2-expressing neuroblastoma target cells. Multiplexed gene-editing with non-viral delivery by CRISPR/Cas9 is feasible and safe, with a high potential for rapid and efficient manufacturing of highly potent allogeneic CAR T-cell products.

4.
Cancers (Basel) ; 16(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38927948

RESUMO

Since the introduction of rituximab in the late 1990s, significant progress has been made in advancing targeted therapies for B cell lymphomas, improving patients' chance of being cured and clinicians' therapeutic armamentarium. A better understanding of disease biology and pathogenic pathways, coupled with refinements in immunophenotypic and molecular diagnostics, have been instrumental in these achievements. While traditional chemotherapy remains fundamental in most cases, concerns surrounding chemorefractoriness and cumulative toxicities, particularly the depletion of the hemopoietic reserve, underscore the imperative for personalized treatment approaches. Integrating targeted agents, notably monoclonal antibodies, alongside chemotherapy has yielded heightened response rates and prolonged survival. A notable paradigm shift is underway with innovative-targeted therapies replacing cytotoxic drugs, challenging conventional salvage strategies like stem cell transplantation. This review examines the landscape of emerging targets for lymphoma cells and explores innovative therapies for diffuse large B cell lymphoma (DLBCL). From Chimeric Antigen Receptor-T cells to more potent monoclonal antibodies, antibody-drug conjugates, bispecific antibodies, checkpoint inhibitors, and small molecules targeting intracellular pathways, each modality offers promising avenues for therapeutic advancement. This review aims to furnish insights into their potential implications for the future of DLBCL treatment strategies.

5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 965-969, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38926997

RESUMO

Chimeric antigen receptor (CAR) T cell therapy, one of the most promising tumor treatments, combines the targeted recognition of antigen and antibody with the killing effect of T cells. CAR-T has shown a strong therapeutic effect in lymphoid tumors and been applied in clinical practice. However, in the treatment of acute myeloid leukemia (AML), no effective and specific target like CD19 in lymphoid tumors has been found. Therefore, the key research direction is to try multiple probabilities and use optimization strategies to enhance efficacy and reduce toxicity. This review introduces the latest research progress of AML targets in CAR-T therapy in recent years, analyzes the related problems that need to be solved at present, and summarizes the optimization construction strategies mentioned in the research. Hope it can provide reference for related research and clinical application of related product.


Assuntos
Imunoterapia Adotiva , Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Humanos , Leucemia Mieloide Aguda/terapia , Imunoterapia Adotiva/métodos , Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T , Antígenos CD19/imunologia
6.
Front Oncol ; 14: 1404351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919524

RESUMO

Background: The short-term complications from chimeric antigen receptor T-cell therapy (CART) are well characterized, but the long-term complications still need to be further investigated. Therefore, herein, we will review the currently available literature published on the late adverse events following CART. Methods: We reviewed published data available from pivotal trials and real-world experiences with anti-CD19 CART (CART19) for adults with lymphoma. We defined late events as occurring or persisting beyond 1 month after CART infusion. We focused our literature review on the following late-event outcomes post-CART19: cytopenia, immune reconstitution, infections, and subsequent malignancies. Results: Grade 3-4 cytopenia beyond 30 days occurs in 30%-40% of patients and beyond 90 days in 3%-22% of patients and is usually managed with growth-factor and transfusion support, along with neutropenic prophylaxis. B-cell aplasia and hypogammaglobulinemia are expected on-target off-tumor effects of CART19, 44%-53% of patients have IgG < 400 mg/dL, and approximately 27%-38% of patients receive intravenous immunoglobulin (IVIG) replacement. Infections beyond the initial month from CART19 are not frequent and rarely severe, but they are more prevalent and severe when patients receive subsequent therapies post-CART19 for their underlying disease. Late neurotoxicity and neurocognitive impairment are uncommon, and other causes should be considered. T-cell lymphoma (TCL) after CART is an extremely rare event and not necessarily related to CAR transgene. Myeloid neoplasm is not rare post-CART, but unclear causality given heavily pretreated patient population is already at risk for therapy-related myeloid neoplasm. Conclusion: CART19 is associated with clinically significant long-term effects such as prolonged cytopenia, hypogammaglobulinemia, and infections that warrant clinical surveillance, but they are mostly manageable with a low risk of non-relapse mortality. The risk of subsequent malignancies post-CART19 seems low, and the relationship with CART19 and/or prior therapies is unclear; but regardless of the possible causality, this should not impact the current benefit-risk ratio of CART19 for relapsed/refractory B-cell non-Hodgkin lymphoma (NHL).

8.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1338-1351, 2024 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-38783801

RESUMO

Chimeric antigen receptor T cells (CAR-T) immunotherapy, which activates immunity specific to the system in order to achieve antitumor effects, has experienced exciting progress in recent years. mRNA nano-delivery systems, which encapsulate tumor immunotherapy-related antigen mRNA with nanoparticles, have shown great potential in CAR-T tumor immunotherapy. On one hand, these systems can directly target T cells to generate CAR-T cells that directly act upon the corresponding tumor cells. On the other hand, they can be delivered to antigen-presenting cells through targeting, thereby enhancing the function of CAR-T cells and further inducing specific immune responses against tumor cells. This review summarizes the synthesis of mRNA nano-delivery systems and their application in CAR-T tumor immunotherapy.


Assuntos
Imunoterapia Adotiva , Nanopartículas , Neoplasias , RNA Mensageiro , Receptores de Antígenos Quiméricos , Humanos , Neoplasias/terapia , Neoplasias/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Nanopartículas/química , Imunoterapia , Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Animais
9.
Ann Hematol ; 103(7): 2551-2556, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38724656

RESUMO

Chimeric antigen receptor T (CAR-T) cells therapy is a milestone achievement in the immunotherapy of relapsed and refractory (R/R) B cell acute lymphoblastic leukemia (B-ALL). However, some patients treated with CAR-T cells do not achieve complete remission, the mechanisms of which have not been elucidated. In the present study, we report a 9-year-old pediatric patient with refractory B-ALL received a triple infusion of autologous CD19 CAR-T cells therapy after the second relapse. CAR-T cells expanded in the peripheral blood and bone marrow. However, the patient did not achieve complete remission, indicating a lack of response to CAR-T cells therapy. Analysis of etiological factors revealed that the number of CD4 and CD8 double-negative T (DNT) cells was significantly upregulated in the peripheral blood, bone marrow, and autologous CAR-T cells products. In conclusiont, these findings indicate that DNT cells mediated resistance to CAR-T cells therapy in this pediatric patient with R/R B-ALL.


Assuntos
Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Criança , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Antígenos CD19/imunologia , Receptores de Antígenos Quiméricos/imunologia , Masculino , Recidiva , Resistencia a Medicamentos Antineoplásicos , Feminino
10.
Expert Rev Hematol ; 17(7): 375-390, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38770902

RESUMO

INTRODUCTION: Therapeutic strategies against multiple myeloma (MM) have evolved dramatically in recent decades, with unprecedent results in the treatment landscape, culminating in the recent incorporation of novel agents in the anti-myeloma armamentarium. AREAS COVERED: BCMA represents one of the most promising targets in MM and currently available immune approaches, either approved or under active investigation, are clearly showing their greater potential over standard regimens. In this context, immunotherapies based on chimeric antigen receptor (CAR)-engineered T-cells and bispecific antibodies (BsAbs) have taken center stage, being the ones that are yielding the most promising results in clinical trials. This review focuses on the current landscape of BsAbs and CAR-T, summarizing the latest advances and possible future developments. EXPERT OPINION: CAR-T and BsAbs anti-BCMA strategies represent breakthrough therapies against MM. However, their inclusion in clinical practice is almost feared, due to the associated limitations, some of which have been addressed here. Meanwhile, all the efforts should be focused on individualizing and choosing the most suitable candidates for each treatment and to understand how to combine, or sequence, these therapies to improve efficacy and minimize toxicity, especially for those patients with limited available treatment options.


Assuntos
Anticorpos Biespecíficos , Antígeno de Maturação de Linfócitos B , Imunoterapia Adotiva , Mieloma Múltiplo , Humanos , Anticorpos Biespecíficos/uso terapêutico , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Antígeno de Maturação de Linfócitos B/imunologia , Antígeno de Maturação de Linfócitos B/antagonistas & inibidores , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico , Imunoterapia/métodos , Linfócitos T/imunologia
11.
Front Immunol ; 15: 1389227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803489

RESUMO

Background: Explore the efficacy and safety of donor-derived CLL-1 chimeric antigen receptor T-cell therapy (CAR-T) for relapsed/refractory acute myeloid leukemia (R/R AML) bridging to allogeneic hematopoietic stem cell transplantation (allo-HSCT) after remission. Case presentation: An adult R/R AML patient received an infusion of donor-derived CLL-1 CAR-T cells, and the conditioning regimen bridging to allo-HSCT was started immediately after remission on day 11 after CAR-T therapy upon transplantation. Then, routine post-HSCT monitoring of blood counts, bone marrow (BM) morphology, flow cytometry, graft-versus-host disease (GVHD) manifestations, and chimerism status were performed. Result: After CAR-T therapy, cytokine release syndrome was grade 1. On day 11 after CAR-T therapy, the BM morphology reached complete remission (CR), and the conditioning regimen bridging to allo-HSCT started. Leukocyte engraftment, complete donor chimerism, and platelet engraftment were observed on days +18, +23, and +26 post-allo-HSCT, respectively. The BM morphology showed CR and flow cytometry turned negative on day +23. The patient is currently at 4 months post-allo-HSCT with BM morphology CR, negative flow cytometry, complete donor chimerism, and no extramedullary relapse/GVHD. Conclusion: Donor-derived CLL-1 CAR-T is an effective and safe therapy for R/R AML, and immediate bridging to allo-HSCT after remission may better improve the long-term prognosis of R/R AML.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Imunoterapia Adotiva , Leucemia Mieloide Aguda , Transplante Homólogo , Humanos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/imunologia , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Masculino , Receptores de Antígenos Quiméricos/imunologia , Indução de Remissão , Doença Enxerto-Hospedeiro/etiologia , Pessoa de Meia-Idade , Condicionamento Pré-Transplante/métodos , Adulto , Resultado do Tratamento , Doadores de Tecidos , Feminino
12.
Expert Rev Anticancer Ther ; 24(6): 379-395, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38798125

RESUMO

INTRODUCTION: Modern immunotherapy approaches are revolutionizing the treatment scenario of relapsed/refractory (RR) multiple myeloma (MM) patients, providing an opportunity to reach deep level of responses and extend survival outcomes. AREAS COVERED: Antibody-drug conjugates (ADCs) and T-cell redirecting treatments, including bispecific antibodies (BsAbs) and chimeric antigen receptor (CAR) T cells therapy, have been recently introduced in the treatment of RRMM. Some agents have already received regulatory approval, while newer constructs, novel combinations, and applications in earlier lines of therapy are currently being explored. This review discusses the current landscape and possible development of ADCs, BsAbs and CAR-T cells immunotherapies. EXPERT OPINION: ADCs, BsAbs, and CAR-T therapy have demonstrated substantial activity in heavily pretreated, triple-class exposed (TCE) MM patients, and T-cell redirecting treatments represent new standards of care after third (European Medicines Agency, EMA), or fourth (Food and Drug Administration, FDA), line of therapy. All these three immunotherapies carry advantages and disadvantages, with different accessibility and new toxicities that require appropriate management and guidelines. Multiple on-going programs include combinations therapies and applications in earlier lines of treatment, as well as the development of novel agents or construct to enhance potency, reduce toxicity and facilitate administration. Sequencing is a challenge, with few data available and mechanisms of resistance still to be unraveled.


Assuntos
Anticorpos Biespecíficos , Imunoconjugados , Imunoterapia Adotiva , Mieloma Múltiplo , Humanos , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Biespecíficos/farmacologia , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/tratamento farmacológico , Imunoconjugados/farmacologia , Imunoconjugados/administração & dosagem , Imunoterapia Adotiva/métodos , Animais , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Taxa de Sobrevida , Imunoterapia/métodos , Desenvolvimento de Medicamentos
13.
J Cell Mol Med ; 28(9): e18369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712978

RESUMO

Acute myeloid leukaemia (AML) is a fatal and refractory haematologic cancer that primarily affects adults. It interferes with bone marrow cell proliferation. Patients have a 5 years survival rate of less than 30% despite the availability of several treatments, including chemotherapy, allogeneic haematopoietic stem cell transplantation (Allo-HSCT), and receptor antagonist drugs. Allo-HSCT is the mainstay of acute myeloid leukaemia treatment. Although it does work, there are severe side effects, such as graft-versus-host disease (GVHD). In recent years, chimeric antigen receptor (CAR)-T cell therapies have made significant progress in the treatment of cancer. These engineered T cells can locate and recognize tumour cells in vivo and release a large number of effectors through immune action to effectively kill tumour cells. CAR-T cells are among the most effective cancer treatments because of this property. CAR-T cells have demonstrated positive therapeutic results in the treatment of acute myeloid leukaemia, according to numerous clinical investigations. This review highlights recent progress in new targets for AML immunotherapy, and the limitations, and difficulties of CAR-T therapy for AML.


Assuntos
Imunoterapia Adotiva , Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Humanos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais
14.
J Hematol Oncol ; 17(1): 19, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644469

RESUMO

Bendamustine has been retrospectively shown to be an effective and safe lymphodepletion regimen prior to the anti-CD19 chimeric antigen receptor T cell (CART) products tisagenlecleucel and axicabtagene ciloleucel, as well as the anti-BCMA CART products idecabtagene vicleucel and ciltacabtagene autoleucel. However, bendamustine as lymphodepletion prior to lisocabtagene maraleucel (liso-cel), a 4-1BB co-stimulated, fixed CD4:CD8 ratio anti-CD19 CART product, has not been described yet. Thus, we studied a cohort of sequentially-treated patients with large B-cell lymphomas who received bendamustine lymphodepletion before liso-cel at the University of Pennsylvania between 5/2021 and 12/2023 (n = 31). Patients were evaluated for toxicities and responses. Of note, 7 patients (22.6%) would have dnot met the inclusion criteria for the registrational liso-cel clinical trials, mostly due to older age. Overall and complete response rates were 76.9% and 73.1%, respectively. At a median follow-up of 6.3 months, the 6-month progression-free and overall survival were 59.9% and 91.1%, respectively. Rates of cytokine-release syndrome (CRS) and neurotoxicity (ICANS) of any grade were 9.7% and 9.7%, respectively, with no grade ≥ 3 events. No infections were reported during the first 30 days following liso-cel infusion. Neutropenia ≥ grade 3 was observed in 29.0% of patients; thrombocytopenia ≥ grade 3 occurred in 9.7%. In conclusion, bendamustine lymphodepletion before liso-cel appears to be a strategy that can drive tumor responses while ensuring a mild toxicity profile.


Assuntos
Cloridrato de Bendamustina , Imunoterapia Adotiva , Humanos , Cloridrato de Bendamustina/uso terapêutico , Pessoa de Meia-Idade , Masculino , Feminino , Idoso , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Estudos Retrospectivos , Adulto , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Antineoplásicos Alquilantes/uso terapêutico , Antineoplásicos Alquilantes/efeitos adversos , Produtos Biológicos/uso terapêutico , Produtos Biológicos/efeitos adversos , Idoso de 80 Anos ou mais , Resultado do Tratamento
15.
J Transl Med ; 22(1): 368, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637886

RESUMO

In this study, we investigated CD70 as a promising target for renal cell carcinoma (RCC) therapy and developed a potent chimeric antigen receptor T (CAR-T) cells for potential clinical testing. CD70, found to be highly expressed in RCC tumors, was associated with decreased survival. We generated CAR-T cells expressing VHH sequence of various novel nanobodies from immunized alpaca and a single-chain variable fragment (scFv) derived from human antibody (41D12). In our in vitro experiments, anti-CD70 CAR-T cells effectively eliminated CD70-positive tumor cells while sparing CD70-negative cells. The nanobody-based CAR-T cells demonstrated significantly higher production of cytokines such as IL-2, IFN-γ and TNF-ɑ during co-culture, indicating their potential for enhanced functionality. In xenograft mouse model, these CAR-T cells exhibited remarkable anti-tumor activity, leading to the eradication of RCC tumor cells. Importantly, human T cell expansion after infusion was significantly higher in the VHH groups compared to the scFv CAR-T group. Upon re-challenging mice with RCC tumor cells, the VHH CAR-T treated group remained tumor-free, suggesting a robust and long-lasting anti-tumor response. These findings provide strong support for the potential of nanobody-based CD70 CAR-T cells as a promising therapeutic option for RCC. This warrants further development and consideration for future clinical trials and applications.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Carcinoma de Células Renais/terapia , Linfócitos T , Linhagem Celular Tumoral , Neoplasias Renais/terapia , Imunoterapia Adotiva , Ensaios Antitumorais Modelo de Xenoenxerto , Ligante CD27
16.
Cancers (Basel) ; 16(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672680

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has become a powerful treatment option in B-cell and plasma cell malignancies, and many patients have benefited from its use. To date, six CAR T-cell products have been approved by the FDA and EMA, and many more are being developed and investigated in clinical trials. The whole field of adoptive cell transfer has experienced an unbelievable development process, and we are now at the edge of a new era of immune therapies that will have its impact beyond hematologic malignancies. Areas of interest are, e.g., solid oncology, autoimmune diseases, infectious diseases, and others. Although much has been achieved so far, there is still a huge effort needed to overcome significant challenges and difficulties. We are witnessing a rapid expansion of knowledge, induced by new biomedical technologies and CAR designs. The era of CAR T-cell therapy has just begun, and new products will widen the therapeutic landscape in the future. This review provides a comprehensive overview of the clinical applications of CAR T-cells, focusing on the approved products and emphasizing their benefits but also indicating limitations and challenges.

17.
Cancers (Basel) ; 16(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672686

RESUMO

Light-chain (AL) amyloidosis is a rare plasma cell disorder characterized by the deposition of misfolded immunoglobulin light chains in target organs, leading to multi-organ dysfunction. Treatment approaches have historically mirrored but lagged behind those of multiple myeloma (MM). Recent advancements in MM immunotherapy are gradually being evaluated and adopted in AL amyloidosis. This review explores the current state of immunotherapeutic strategies in AL amyloidosis, including monoclonal antibodies, antibody-drug conjugates, bispecific antibodies, and chimeric antigen receptor T-cell therapy. We discuss the unique challenges and prospects of these therapies in AL amyloidosis, including the exposure of frail AL amyloidosis patients to immune-mediated toxicities such as cytokine release syndrome (CRS) and immune effector-cell-associated neurotoxicity syndrome (ICANS), as well as their efficacy in promoting rapid and deep hematologic responses. Furthermore, we highlight the need for international initiatives and compassionate programs to provide access to these promising therapies and address critical unmet needs in AL amyloidosis management. Finally, we discuss future directions, including optimizing treatment sequencing and mitigating toxicities, to improve outcomes for AL amyloidosis patients.

18.
Mol Cancer ; 23(1): 80, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659003

RESUMO

Undeniably, cancer immunotherapies have expanded the spectrum of cancer treatment, however, some patients do not respond to immunotherapies. This scenario is no different for lung cancer, whose two main types, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), still pose a serious clinical challenge. Adoptive T-cell therapies (ATC), which primarily include cytokine-induced killer (CIK) cell therapy, chimeric antigen receptor T-cell (CAR T-cell) therapy and γδ-T-cell therapy, strengthen the patient's immune system in combating cancer. Combining ATC with immune checkpoint inhibitors (ICI) further enhances the effectiveness of this approach to eradicate cancer. With a particular emphasis on CIK cell therapy, which recently completed 30 years, we highlight the role of the PD-1/PD-L1 axis in NSCLC and SCLC. Besides, we provide insights into the potential synergies of PD-1/PD-L1 inhibitors with adoptive T-cell immunotherapy in reshaping the treatment paradigm for lung cancer.


Assuntos
Antígeno B7-H1 , Inibidores de Checkpoint Imunológico , Imunoterapia Adotiva , Neoplasias Pulmonares , Receptor de Morte Celular Programada 1 , Humanos , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Imunoterapia Adotiva/métodos , Antígeno B7-H1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Animais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia
19.
Clin Lymphoma Myeloma Leuk ; 24(6): 350-357, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38627181

RESUMO

Immunotherapeutic strategies, specifically T-cell-redirected therapies, have been transformative in the context of multiple myeloma (MM). With the approval of two chimeric antigen receptor T-cell (CAR-T) drug products and three bispecific antibodies/T-cell engagers (bsAbs/TCEs) in relapsed/refractory MM (RRMM), the 20th annual IMS meeting dedicated a session to the practical aspects of these therapies. Here, we highlight the discussion during this session, including the role of CAR-T and bsAb therapies in frontline MM treatment, management of acute toxicities, prevention and management of infections, and finally treatment sequencing of T-cell redirected therapies.


Assuntos
Imunoterapia , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Imunoterapia/métodos , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Biespecíficos/farmacologia
20.
Radiol Oncol ; 58(2): 170-178, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38613842

RESUMO

BACKGROUND: Various types of immunotherapy (i.e. immune checkpoint inhibitors [ICIs], chimeric antigen receptor [CAR] T-cells and bispecific T-cell engagers [BiTEs]) and antibody drug conjugates (ADCs) have been used increasingly to treat solid cancers, lymphomas and leukaemias. Patients with serious complications of these therapies can be presented to physicians of different specialties. In this narrative review we discuss potentially fatal complications of new systemic anticancer therapies and some practical considerations for their diagnosis and initial treatment. RESULTS: Clinical presentation of toxicities of new anticancer therapies may be unpredictable and nonspecific. They can mimic other more common medical conditions such as infection or stroke. If not recognized and properly treated these toxicities can progress rapidly into life-threatening conditions. ICIs can cause immune-related inflammatory disorders of various organ systems (e.g. pneumonitis or colitis), and a cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) may develop after treatment with CAR T-cells or BiTEs. The cornerstones of management of these hyper-inflammatory disorders are supportive care and systemic immunosuppressive therapy. The latter should start as soon as symptoms are mild-moderate. Similarly, some severe toxicities of ADCs also require immunosuppressive therapy. A multidisciplinary team including an oncologist/haematologist and a corresponding organ-site specialist (e.g. gastroenterologist in the case of colitis) should be involved in the diagnosis and treatment of these toxicities. CONCLUSIONS: Health professionals should be aware of potential serious complications of new systemic anticancer therapies. Early diagnosis and treatment with adequate supportive care and immunosuppressive therapy are crucial for the optimal outcome of patients with these complications.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Inibidores de Checkpoint Imunológico/efeitos adversos , Síndrome da Liberação de Citocina/etiologia , Antineoplásicos/efeitos adversos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Imunoconjugados/efeitos adversos , Imunoconjugados/uso terapêutico , Síndromes Neurotóxicas/etiologia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...