Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.138
Filtrar
1.
Macromol Rapid Commun ; : e2400149, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38973657

RESUMO

A combination of atomistic molecular dynamics (aMD) simulations and circular dichroism (CD) analysis is used to explore supramolecular structures of amphiphilic ABA-type triblock polymer peptide conjugates (PPC). Using the example of a recently introduced PPC with pH- and temperature responsive self-assembling behavior [Otter et al., Macromolecular Rapid Communications 2018, 39, 1800459], this study shows how molecular dynamics simulations of simplified fragment molecules can add crucial information to CD data, which helps to correctly identify the self-assembled structures and monitor the folding/unfolding pathways of the molecules. The findings offer insights into the nature of structural transitions induced by external stimuli, thus contributing to the understanding of the connection of microscopic structures with macroscopic properties.

2.
Phytochemistry ; 226: 114224, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032794

RESUMO

The phytochemical investigation of extracts from Dalea nana roots and aerial parts led to the isolation of thirteen phenolic compounds. Three previously undescribed isoflavans, named verdeans A-C (1, 3, and 7), were characterized. Two additional isoflavans (2 and 5) were previously undescribed enantiomers of known compounds. A previously undescribed isoflavone (verdean D, 10) was found, and the known specialized metabolites, isoflavans 4, 6, 8, and 9, isoflavone 11, flavone 12, and a 2-arylbenzofuran 13, were also isolated. All but one (7) of the isoflavans were prenylated. The structures of the previously undescribed compounds were deduced by NMR spectroscopy, supported by HRESI mass spectrometry. The absolute configurations of 1-3, 5, and 7-9 were determined by ECD. Compounds 1, 3, 4, 6, and 8 exhibited in vitro antimicrobial activities, causing complete growth inhibition (MIC) at concentrations between 6.7 and 37.0 µM against Cryptococcus neoformans and between 8.9 and 25.0 µM against methicillin resistant Staphylococcus aureus (MRSA). The most broadly active previously undescribed compound was verdean A (1), with MIC values of 6.7 and 12.9 µM toward C. neoformans and MRSA, respectively, and an MIC of 10.0 µM against the often-intractable C. albicans.

3.
Sci Rep ; 14(1): 16812, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039079

RESUMO

Understanding the impact of the relativistic motion of a chiral molecule on its optical response is a prime challenge for fundamental science, but it also has a direct practical relevance in our search for extraterrestrial life. To contribute to these significant developments, we describe a multi-scale computational framework that combines quantum chemistry calculations and full-wave optical simulations to predict the chiral optical response from molecules moving at relativistic speeds. Specifically, the effect of a relativistic motion on the transmission circular dichroism (TCD) of three life-essential biomolecules, namely, B-DNA, chlorophyll a, and chlorophyll b, is investigated. Inspired by previous experiments to detect interstellar chiral molecules, we assume that the molecules move between a stationary observer and a light source, and we study the rotationally averaged TCD as a function of the speed of the molecule.We find that the TCD spectrum that contains the signatures of the molecules shifts with increasing speed to shorter wavelengths, with the effects already being visible for moderate velocities.

4.
Nano Lett ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041646

RESUMO

Chiral nanostructures allow engineering of chiroptical responses; however, their design usually relies on empirical approaches and extensive numerical simulations. It remains unclear if a general strategy exists to enhance and maximize the intrinsic chirality of subwavelength photonic structures. Here, we suggest a microscopic theory and uncover the origin of strong chiral responses of resonant nanostructures. We reveal that the reactive helicity density is critically important for achieving maximum chirality at resonances. We demonstrate our general concept on the examples of planar photonic crystal slabs and metasurfaces, where out-of-plane mirror symmetry is broken by a bilayer design. Our findings provide a general recipe for designing photonic structures with maximum chirality, paving the way toward many applications, including chiral sensing, chiral emitters and detectors, and chiral quantum optics.

5.
Chem ; 10(7): 2074-2088, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39006239

RESUMO

Circular dichroism (CD) based enantiomeric excess (ee) determination assays are optical alternatives to chromatographic ee determination in high-throughput screening (HTS) applications. However, the implementation of these assays requires calibration experiments using enantioenriched materials. We present a data-driven approach that circumvents the need for chiral resolution and calibration experiments for an octahedral Fe(II) complex (1) used for the ee determination of α-chiral primary amines. By computationally parameterizing the imine ligands formed in the assay conditions, a model of the circular dichroism (CD) response of the Fe(II) assembly was developed. Using this model, calibration curves were generated for four analytes and compared to experimentally generated curves. In a single-blind ee determination study, the ee values of unknown samples were determined within 9% mean absolute error, which rivals the error using experimentally generated calibration curves.

6.
Protein J ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014260

RESUMO

Protein conformation is affected by interaction of several small molecules resulting either stabilization or disruption depending on the nature of the molecules. In our earlier communication, Hg2+ was known to disrupt the native structure of α-Cgn A leading to aggregation (Ansari, N.K., Rais, A. & Naeem, A. Methotrexate for Drug Repurposing as an Anti-Aggregatory Agent to Mercuric Treated α-Chymotrypsinogen-A. Protein J (2024). https://doi.org/10.1007/s10930-024-10187-z ). Accumulation of ß-rich aggregates in the living system is found to be linked with copious number of disorders. Here, we have investigated the effect of varying concentration of doxorubicin (DOX) i.e. 0-100 µM on the preformed aggregates of α-Cgn A upon incubation with 120 µM Hg2+. The decrease in the intrinsic fluorescence and enzyme activity with respect to increase in the Hg2+ concentration substantiate the formation of aggregates. The DOX showed the dose dependent decrease in the ThT fluorescence, turbidity and RLS measurements endorsing the dissolution of aggregates which were consistent with red shift in ANS, confirming the breakdown of aggregates. The α-Cgn A has 30% α-helical content which decreases to 3% in presence of Hg2+. DOX increased the α-helicity to 28% confirming its anti-aggregatory potential. The SEM validates the formation of aggregates with Hg2+ and their dissolution upon incubation with the DOX. Hemolysis assay checked the cytotoxicity of α-Cgn A aggregates. Docking revealed that the DOX interacted Lys203, Cys201, Cys136, Ser159, Leu10, Trp207, Val137 and Thr134 of α-Cgn A through hydrophobic interactions and Gly133, Thr135 and Lys202 forms hydrogen bonds.

7.
Chem Pharm Bull (Tokyo) ; 72(7): 658-663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987173

RESUMO

In recent years, there has been a growing focus on the development of medium-sized drugs based on peptides or nucleic acids owing to their potential therapeutic benefits. As some of these medium-sized drugs exert their therapeutic effects by adopting specific secondary structures, evaluating their conformational states is crucial to ensure the efficacy, quality, and safety of the drug products. It is important to assess the structural integrity of biomolecular therapeutics to guarantee their intended pharmacological activity and maintain the required standards for drug development and manufacturing. One widely utilized technique for quality evaluation is secondary structural analysis using circular dichroism (CD) spectroscopy. Given the higher production and quality control costs associated with medium-sized drugs compared with small-molecule drugs, developing analytical techniques that enable CD analysis with reduced sample volumes is highly desirable. Herein, we focused on a microsampling disk-type cell as a potential solution for reducing the required sample volume. We investigated whether CD spectral analysis using a microsampling disk could provide equivalent spectra compared with the standard cell (sample volume: approx. 300 µL). Our findings demonstrated that the microsampling disk (sample volume: 2-10 µL) could be successfully applied to CD spectral analysis of peptide and nucleic acid drugs, paving the way for more efficient and cost-effective quality evaluation processes.


Assuntos
Dicroísmo Circular , Ácidos Nucleicos , Peptídeos , Peptídeos/química , Peptídeos/análise , Ácidos Nucleicos/análise , Ácidos Nucleicos/química
8.
Phytochemistry ; 226: 114217, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972442

RESUMO

Anemone vitifolia is a small herb found in Asia that is used to treat a range of diseases in Chinese traditional medicine. GNPS-based molecular networking of an Anemone vitifolia specimen revealed the presence of a network containing numerous ions indicating the presence of lignans, several of which suggested that there might be previously undescribed compounds in the extract. Fractionation of the organic extract yielded five undescribed lignans, the vitifolignans, together with one known. The structures were identified based on extensive spectroscopic data analysis (NMR, HR-ESI-MS, and UV), coupling constant calculation and comparison with reported data. Their absolute configurations were determined by comparison of experimental ECD spectra with calculated spectra. Compounds 4/5 showed weak inhibition of LPS-induced NO production in mouse mononuclear macrophages.

9.
Protein Sci ; 33(8): e5106, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39012010

RESUMO

Miniproteins constitute an excellent basis for the development of structurally demanding functional molecules. The engrailed homeodomain, a three-helix-containing miniprotein, was applied as a scaffold for constructing programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) interaction inhibitors. PD-L1 binders were initially designed using the computer-aided approach and subsequently optimized iteratively. The conformational stability was assessed for each obtained miniprotein using circular dichroism spectroscopy, indicating that numerous mutations could be introduced. The formation of a sizable hydrophobic surface at the inhibitor that fits the molecular target imposed the necessity for the incorporation of additional charged amino acid residues to retain its appropriate solubility. Finally, the miniprotein effectively binding to PD-L1 (KD = 51.4 nM) that inhibits PD-1/PD-L1 interaction in cell-based studies with EC50 = 3.9 µM, was discovered.


Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Engenharia de Proteínas , Receptor de Morte Celular Programada 1/química , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Antígeno B7-H1/química , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Humanos , Ligação Proteica , Modelos Moleculares , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética
10.
ACS Nano ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058355

RESUMO

Skyrmions in two-dimensional (2D) magnetic materials are considered as ideal candidates for information carriers in next-generation spintronic devices. However, conventional methods for elucidating the physical properties of skyrmions have limited the development of skyrmions in diverse 2D magnetic material systems due to their requirements for electrical conductivity. To overcome this limitation, we propose to utilize an optical method (magneto-optical Kerr technique) to detect the skyrmions in 2D magnetic materials. Herein, the graphene/Fe3GeTe2/graphene vertical van der Waals (vdW) heterostructure devices are fabricated to generate stabilized skyrmions by applying out-of-plane current. In combination with magnetic circular dichroism measurements, we observe topological-reflective magnetic circular dichroism (T-RMCD) effects in Fe3GeTe2 flakes and attribute the peak-shaped component in T-RMCD to the annihilation of skyrmion magnetic domains. Notably, the T-RMCD signal can maintain up to a temperature as high as the Curie temperature of Fe3GeTe2 flakes (∼200 K). Our work provides a universal, contactless, and nondestructive approach for studying the physical properties of skyrmions in 2D vdW magnetic materials while adding another degree of freedom to the modulation of skyrmions.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124684, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38981290

RESUMO

Human telomeres (HTs) can form DNA G-quadruplex (G4), an attractive target for anticancer and antiviral drugs. HT-G4s exhibit inherent structural polymorphism, posing challenges for understanding their specific recognition by ligands. Here, we aim to explore the impact of different topologies within a small segment of the HT (Tel22) on its interaction with BRACO19, a rationally designed G4 ligand with high quadruplex affinity, already employed in in-vivo treatments. Our multi-technique approach is based on the combined use of a set of contactless spectroscopic tools. Circular dichroism and UV resonance Raman spectroscopy probe ligand-induced conformational changes in the G4 sequence, while UV-visible absorption, coupled with steady-state fluorescence spectroscopy, provides further insights into the electronic features of the complex, exploiting the photoresponsive properties of BRACO19. Overall, we find that modifying the topology of the unbound Tel22 through cations (K+ or Na+), serves as a critical determinant for ligand interactions and binding modes, thus influencing the HT-G4's assembly capabilities. Furthermore, we show how fluorescence serves as a valuable probe for recognizing cation-driven multimeric structures, which may be present in living organisms, giving rise to pathological forms.

12.
Protein J ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980535

RESUMO

In the realm of parasitology, autophagy has emerged as a critical focal point, particularly in combating Leishmaniasis. Central to this endeavour is the recognition of the protein ATG8 as pivotal for the survival and infectivity of the parasitic organism Leishmania major, thereby making it a potential target for therapeutic intervention. Consequently, there is a pressing need to delve into the structural characteristics of ATG8 to facilitate the design of effective drugs. In this study, our efforts centered on the purification of ATG8 from Leishmania major, which enabled novel insights into its structural features through meticulous spectroscopic analysis. We aimed to comprehensively assess the stability and behaviour of ATG8 in the presence of various denaturants, including urea, guanidinium chloride, and SDS-based chemicals. Methodically, our approach included secondary structural analysis utilizing CD spectroscopy, which not only validated but also augmented computationally predicted structures of ATG8 reported in previous investigations. Remarkably, our findings unveiled that the purified ATG8 protein retained its folded conformation, exhibiting the anticipated secondary structure. Moreover, our exploration extended to the influence of lipids on ATG8 stability, yielding intriguing revelations. We uncovered a nuanced perspective suggesting that targeting both the lipid composition of Leishmania major and ATG8 could offer a promising strategy for future therapeutic approaches in combating leishmaniasis. Collectively, our study underscores the importance of understanding the structural intricacies of ATG8 in driving advancements towards the development of targeted therapies against Leishmaniasis, thereby providing a foundation for future investigations in this field.

13.
Photochem Photobiol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961565

RESUMO

Here, we report a novel kind of protein nanoparticles of 11 nm in size, which have a central protein core surrounded by two layers of lipid. One layer of the lipid was covalently attached to the protein, while the other layer has been physically assembled around the protein core. Particle synthesis is highly modular, while both the size and charge of the protein nanoparticles are controlled in a predictable manner. Circular dichroism studies of the conjugate showed that the protein secondary structure is retained, while biophysical characterizations indicated the particle purity, size, and charge. The conjugate had a high thermal stability to steam sterilization conditions at 121°C (17 psi). After labeling the protein core with few different fluorescent dyes, they were strongly fluorescent with the corresponding colors independent of their size, unlike quantum dots. They are readily digested by proteases, and these water-soluble, non-toxic, highly stable, biocompatible, and biodegradable conjugates are suitable for cell imaging and drug delivery applications.

14.
Nano Lett ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976602

RESUMO

Circular dichroism (CD) spectroscopy has been extensively utilized for detecting and distinguishing the chirality of diverse substances and structures. However, CD spectroscopy is inherently weak and conventionally associated with chiral sensing, thus constraining its range of applications. Here, we report a DNA-origami-empowered metasurface sensing platform through the collaborative effect of metasurfaces and DNA origami, enabling achiral/slightly chiral sensing with high sensitivity via the enhanced ΔCD. An anapole metasurface, boasting over 60 times the average optical chirality enhancement, was elaborately designed to synergize with reconfigurable DNA origami. We experimentally demonstrated the detection of achiral/slightly chiral DNA linker strands via the enhanced ΔCD of the proposed platform, whose sensitivity was a 10-fold enhancement compared with the platform without metasurfaces. Our work presents a high-sensitivity platform for achiral/slightly chiral sensing through chiral spectroscopy, expanding the capabilities of chiral spectroscopy and inspiring the integration of multifunctional artificial nanostructures across diverse domains.

15.
Prep Biochem Biotechnol ; : 1-9, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832778

RESUMO

Thermophilic Geobacillus kaustophilus HTA426 genome possesses a monoacylglycerol lipase (MAGL) gene. MAGLs can synthesize emulsifiers for use in the food and pharmaceutical industries from fatty acids and glycerol. They can also be used to analyze monoacylglycerol (MAG) levels in serum and food. The MAGL gene from strain HTA426 was artificially synthesized and heterologously expressed in Escherichia coli BL21(DE3). The recombinant His-tag fused MAGL (GkMAGL) was purified using a Ni2+-affinity column. The purified enzyme showed a temperature optimum at 65 °C and was stable up to 75 °C after 30 min incubation. In addition, the enzyme exhibited a pH optimum of 7.5 and was stable from pH 5.0 to 11.0. The enzyme hydrolyzed monoacylglycerols and showed the highest activity toward 1-monolauroylglycerol. The enzyme was stable in the presence of various organic solvents and detergents. The addition of Triton X-100 significantly increased GkMAGL activity. The thermal stability of the enzyme was higher than that of thermostable MAGL from Geobacillus sp. 12AMOR1 (12AMOR1_MAGL). Circular dichroism spectral analysis showed that the conformational stability of the GkMAGL was higher than that of 12AMOR1_MAGL at higher temperatures. These results indicate that the GkMAGL has useful features that can be used for various biotechnological applications.

16.
Nat Prod Res ; : 1-6, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853409

RESUMO

Activation of silencing gene clusters is an important way to discover structurally novel compounds. In this study, three undescribed compounds were obtained from an engineered strain of Streptomyces sp. S35-LAL1. They include a polysubstituted cyclopentane with an unprecedented 10-carbon skeleton (1) and two glycerol esters (2 and 3). The structures of compounds 1-3 were elucidated through analysis of their spectroscopic data including 1D, 2D NMR, optical rotation, and electronic circular dichroism (ECD).

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124381, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838602

RESUMO

Adenosine is one of the building blocks of nucleic acids and other biologically important molecules. Spectroscopic methods have been among the most utilized techniques to study adenosine and its derivatives. However, most of them deal with adenosine in solution. Here, we present the first vibrational circular dichroism (VCD) spectroscopic study of adenosine crystals in solid state. Highly regular arrangement of adenosine molecules in a crystal resulted in a strongly enhanced supramolecular VCD signal originating from long-range coupling of vibrations. The data suggested that adenosine crystals, in contrast to guanosine ones, do not imbibe atmospheric water. Relatively large dimensions of the adenosine crystals resulted in scattering and substantial orientational artifacts affecting the spectra. Several strategies for tackling the artifacts have been proposed and tested. Atypical features in IR absorption spectra of crystalline adenosine (e.g., extremely low absorption in mid-IR spectral range) were observed and attributed to refractive properties of adenosine crystals.

18.
NanoImpact ; 35: 100515, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857755

RESUMO

This study explored the response of superoxide dismutase (SOD) under superparamagnetic iron oxide nanoparticles (SPIONs)-induced oxidative stress using combined cellular and molecular methods. Results found that SPIONs induced the inhibition of catalase activity, the U-inverted change of SOD activity and the accumulation of reactive oxygen species (ROS), leading to oxidative damage and cytotoxicity. The change of intracellular SOD activity was resulted from the increase of molecular activity induced by directly interacting with SPIONs and ROS-inhibition of activity. The increase of molecular activity could be attributed to the structural and conformational changes of SOD, which were caused by the direct interaction of SOD with SPIONs. The SOD-SPIONs interaction and its interacting mechanism were explored by multi-spectroscopy, isothermal titration calorimetry and zeta potential assays. SOD binds to SPIONs majorly via hydrophobic forces with the involvement of electrostatic forces. SPIONs approximately adsorb 11 units of SOD molecule with the binding affinity of 2.99 × 106 M-1. The binding sites on SOD were located around Tyr residues, whose hydrophilicity increased upon interacting with SPIONs. The binding to SPIONs loosened the peptide chains, changed the secondary structure and reduced the aggregation state of SOD.

19.
Molecules ; 29(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38930995

RESUMO

Since the discovery of metal-catalyzed azide-alkyne cycloadditions, 1,2,3-triazoles have been widely used as linkers for various residues. 1,2,3-Triazole is an aromatic five-membered cyclic compound consisting of three nitrogen and two carbon atoms with large dipoles that absorb UV light. In the past decade, we have been working on the synthesis of dense triazole polymers possessing many 1,2,3-triazole residues linked through a carbon atom in their backbone as a new type of functional polymer. Recently, we reported that stereoregular dense triazole uniform oligomers exhibit a circular dichroism signal based on the chiral arrangement of two neighboring 1,2,3-triazole residues. In this study, to investigate the chiral conformation of two neighboring 1,2,3-triazole residues in stereoregular dense triazole uniform oligomers, density functional theory (DFT) calculations were performed using 1,2,3-triazole diads with different substitution positions and conformations as model compounds and compared with our previous results.

20.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928181

RESUMO

A simplified molecular-dynamics-based electronic circular dichroism (ECD) approach was tested on three condensed derivatives with limited conformational flexibility and an isochroman-2H-chromene hybrid, the ECD spectra of which could not be precisely reproduced by the conventional ECD calculation protocol. Application of explicit solvent molecules at the molecular mechanics (MD) level in the dynamics simulations and subsequent TDDFT-ECD calculation for the unoptimized MD structures was able to improve the agreements between experimental and computed spectra. Since enhancements were achieved even for molecules with limited conformational flexibility, deformations caused by the solvent molecules and multitudes of conformers produced with unoptimized geometries seem to be key factors for better agreement. The MD approach could confirm that aggregation of the phenanthrene natural product luzulin A had a significant contribution to a specific wavelength range of the experimental ECD. The MD approach has proved that dimer formation occurred in solution and this was responsible for the anomalous ECD spectrum. The scope and limitations of the method have also been discussed.


Assuntos
Dicroísmo Circular , Simulação de Dinâmica Molecular , Dicroísmo Circular/métodos , Fenantrenos/química , Conformação Molecular , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...