Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 818
Filtrar
1.
Res Sq ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38978588

RESUMO

Background: Vocal learning is a rare, convergent trait that is fundamental to both human speech and birdsong. The Forkhead Box P2 (FoxP2) transcription factor appears necessary for both types of learned signals, as human mutations in FoxP2 result in speech deficits, and disrupting its expression in zebra finches impairs male-specific song learning. In juvenile and adult male finches, striatal FoxP2 mRNA and protein decline acutely within song-dedicated neurons during singing, indicating that its transcriptional targets are also behaviorally regulated. The identities of these targets in songbirds, and whether they differ across sex, development and/or behavioral conditions, are largely unknown. Results: Here we used chromatin immunoprecipitation followed by sequencing (ChIP-Seq) to identify genomic sites bound by FoxP2 in male and female, juvenile and adult, and singing and non-singing birds. Our results suggest robust FoxP2 binding concentrated in putative promoter regions of genes. The number of genes likely to be bound by FoxP2 varied across conditions, suggesting specialized roles of the candidate targets related to sex, age, and behavioral state. We validated these binding targets both bioinformatically, with comparisons to previous studies and biochemically, with immunohistochemistry using an antibody for a putative target gene. Gene ontology analyses revealed enrichment for human speech- and language-related functions in males only, consistent with the sexual dimorphism of song learning in this species. Fewer such targets were found in juveniles relative to adults, suggesting an expansion of this regulatory network with maturation. The fewest speech-related targets were found in the singing condition, consistent with the well-documented singing-driven down-regulation of FoxP2 in the songbird striatum. Conclusions: Overall, these data provide an initial catalog of the regulatory landscape of FoxP2 in an avian vocal learner, offering dozens of target genes for future study and providing insight into the molecular underpinnings of vocal learning.

2.
J Gastrointest Oncol ; 15(3): 1035-1049, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38989423

RESUMO

Background: B7-H3 (or CD276) represents an important costimulatory molecule expressed in many malignant solid tumors, including colorectal cancer (CRC). The receptor of B7-H3 is not known, and the intracellular function of B7-H3 remains obscure. Herein, we report that B7-H3 upregulated the epidermal growth factor heparin-binding epidermal growth factor (HB-EGF), likely by regulating hypoxia-inducible factor 1α (HIF-1α) and thereby promoting the progression of CRC. Methods: Lentiviral transfection was performed on CRC cells to establish stable low-B7-H3 expression cells. A mechanistic analysis with an Agilent human gene expression profiling chip was conducted on them. Clinical data and specimens were collected to detect the connection between B7-H3 and HB-EGF in CRC. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to detect the messenger RNA (mRNA) level of B7-H3, HB-EGF, and HIF-1α. Chromatin immunoprecipitation (ChIP) quantitative real-time PCR was conducted. The protein level of HIF-1α and the phosphatidylinositide 3-kinases (PI3K)-protein kinase B (AKT) pathway were detected by western blot. HIF-1α was recovered by lentiviral transfection, and the HB-EGF mRNA levels, proliferation, invasion, and angiogenesis ability were detected. Results: B7-H3 promoted tumor progression through HB-EGF and the PI3K-AKT pathway. As B7-H3 was downregulated, HB-EGF levels were significantly reduced simultaneously, a growth trend that was shown by both CRC cell lines and cancer tissues. In addition, B7-H3 and HB-EGF had significant associations with tumor-node-metastasis (TNM) stage and lymph node metastasis in 50 CRC patients. The binding ability of HIF-1α to the HB-EGF promoter region was significantly decreased in the shB7-H3 RKO group. Western blot revealed that PI3K, AKT, and mammalian target of rapamycin (mTOR) protein amounts and p-AKT and p-mTOR phosphorylation were also downregulated in shB7-H3 RKO cells, suggesting that B7-H3 may regulate HIF-1α via PI3K-AKT signaling. After recovery of the HIF-1α level by lentiviral transfection, the HB-EGF mRNA levels, proliferation, invasion, and angiogenesis in CRC cells recovered as well. Conclusions: B7-H3 may transmit intracellular signals through PI3K-AKT-mTOR-HIF-1α signaling, upregulating HB-EGF. As the final transcription factor of the pathway, HIF-1α regulates the transcription of the HB-EGF gene, thereby promoting HB-EGF expression, which eventually mediates cell proliferation, invasion, and angiogenesis and promotes the progression of CRC.

3.
Methods Mol Biol ; 2830: 81-91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977570

RESUMO

Chromatin immunoprecipitation (ChIP) is used to analyze the targeting of a protein to a specific region of chromatin in vivo. Here, we present an instructive ChIP protocol for Arabidopsis imbibed seeds. The protocol covers all steps, from the sampling of imbibed seeds to the reverse crosslinking of immunoprecipitated protein-DNA complexes, and includes experimental tips and notes. The targeting of the protein to DNA is determined by quantitative PCR (qPCR) using reverse crosslinked DNA. The protocol can be further scaled up for ChIP-sequencing (ChIP-seq) analysis. As an example of the protocol, we include a ChIP-quantitative PCR (ChIP-qPCR) analysis demonstrating the targeting of PIF1 to the ABI5 promoter.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Imunoprecipitação da Cromatina , Sementes , Arabidopsis/genética , Arabidopsis/metabolismo , Imunoprecipitação da Cromatina/métodos , Sementes/genética , Sementes/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Regiões Promotoras Genéticas , DNA de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos
4.
Planta ; 260(2): 42, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958765

RESUMO

MAIN CONCLUSION: Ambient concentrations of atmospheric nitrogen dioxide (NO2) inhibit the binding of PIF4 to promoter regions of auxin pathway genes to suppress hypocotyl elongation in Arabidopsis. Ambient concentrations (10-50 ppb) of atmospheric nitrogen dioxide (NO2) positively regulate plant growth to the extent that organ size and shoot biomass can nearly double in various species, including Arabidopsis thaliana (Arabidopsis). However, the precise molecular mechanism underlying NO2-mediated processes in plants, and the involvement of specific molecules in these processes, remain unknown. We measured hypocotyl elongation and the transcript levels of PIF4, encoding a bHLH transcription factor, and its target genes in wild-type (WT) and various pif mutants grown in the presence or absence of 50 ppb NO2. Chromatin immunoprecipitation assays were performed to quantify binding of PIF4 to the promoter regions of its target genes. NO2 suppressed hypocotyl elongation in WT plants, but not in the pifq or pif4 mutants. NO2 suppressed the expression of target genes of PIF4, but did not affect the transcript level of the PIF4 gene itself or the level of PIF4 protein. NO2 inhibited the binding of PIF4 to the promoter regions of two of its target genes, SAUR46 and SAUR67. In conclusion, NO2 inhibits the binding of PIF4 to the promoter regions of genes involved in the auxin pathway to suppress hypocotyl elongation in Arabidopsis. Consequently, PIF4 emerges as a pivotal participant in this regulatory process. This study has further clarified the intricate regulatory mechanisms governing plant responses to environmental pollutants, thereby advancing our understanding of how plants adapt to changing atmospheric conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica de Plantas , Hipocótilo , Dióxido de Nitrogênio , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/genética , Hipocótilo/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dióxido de Nitrogênio/farmacologia , Dióxido de Nitrogênio/metabolismo , Regiões Promotoras Genéticas/genética , Ácidos Indolacéticos/metabolismo , Mutação
5.
STAR Protoc ; 5(3): 103163, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38941184

RESUMO

Chromatin immunoprecipitation (ChIP) combined with sequencing has revolutionized our understanding of gene regulation; however, its application to frozen adipose tissue presents unique challenges due to the high levels of lipid content. Here, we present a protocol for ChIP of histone modifications in human frozen adipose tissue. We describe steps for tissue preparation, chromatin isolation, sonication, pre-clearing of chromatin, and immunoprecipitation. We then detail procedures for elution, crosslink reversal, chromatin purification, quality control, and library synthesis.

6.
Epigenetics Chromatin ; 17(1): 19, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825690

RESUMO

BACKGROUND: Over the past several decades, the use of biochemical and fluorescent tags has elucidated mechanistic and cytological processes that would otherwise be impossible. The challenging nature of certain nuclear proteins includes low abundancy, poor antibody recognition, and transient dynamics. One approach to get around those issues is the addition of a peptide or larger protein tag to the target protein to improve enrichment, purification, and visualization. However, many of these studies were done under the assumption that tagged proteins can fully recapitulate native protein function. RESULTS: We report that when C-terminally TAP-tagged CENP-A histone variant is introduced, it undergoes altered kinetochore protein binding, differs in post-translational modifications (PTMs), utilizes histone chaperones that differ from that of native CENP-A, and can partially displace native CENP-A in human cells. Additionally, these tagged CENP-A-containing nucleosomes have reduced centromeric incorporation at early G1 phase and poorly associates with linker histone H1.5 compared to native CENP-A nucleosomes. CONCLUSIONS: These data suggest expressing tagged versions of histone variant CENP-A may result in unexpected utilization of non-native pathways, thereby altering the biological function of the histone variant.


Assuntos
Proteína Centromérica A , Histonas , Nucleossomos , Processamento de Proteína Pós-Traducional , Humanos , Proteína Centromérica A/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Células HeLa , Cinetocoros/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Ligação Proteica
7.
Adv Exp Med Biol ; 1441: 435-458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884724

RESUMO

Over the last few decades, the study of congenital heart disease (CHD) has benefited from various model systems and the development of molecular biological techniques enabling the analysis of single gene as well as global effects. In this chapter, we first describe different models including CHD patients and their families, animal models ranging from invertebrates to mammals, and various cell culture systems. Moreover, techniques to experimentally manipulate these models are discussed. Second, we introduce cardiac phenotyping technologies comprising the analysis of mouse and cell culture models, live imaging of cardiogenesis, and histological methods for fixed hearts. Finally, the most important and latest molecular biotechniques are described. These include genotyping technologies, different applications of next-generation sequencing, and the analysis of transcriptome, epigenome, proteome, and metabolome. In summary, the models and technologies presented in this chapter are essential to study the function and development of the heart and to understand the molecular pathways underlying CHD.


Assuntos
Cardiopatias Congênitas , Animais , Humanos , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Modelos Animais de Doenças , Camundongos , Fenótipo , Sequenciamento de Nucleotídeos em Larga Escala , Técnicas de Cultura de Células/métodos
8.
J Med Virol ; 96(6): e29692, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38804172

RESUMO

To achieve a virological cure for hepatitis B virus (HBV), innovative strategies are required to target the covalently closed circular DNA (cccDNA) genome. Guanine-quadruplexes (G4s) are a secondary structure that can be adopted by DNA and play a significant role in regulating viral replication, transcription, and translation. Antibody-based probes and small molecules have been developed to study the role of G4s in the context of the human genome, but none have been specifically made to target G4s in viral infection. Herein, we describe the development of a humanized single-domain antibody (S10) that can target a G4 located in the PreCore (PreC) promoter of the HBV cccDNA genome. MicroScale Thermophoresis demonstrated that S10 has a strong nanomolar affinity to the PreC G4 in its quadruplex form and a structural electron density envelope of the complex was determined using Small-Angle X-ray Scattering. Lentiviral transduction of S10 into HepG2-NTCP cells shows nuclear localization, and chromatin immunoprecipitation coupled with next-generation sequencing demonstrated that S10 can bind to the HBV PreC G4 present on the cccDNA. This research validates the existence of a G4 in HBV cccDNA and demonstrates that this DNA secondary structure can be targeted with high structural and sequence specificity using S10.


Assuntos
DNA Circular , DNA Viral , Quadruplex G , Vírus da Hepatite B , Anticorpos de Domínio Único , Humanos , Vírus da Hepatite B/genética , Vírus da Hepatite B/imunologia , DNA Circular/genética , DNA Viral/genética , Células Hep G2 , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Genoma Viral , Regiões Promotoras Genéticas , Replicação Viral , Hepatite B/virologia
9.
bioRxiv ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38645179

RESUMO

Human cytomegalovirus (HCMV) infects up to 80% of the world's population. Here, we show that HCMV infection leads to widespread changes in human chromatin accessibility and chromatin looping, with hundreds of thousands of genomic regions affected 48 hours after infection. Integrative analyses reveal HCMV-induced perturbation of Hippo signaling through drastic reduction of TEAD1 transcription factor activity. We confirm extensive concordant loss of TEAD1 binding, active H3K27ac histone marks, and chromatin looping interactions upon infection. Our data position TEAD1 at the top of a hierarchy involving multiple altered important developmental pathways. HCMV infection reduces TEAD1 activity through four distinct mechanisms: closing of TEAD1-bound chromatin, reduction of YAP1 and phosphorylated YAP1 levels, reduction of TEAD1 transcript and protein levels, and alteration of TEAD1 exon-6 usage. Altered TEAD1-based mechanisms are highly enriched at genetic risk loci associated with eye and ear development, providing mechanistic insight into HCMV's established roles in these processes.

10.
Methods Mol Biol ; 2795: 169-182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594538

RESUMO

DNA methylation and posttranslational modifications of histones instruct gene expression in eukaryotes. Besides canonical histones, histone variants also play a critical role in transcriptional regulation. One of the best studied histone variants in plants is H2A.Z whose removal from gene bodies correlates with increased transcriptional activity. The eviction of H2A.Z is regulated by environmental cues such as increased ambient temperatures, and current models suggest that H2A.Z functions as a transcriptional buffer preventing environmentally responsive genes from undesired activation. To monitor temperature-dependent H2A.Z dynamics, chromatin immunoprecipitation (ChIP) of H2A.Z-occupied DNA can be performed. The following protocol describes a quick and easy ChIP approach to study in vivo H2A.Z occupancy.


Assuntos
Regulação da Expressão Gênica , Histonas , Histonas/genética , Histonas/metabolismo , Imunoprecipitação da Cromatina , Metilação de DNA , Temperatura , Cromatina/genética , Nucleossomos
11.
Methods Mol Biol ; 2801: 125-134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578418

RESUMO

Connexins (Cxs) are transmembrane proteins which form hemichannels and gap junction channels at the plasma membrane. These channels allow the exchange of ions and molecules between the intra- and extracellular space and between cytoplasm of adjacent cells, respectively. The channel function of Cx assemblies has been extensively studied; however, "noncanonical" functions have emerged in the last few decades and have capture the attentions of many researchers, including the role of some Cxs as gene modulators or transcription factors. In this chapter, we describe a protocol to study the interaction of Cx46 with DNA in HeLa cells. These methods can facilitate understanding the role of Cxs in physiological processes and pathological mechanisms, including, for example, the contribution of Cx46 in maintaining stemness of glioma cancer stem cells.


Assuntos
Conexinas , Canais Iônicos , Humanos , Conexinas/genética , Conexinas/metabolismo , Células HeLa , Junções Comunicantes/metabolismo , DNA/genética
12.
BMC Biol ; 22(1): 81, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609978

RESUMO

BACKGROUND: Response to oxidative stress is universal in almost all organisms and the mitochondrial membrane protein, BbOhmm, negatively affects oxidative stress responses and virulence in the insect fungal pathogen, Beauveria bassiana. Nothing further, however, is known concerning how BbOhmm and this phenomenon is regulated. RESULTS: Three oxidative stress response regulating Zn2Cys6 transcription factors (BbOsrR1, 2, and 3) were identified and verified via chromatin immunoprecipitation (ChIP)-qPCR analysis as binding to the BbOhmm promoter region, with BbOsrR2 showing the strongest binding. Targeted gene knockout of BbOsrR1 or BbOsrR3 led to decreased BbOhmm expression and consequently increased tolerances to free radical generating compounds (H2O2 and menadione), whereas the ΔBbOsrR2 strain showed increased BbOhmm expression with concomitant decreased tolerances to these compounds. RNA and ChIP sequencing analysis revealed that BbOsrR1 directly regulated a wide range of antioxidation and transcription-associated genes, negatively affecting the expression of the BbClp1 cyclin and BbOsrR2. BbClp1 was shown to localize to the cell nucleus and negatively mediate oxidative stress responses. BbOsrR2 and BbOsrR3 were shown to feed into the Fus3-MAPK pathway in addition to regulating antioxidation and detoxification genes. Binding motifs for the three transcription factors were found to partially overlap in the promoter region of BbOhmm and other target genes. Whereas BbOsrR1 appeared to function independently, co-immunoprecipitation revealed complex formation between BbClp1, BbOsrR2, and BbOsrR3, with BbClp1 partially regulating BbOsrR2 phosphorylation. CONCLUSIONS: These findings reveal a regulatory network mediated by BbOsrR1 and the formation of a BbClp1-BbOsrR2-BbOsrR3 complex that orchestrates fungal oxidative stress responses.


Assuntos
Ciclinas , Fatores de Transcrição , Fatores de Transcrição/genética , Peróxido de Hidrogênio , Ciclo Celular , Estresse Oxidativo , Antioxidantes
13.
Epigenomics ; : 1-14, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38545853

RESUMO

Background: Environmental factors make an important contribution to suicide. Histone tails are prone to different modifications, leading to changes of chromatin (de)condensation and consequently gene expression. Materials & methods: Level of H3K14ac was studied with chromatin immunoprecipitation followed by high-throughput DNA sequencing. Genes were further validated with RT-qPCR; using hippocampal tissue. Results: We showed lowered H3K14ac levels in individuals who died by suicide. The genes ADORA2A, B4GALT2 and MMP14 showed differential expression in individuals who died by suicide. Identified genetic and protein interactions among genes show interactions with suicide-related genes. Conclusion: Further investigations of histone modifications in association with DNA methylation and miRNA are needed to expand our knowledge of the genes that could significantly contribute to suicide.


[Box: see text].

14.
STAR Protoc ; 5(2): 102960, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38502686

RESUMO

The widespread usage of next-generation sequencing methods for functional genomics studies requires standardized tools for consistent visualization of the associated data. Here, we present seqNdisplayR, an R package for plotting standard sequencing data coverage within a genomic region of interest in a customizable and reproducible manner. We describe steps for installing software, preparing data files, choosing options, and plotting data. This tool is readily available for users with no prior experience with R through the "Shiny app" interface. For complete details on the use and execution of this protocol, please refer to Lykke-Andersen et al.,1 Gockert et al.,2 and Rouviere et al.3.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genômica/métodos , Análise de Sequência de DNA/métodos , Humanos , Biologia Computacional/métodos , Reprodutibilidade dos Testes
16.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542298

RESUMO

Genetic variants in the protein-coding regions of APOL1 are associated with an increased risk and progression of chronic kidney disease (CKD) in African Americans. Hypoxia exacerbates CKD progression by stabilizing HIF-1α, which induces APOL1 transcription in kidney podocytes. However, the contribution of additional mediators to regulating APOL1 expression under hypoxia in podocytes is unknown. Here, we report that a transient accumulation of HIF-1α in hypoxia is sufficient to upregulate APOL1 expression in podocytes through a cGAS/STING/IRF3-independent pathway. Notably, IFI16 ablation impedes hypoxia-driven APOL1 expression despite the nuclear accumulation of HIF-1α. Co-immunoprecipitation assays indicate no direct interaction between IFI16 and HIF-1α. Our studies identify hypoxia response elements (HREs) in the APOL1 gene enhancer/promoter region, showing increased HIF-1α binding to HREs located in the APOL1 gene enhancer. Luciferase reporter assays confirm the role of these HREs in transcriptional activation. Chromatin immunoprecipitation (ChIP)-qPCR assays demonstrate that IFI16 is not recruited to HREs, and IFI16 deletion reduces HIF-1α binding to APOL1 HREs. RT-qPCR analysis indicates that IFI16 selectively affects APOL1 expression, with a negligible impact on other hypoxia-responsive genes in podocytes. These findings highlight the unique contribution of IFI16 to hypoxia-driven APOL1 gene expression and suggest alternative IFI16-dependent mechanisms regulating APOL1 gene expression under hypoxic conditions.


Assuntos
Podócitos , Insuficiência Renal Crônica , Humanos , Apolipoproteína L1/genética , Apolipoproteína L1/metabolismo , Hipóxia Celular/genética , Imunoprecipitação da Cromatina , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Podócitos/metabolismo , Insuficiência Renal Crônica/metabolismo
17.
Cell Rep Methods ; 4(3): 100738, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38508188

RESUMO

Spatially resolved epigenomic profiling is critical for understanding biology in the mammalian brain. Single-cell spatial epigenomic assays were developed recently for this purpose, but they remain costly and labor intensive for examining brain tissues across substantial dimensions and surveying a collection of brain samples. Here, we demonstrate an approach, epigenomic tomography, that maps spatial epigenomes of mouse brain at the scale of centimeters. We individually profiled neuronal and glial fractions of mouse neocortex slices with 0.5 mm thickness. Tri-methylation of histone 3 at lysine 27 (H3K27me3) or acetylation of histone 3 at lysine 27 (H3K27ac) features across these slices were grouped into clusters based on their spatial variation patterns to form epigenomic brain maps. As a proof of principle, our approach reveals striking dynamics in the frontal cortex due to kainic-acid-induced seizure, linked with transmembrane ion transporters, exocytosis of synaptic vesicles, and secretion of neurotransmitters. Epigenomic tomography provides a powerful and cost-effective tool for characterizing brain disorders based on the spatial epigenome.


Assuntos
Cromatina , Neocórtex , Camundongos , Animais , Histonas/genética , Epigenômica/métodos , Lisina , Neocórtex/metabolismo , Mamíferos/metabolismo
18.
Epigenetics Chromatin ; 17(1): 3, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336688

RESUMO

BACKGROUND: Bivalent chromatin is an exemplar of epigenetic plasticity. This co-occurrence of active-associated H3K4me3 and inactive-associated H3K27me3 histone modifications on opposite tails of the same nucleosome occurs predominantly at promoters that are poised for future transcriptional upregulation or terminal silencing. We know little of the dynamics, resolution, and regulation of this chromatin state outside of embryonic stem cells where it was first described. This is partly due to the technical challenges distinguishing bone-fide bivalent chromatin, where both marks are on the same nucleosome, from allelic or sample heterogeneity where there is a mix of H3K4me3-only and H3K27me3-only mononucleosomes. RESULTS: Here, we present a robust and sensitive method to accurately map bivalent chromatin genome-wide, along with controls, from as little as 2 million cells. We optimized and refined the sequential ChIP protocol which uses two sequential overnight immunoprecipitation reactions to robustly purify nucleosomes that are truly bivalent and contain both H3K4me3 and H3K27me3 modifications. Our method generates high quality genome-wide maps with strong peak enrichment and low background, which can be analyzed using standard bioinformatic packages. Using this method, we detect 8,789 bivalent regions in mouse embryonic stem cells corresponding to 3,918 predominantly CpG rich and developmentally regulated gene promoters. Furthermore, profiling Dppa2/4 knockout mouse embryonic stem cells, which lose both H3K4me3 and H3K27me3 at approximately 10% of bivalent promoters, demonstrated the ability of our method to capture bivalent chromatin dynamics. CONCLUSIONS: Our optimized sequential reChIP method enables high-resolution genome-wide assessment of bivalent chromatin together with all required controls in as little as 2 million cells. We share a detailed protocol and guidelines that will enable bivalent chromatin landscapes to be generated in a range of cellular contexts, greatly enhancing our understanding of bivalent chromatin and epigenetic plasticity beyond embryonic stem cells.


Assuntos
Cromatina , Histonas , Animais , Camundongos , Cromatina/genética , Histonas/genética , Nucleossomos , Genoma , Imunoprecipitação da Cromatina , Fatores de Transcrição/genética
19.
Methods Mol Biol ; 2769: 167-187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315397

RESUMO

In recent years, important efforts have been made to understand how the expression of a specific gene repertoire correlates with chromatin accessibility, histone mark deposition, as well as with chromatin looping establishing connectivity with regulatory regions. The emergence of new techniques for genome-wide analyses and their progressive optimization to work on low amounts of material allows the scientific community to obtain an integrated view of transcriptional landscapes in physiology and disease. Here, we describe our own experience aiming at correlating the TCF-4/ß-catenin cistrome during liver tumorigenesis with chromatin remodeling, histone mark modifications, and long-distance DNA looping.


Assuntos
Cromatina , Neoplasias Hepáticas , Animais , Camundongos , Cromatina/genética , Estudo de Associação Genômica Ampla , Cromossomos , DNA , Neoplasias Hepáticas/genética
20.
STAR Protoc ; 5(1): 102866, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38329880

RESUMO

Cleavage under targets & release using nuclease (CUT&RUN) is a technique for identifying genomic sites where proteins or histone modifications are present in chromatin in permeabilized cells. Here, we present a fluorescence-based protocol to quantitatively titrate CUT&RUN buffer components, for efficient cell permeabilization and retention of target epitopes on chromatin. We describe steps for capturing cells on concanavalin A beads and using a fluorescently labeled secondary antibody to titrate concentrations of digitonin and NaCl in CUT&RUN buffers. We then detail procedures for fluorescence imaging to identify optimal conditions. For complete details on the use and execution of this protocol, please refer to Lerner et al.1.


Assuntos
Anticorpos , Cromatina , Endonucleases , Epitopos , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...