Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2312093121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466843

RESUMO

The observed rate of global warming since the 1970s has been proposed as a strong constraint on equilibrium climate sensitivity (ECS) and transient climate response (TCR)-key metrics of the global climate response to greenhouse-gas forcing. Using CMIP5/6 models, we show that the inter-model relationship between warming and these climate sensitivity metrics (the basis for the constraint) arises from a similarity in transient and equilibrium warming patterns within the models, producing an effective climate sensitivity (EffCS) governing recent warming that is comparable to the value of ECS governing long-term warming under CO[Formula: see text] forcing. However, CMIP5/6 historical simulations do not reproduce observed warming patterns. When driven by observed patterns, even high ECS models produce low EffCS values consistent with the observed global warming rate. The inability of CMIP5/6 models to reproduce observed warming patterns thus results in a bias in the modeled relationship between recent global warming and climate sensitivity. Correcting for this bias means that observed warming is consistent with wide ranges of ECS and TCR extending to higher values than previously recognized. These findings are corroborated by energy balance model simulations and coupled model (CESM1-CAM5) simulations that better replicate observed patterns via tropospheric wind nudging or Antarctic meltwater fluxes. Because CMIP5/6 models fail to simulate observed warming patterns, proposed warming-based constraints on ECS, TCR, and projected global warming are biased low. The results reinforce recent findings that the unique pattern of observed warming has slowed global-mean warming over recent decades and that how the pattern will evolve in the future represents a major source of uncertainty in climate projections.

2.
Proc Natl Acad Sci U S A ; 120(25): e2217202120, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37310995

RESUMO

Evaporation adds moisture to the atmosphere, while condensation removes it. Condensation also adds thermal energy to the atmosphere, which must be removed from the atmosphere by radiative cooling. As a result of these two processes, there is a net flow of energy driven by surface evaporation adding energy and radiative cooling removing energy from the atmosphere. Here, we calculate the implied heat transport of this process to find the atmospheric heat transport in balance with the surface evaporation. In modern-day Earth-like climates, evaporation varies strongly between the equator and the poles, while the net radiative cooling in the atmosphere is nearly meridionally uniform, and as a consequence, the heat transport governed by evaporation is similar to the total poleward heat transport of the atmosphere. This analysis is free from cancellations between moist and dry static energy transports, which greatly simplifies the interpretation of atmospheric heat transport and its relationship to the diabatic heating and cooling that governs the atmospheric heat transport. We further demonstrate, using a hierarchy of models, that much of the response of atmospheric heat transport to perturbations, including increasing CO2 concentrations, can be understood from the distribution of evaporation changes. These findings suggest that meridional gradients in surface evaporation govern atmospheric heat transport and its changes.

3.
Environ Sci Pollut Res Int ; 30(20): 58618-58629, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36988801

RESUMO

Climate change and global warming have long been attention and concern all over the world. However, there is always a debate about when and to what degree to take action like reducing carbon dioxide emissions. Recently, researchers found that the public has misconceptions about climate dynamics, which might be a reason for people do not support prompt mitigation of greenhouse gas emissions. The core problem of misconceptions is the stock-flow (SF) problem, which refers to the difficulty of inferring the behavior of a stock variable given information regarding its inflows and outflows. We elaborated on the idea that global thinking is beneficial for comprehending SF problems and proposed that global thinking enhancing display based on highlighting the areas of difference could be a possible way to shift one's thinking process to the right one, which was proved by two studies. Theoretical and practical implications are discussed.


Assuntos
Mudança Climática , Gases de Efeito Estufa , Humanos , Aquecimento Global , Dióxido de Carbono/análise , Efeito Estufa
4.
J Mamm Evol, v. 30, p. 695-712, mai. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5251

RESUMO

The Atlantic Forest harbors a large species richness and high levels of endemism, but the processes that shaped its biodiversity are poorly studied, especially for mammals. Among them are the endemic mice Juliomys, which comprise forest dwellers distributed in southeastern and southern Brazil, northeastern Argentina, and eastern Paraguay. In this study, we investigate the phylogenetic relationships among species and perform phylogeographic analyses to evaluate the population structure and demographic scenarios through mitochondrial gene cytochrome b sequences. We investigate three hypotheses of diversification (forest refuges, montane isolate, and geomorphological events) to understand the evolution of the Juliomys species. Phylogenetic analyses recovered five clades/lineages, four of which are congruent with species currently recognized. The fifth lineage expands the range of the genus 659 km to the north and may represent a new species. The observed demographic and geographic structure of genetic diversity does not match the forest refuge hypothesis as mechanism to explain the diversification in Juliomys. Our results recovered J. rimofrons and J. ximenezi as sister species, supporting predictions of montane isolate hypothesis. We also detected a shallow genetic structure in J. pictipes and J. ossitenuis. Both phylogeographic breaks were congruent with limits of the São Paulo Basin, an area that has undergone Neogene reactivations of tectonic faults. It is suggested that geomorphological events led to a deformed landscape that influenced the dynamics of sedimentary basins and promoted an incipient population structure in J. pictipes and J. ossitenuis. Our findings demonstrate that the divergences whithin Juliomys species occurred during the Quaternary, too recently to have produced strong geographic structure.

5.
J Mamm Evol, in press, mai. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4919

RESUMO

The Atlantic Forest harbors a large species richness and high levels of endemism, but the processes that shaped its biodiversity are poorly studied, especially for mammals. Among them are the endemic mice Juliomys, which comprise forest dwellers distributed in southeastern and southern Brazil, northeastern Argentina, and eastern Paraguay. In this study, we investigate the phylogenetic relationships among species and perform phylogeographic analyses to evaluate the population structure and demographic scenarios through mitochondrial gene cytochrome b sequences. We investigate three hypotheses of diversification (forest refuges, montane isolate, and geomorphological events) to understand the evolution of the Juliomys species. Phylogenetic analyses recovered five clades/lineages, four of which are congruent with species currently recognized. The fifth lineage expands the range of the genus 659 km to the north and may represent a new species. The observed demographic and geographic structure of genetic diversity does not match the forest refuge hypothesis as mechanism to explain the diversification in Juliomys. Our results recovered J. rimofrons and J. ximenezi as sister species, supporting predictions of montane isolate hypothesis. We also detected a shallow genetic structure in J. pictipes and J. ossitenuis. Both phylogeographic breaks were congruent with limits of the São Paulo Basin, an area that has undergone Neogene reactivations of tectonic faults. It is suggested that geomorphological events led to a deformed landscape that influenced the dynamics of sedimentary basins and promoted an incipient population structure in J. pictipes and J. ossitenuis. Our findings demonstrate that the divergences whithin Juliomys species occurred during the Quaternary, too recently to have produced strong geographic structure.

6.
Geophys Res Lett ; 49(16): e2022GL099577, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36249465

RESUMO

Antarctic atmospheric rivers (ARs) are driven by their synoptic environments and lead to profound and varying impacts along the coastlines and over the continent. The definition and detection of ARs over Antarctica accounts for large uncertainty in AR metrics, and consequently, impacts quantification. We find that Antarctic-specific detection tools consistently capture the AR footprint inland over ice sheets, whereas most global detection tools do not. Large-scale synoptic environments and associated ARs, however, are broadly consistent across detection tools. Using data from the Atmospheric River Tracking Method Intercomparison Project and global reanalyses, we quantify the uncertainty in Antarctic AR metrics and evaluate large-scale environments in the context of decadal and interannual modes of variability. The Antarctic western hemisphere has stronger connections to both decadal and interannual modes of variability compared to East Antarctica, and the Indian Ocean Dipole's influence on Antarctic ARs is stronger while in phase with El Nino Southern Oscillation.

7.
Environ Monit Assess ; 194(10): 791, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107274

RESUMO

Land use and climate dynamics have a pronounced impact on water resources, biodiversity, land degradation, and productivity at all scales. Thus, in this study, we present the spatio-temporal dynamics of land use change and climate aiming to provide a scientific evidence about gains and losses in major land use categories and associated drivers and significancy and homogeneity of climate change. To this end, Landsat images and historical climate data have been used to determine the dynamics. In addition, population census data and land use policy have been considered to assess the potential drivers of land use change. The spatio-temporal land use dynamics have been evaluated using transition matrix and dynamics index. Likewise, shifts in the climate data were analyzed using change point analysis and three homogenous climate zones have been identified using principal component analysis. The results show that, from 1989 to 2019, the areal percentage of agricultural land increased by 27.5%, settlement by 0.8%, and barren land 0.4% while the natural vegetation, wetland, water body, and grass land decreased by 24.5%, 1.6%, 0.5%, and 2.1%, respectively. The land use dynamics have been stronger in the first decade of the study period. An abrupt shift of climate has occurred in the 1980s. In the last four decades, rainfall shows a not significant decreasing trend. However, a significant increasing trend has been observed for temperature. Rapid population growth, agricultural expansion policy, and climate variability have been identified as the underlying drivers of land use dynamics.


Assuntos
Monitoramento Ambiental , Lagos , Mudança Climática , Monitoramento Ambiental/métodos , Etiópia , Água
8.
Fundam Res ; 2(3): 396-400, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-38933394

RESUMO

In 2020, China announced the "emission peak, carbon neutrality" policy, that is, China aims to have CO2 emissions peak before 2030 and achieve carbon neutrality before 2060. The scenario of carbon neutrality will be significantly distinguished from the scenario we experienced since the industrial revolution. However, instrumental data are unavailable in the future carbon-neutral scenario. Earth system models and climate dynamics theory are needed to comprehend and project the climate change. In this paper, we illustrate our perspective of the issues related to "emission peak, carbon neutrality", including climate dynamics, climate-carbon feedback, interaction between China and global climate and carbon emissions and solutions, etc. We highlight that climate change has profoundly affected human production and life. The frequent occurrence of extreme weather disasters in recent years, together with the impact of epidemics, make the future "carbon peak & carbon-neutral" scenario more complex. There is whopping uncertainty but also a massive challenge to the scientific community. Thus, carbon neutrality is closely related to domestic production and lives, and there is little time left for planning. We believe that we will make a breakthrough in climate dynamics in the context of carbon neutrality with our joint efforts, which will serve our country's carbon emission policy at different stages.

9.
J Adv Model Earth Syst ; 13(11): e2021MS002505, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34820055

RESUMO

The high computational cost of Global Climate Models (GCMs) is a problem that limits their use in many areas. Recently an inverse climate modeling (InvCM) method, which fixes the global mean sea surface temperature (SST) and evolves the C O 2 mixing ratio to equilibrate climate, has been implemented in a cloud-resolving model. In this article, we apply InvCM to ExoCAM GCM aquaplanet simulations, allowing the SST pattern to evolve while maintaining a fixed global-mean SST. We find that InvCM produces the same climate as normal slab-ocean simulations but converges an order of magnitude faster. We then use InvCM to calculate the equilibrium C O 2 for SSTs ranging from 290 to 340 K at 1 K intervals and reproduce the large increase in climate sensitivity at an SST of about 315 K at much higher temperature resolution. The speedup provided by InvCM could be used to equilibrate GCMs at higher spatial resolution or to perform broader parameter space exploration in order to gain new insight into the climate system. Additionally, InvCM could be used to find unstable and hidden climate states, and to find climate states close to bifurcations such as the runaway greenhouse transition.

10.
Proc Natl Acad Sci U S A ; 117(38): 23408-23417, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900942

RESUMO

The Younger Dryas (YD), arguably the most widely studied millennial-scale extreme climate event, was characterized by diverse hydroclimate shifts globally and severe cooling at high northern latitudes that abruptly punctuated the warming trend from the last glacial to the present interglacial. To date, a precise understanding of its trigger, propagation, and termination remains elusive. Here, we present speleothem oxygen-isotope data that, in concert with other proxy records, allow us to quantify the timing of the YD onset and termination at an unprecedented subcentennial temporal precision across the North Atlantic, Asian Monsoon-Westerlies, and South American Monsoon regions. Our analysis suggests that the onsets of YD in the North Atlantic (12,870 ± 30 B.P.) and the Asian Monsoon-Westerlies region are essentially synchronous within a few decades and lead the onset in Antarctica, implying a north-to-south climate signal propagation via both atmospheric (decadal-time scale) and oceanic (centennial-time scale) processes, similar to the Dansgaard-Oeschger events during the last glacial period. In contrast, the YD termination may have started first in Antarctica at ∼11,900 B.P., or perhaps even earlier in the western tropical Pacific, followed by the North Atlantic between ∼11,700 ± 40 and 11,610 ± 40 B.P. These observations suggest that the initial YD termination might have originated in the Southern Hemisphere and/or the tropical Pacific, indicating a Southern Hemisphere/tropics to North Atlantic-Asian Monsoon-Westerlies directionality of climatic recovery.

11.
Curr Clim Change Rep ; 5(4): 372-389, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31929963

RESUMO

PURPOSE OF REVIEW: Stationary waves are planetary-scale longitudinal variations in the time-averaged atmospheric circulation. Here, we consider the projected response of Northern Hemisphere stationary waves to climate change in winter and summer. We discuss how the response varies across different metrics, identify robust responses, and review proposed mechanisms. RECENT FINDINGS: Climate models project shifts in the prevailing wind patterns, with corresponding impacts on regional precipitation, temperature, and extreme events. Recent work has improved our understanding of the links between stationary waves and regional climate and identified robust stationary wave responses to climate change, which include an increased zonal lengthscale in winter, a poleward shift of the wintertime circulation over the Pacific, a weakening of monsoonal circulations, and an overall weakening of stationary wave circulations, particularly their divergent component and quasi-stationary disturbances. SUMMARY: Numerous factors influence Northern Hemisphere stationary waves, and mechanistic theories exist for only a few aspects of the stationary wave response to climate change. Idealized studies have proven useful for understanding the climate responses of particular atmospheric circulation features and should be a continued focus of future research.

12.
Proc Natl Acad Sci U S A ; 114(31): 8181-8186, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716947

RESUMO

The troposphere is the region of the atmosphere characterized by low static stability, vigorous diabatic mixing, and widespread condensational heating in clouds. Previous research has argued that in the tropics, the upper bound on tropospheric mixing and clouds is constrained by the rapid decrease with height of the saturation water vapor pressure and hence radiative cooling by water vapor in clear-sky regions. Here the authors contend that the same basic physics play a key role in constraining the vertical structure of tropospheric mixing, tropopause temperature, and cloud-top temperature throughout the globe. It is argued that radiative cooling by water vapor plays an important role in governing the depth and amplitude of large-scale dynamics at extratropical latitudes.

13.
Proc Natl Acad Sci U S A ; 114(8): 1822-1826, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28179573

RESUMO

The response of the El Niño/Southern Oscillation (ENSO) to tropical volcanic eruptions has important worldwide implications, but remains poorly constrained. Paleoclimate records suggest an "El Niño-like" warming 1 year following major eruptions [Adams JB, Mann ME, Ammann CM (2003) Nature 426:274-278] and "La Niña-like" cooling within the eruption year [Li J, et al. (2013) Nat Clim Chang 3:822-826]. However, climate models currently cannot capture all these responses. Many eruption characteristics are poorly constrained, which may contribute to uncertainties in model solutions-for example, the season of eruption occurrence is often unknown and assigned arbitrarily. Here we isolate the effect of eruption season using experiments with the Community Earth System Model (CESM), varying the starting month of two large tropical eruptions. The eruption-year atmospheric circulation response is strongly seasonally dependent, with effects on European winter warming, the Intertropical Convergence Zone, and the southeast Asian monsoon. This creates substantial variations in eruption-year hydroclimate patterns, which do sometimes exhibit La Niña-like features as in the proxy record. However, eruption-year equatorial Pacific cooling is not driven by La Niña dynamics, but strictly by transient radiative cooling. In contrast, equatorial warming the following year occurs for all starting months and operates dynamically like El Niño. Proxy reconstructions confirm these results: eruption-year cooling is insignificant, whereas warming in the following year is more robust. This implies that accounting for the event season may be necessary to describe the initial response to volcanic eruptions and that climate models may be more accurately simulating volcanic influences than previously thought.

14.
J Adv Model Earth Syst ; 9(5): 2230-2265, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30574266

RESUMO

Earth System Model (ESM) advances now enable improved representations of spatially and temporally varying anthropogenic climate forcings. One critical forcing is global agriculture, which is now extensive in land-use and intensive in management, owing to 20th century development trends. Agriculture and food systems now contribute nearly 30% of global greenhouse gas emissions and require copious inputs and resources, such as fertilizer, water, and land. Much uncertainty remains in quantifying important agriculture-climate interactions, including surface moisture and energy balances and biogeochemical cycling. Despite these externalities and uncertainties, agriculture is increasingly being leveraged to function as a net sink of anthropogenic carbon, and there is much emphasis on future sustainable intensification. Given its significance as a major environmental and climate forcing, there now exist a variety of approaches to represent agriculture in ESMs. These approaches are reviewed herein, and range from idealized representations of agricultural extent to the development of coupled climate-crop models that capture dynamic feedbacks. We highlight the robust agriculture-climate interactions and responses identified by these modeling efforts, as well as existing uncertainties and model limitations. To this end, coordinated and benchmarking assessments of land-use-climate feedbacks can be leveraged for further improvements in ESM's agricultural representations. We suggest key areas for continued model development, including incorporating irrigation and biogeochemical cycling in particular. Lastly, we pose several critical research questions to guide future work. Our review focuses on ESM representations of climate-surface interactions over managed agricultural lands, rather than on ESMs as an estimation tool for crop yields and productivity.

15.
Proc Natl Acad Sci U S A ; 111(5): 1684-90, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24443553

RESUMO

Despite the importance of uncertainties encountered in climate model simulations, the fundamental mechanisms at the origin of sensitive behavior of long-term model statistics remain unclear. Variability of turbulent flows in the atmosphere and oceans exhibits recurrent large-scale patterns. These patterns, while evolving irregularly in time, manifest characteristic frequencies across a large range of time scales, from intraseasonal through interdecadal. Based on modern spectral theory of chaotic and dissipative dynamical systems, the associated low-frequency variability may be formulated in terms of Ruelle-Pollicott (RP) resonances. RP resonances encode information on the nonlinear dynamics of the system, and an approach for estimating them--as filtered through an observable of the system--is proposed. This approach relies on an appropriate Markov representation of the dynamics associated with a given observable. It is shown that, within this representation, the spectral gap--defined as the distance between the subdominant RP resonance and the unit circle--plays a major role in the roughness of parameter dependences. The model statistics are the most sensitive for the smallest spectral gaps; such small gaps turn out to correspond to regimes where the low-frequency variability is more pronounced, whereas autocorrelations decay more slowly. The present approach is applied to analyze the rough parameter dependence encountered in key statistics of an El-Niño-Southern Oscillation model of intermediate complexity. Theoretical arguments, however, strongly suggest that such links between model sensitivity and the decay of correlation properties are not limited to this particular model and could hold much more generally.


Assuntos
Clima , Modelos Teóricos , El Niño Oscilação Sul , Cadeias de Markov , Dinâmica não Linear , Análise Espectral , Processos Estocásticos
16.
An. acad. bras. ciênc ; 80(3): 433-443, Sept. 2008. ilus, tab
Artigo em Inglês | LILACS | ID: lil-491824

RESUMO

Up to date, little is known about the relationship between historical demography and the current genetic structure of A. Angus As a first effort towards overcoming this lack, microsatellite data scored in six populations and isozyme allele frequencies published for 11 natural stands of this species were analysed in order to assess molecular signatures of populations' demographic history. Signatures of genetic bottlenecks were captured in all analysed populations of southeastern Brazil. Among southern populations, signatures of small effective population size were observed in only three out of 13 populations. Southern populations likely experienced faster recovery of population size after migration onto highlands. Accordingly, current genetic diversity of the southern populations gives evidence of fast population size recovery. In general, demographic history of A. Angusmatches climatic dynamics of southern and southeastern Brazil during the Pleistocene and Holocene. Palynological records and reconstruction of the past climatic dynamics of southeastern and southern Brazil support the hypothesis of different population size recovery dynamics for populations from these regions.


Até o momento, pouco se conhece sobre a relação entre história demográfica e a presente estrutura genética da A. Angus Como uma primeira tentativa em transpor esta deficiência, dados de microssatélites coletados em seis populações e freqüências alélicas de isoenzimas publicadas para 11 populações naturais desta espécie foram analisadas com o objetivo de acessar assinaturas moleculares da história demográfica populacional. Assinaturas de gargalos genéticos foram capturadas em todas as populações analisadas provenientes do Sudeste do Brasil. Entre as populações do Sul, assinaturas de pequeno tamanho populacional efetivo foram observadas em somente três entre 13 populações. Populações do Sul provavelmente apresentaram uma rápida recuperação do tamanho efetivo após a migração para os planaltos. Em acordança, a presente diversidade genética das populações do Sul apresenta evidências de uma rápida recuperação do tamanho populacional. Em geral, a história demográfica da A. Angus concorda com as dinâmicas climáticas do Sul e Sudeste do Brasil durante o Pleistoceno e o Holoceno. Estudos palinológicos e reconstrução de dinâmicas climáticas do Sul e Sudeste do Brasil suportam a hipótese de diferentes dinâmicas de recuperação do tamanho populacional em populações destas regiões.


Assuntos
Traqueófitas/genética , Frequência do Gene , Variação Genética , Repetições de Microssatélites/genética , Brasil , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...