RESUMO
Soil bacterial communities play a critical role in shaping soil stability and formation, exhibiting a dynamic interaction with local climate and soil depth. We employed an innovative DNA separation method to characterize microbial assemblages in low-biomass environments such as deserts and distinguish between intracellular DNA (iDNA) and extracellular DNA (eDNA) in soils. This approach, combined with analyses of physicochemical properties and co-occurrence networks, investigated soil bacterial communities across four sites representing diverse climatic gradients (i.e., arid, semi-arid, Mediterranean, and humid) along the Chilean Coastal Cordillera. The separation method yielded a distinctive unimodal pattern in the iDNA pool alpha diversity, increasing from arid to semi-arid climates and decreasing in humid environments, highlighting the rapid feedback of the iDNA community to increasing soil moisture. In the arid region, harsh surface conditions restrict bacterial growth, leading to peak iDNA abundance and diversity occurring in slightly deeper layers than the other sites. Our findings confirmed the association between specialist bacteria and ecosystem-functional traits. We observed transitions from Halomonas and Delftia, resistant to extreme arid environments, to Class AD3 and the genus Bradyrhizobium, associated with plants and organic matter in humid environments. The distance-based redundancy analysis (dbRDA) analysis revealed that soil pH and moisture were the key parameters that influenced bacterial community variation. The eDNA community correlated slightly better with the environment than the iDNA community. Soil depth was found to influence the iDNA community significantly but not the eDNA community, which might be related to depth-related metabolic activity. Our investigation into iDNA communities uncovered deterministic community assembly and distinct co-occurrence modules correlated with unique bacterial taxa, thereby showing connections with sites and key environmental factors. The study additionally revealed the effects of climatic gradients and soil depth on living and dead bacterial communities, emphasizing the need to distinguish between iDNA and eDNA pools.
Assuntos
Bactérias , Clima , Microbiota , Microbiologia do Solo , Solo , Chile , Bactérias/classificação , Solo/química , Ecossistema , Monitoramento Ambiental , BiodiversidadeRESUMO
Soil bacteria play a fundamental role in pedogenesis. However, knowledge about both the impact of climate and slope aspects on microbial communities and the consequences of these items in pedogenesis is lacking. Therefore, soil-bacterial communities from four sites and two different aspects along the climate gradient of the Chilean Coastal Cordillera were investigated. Using a combination of microbiological and physicochemical methods, soils that developed in arid, semi-arid, mediterranean, and humid climates were analyzed. Proteobacteria, Acidobacteria, Chloroflexi, Verrucomicrobia, and Planctomycetes were found to increase in abundance from arid to humid climates, while Actinobacteria and Gemmatimonadetes decreased along the transect. Bacterial-community structure varied with climate and aspect and was influenced by pH, bulk density, plant-available phosphorus, clay, and total organic-matter content. Higher bacterial specialization was found in arid and humid climates and on the south-facing slope and was likely promoted by stable microclimatic conditions. The presence of specialists was associated with ecosystem-functional traits, which shifted from pioneers that accumulated organic matter in arid climates to organic decomposers in humid climates. These findings provide new perspectives on how climate and slope aspects influence the composition and functional capabilities of bacteria, with most of these capabilities being involved in pedogenetic processes.
RESUMO
Biocrusts are associations of various prokaryotic and eukaryotic microorganisms in the top millimeters of soil, which can be found in every climate zone on Earth. They stabilize soils and introduce carbon and nitrogen into this compartment. The worldwide occurrence of biocrusts was proven by numerous studies in Europe, Africa, Asia and North America, leaving South America understudied. Using an integrative approach, which combines morphological and molecular characters (small subunit rRNA and ITS region), we examined the diversity of key biocrust photosynthetic organisms at four sites along the latitudinal climate gradient in Chile. The most northern study site was located in the Atacama Desert (arid climate), followed by open shrubland (semiarid climate), a dry forest region (Mediterranean climate) and a mixed broad leaved-coniferous forest (temperate climate) in the south. The lowest species richness was recorded in the desert (18 species), whereas the highest species richness was observed in the Mediterranean zone with (40 species). Desert biocrusts were composed exclusively of single-celled Chlorophyta algae, followed by cyanobacteria. Chlorophyta, Streptophyta and cyanobacteria dominated semiarid biocrusts, whereas Mediterranean and temperate Chilean biocrusts were composed mostly of Chlorophyta, Streptophyta and Ochrophyta. Our investigation of Chilean biocrust suggests high biodiversity of South American biocrust phototrophs.
RESUMO
Crassulacean acid metabolism (CAM) is a photosynthetic pathway found in many plant species from arid and semiarid environments. Few studies aiming to characterise plant species as CAM or C3 account for inter-population differences in photosynthetic pathway, often relying on samples taken from herbarium material and/or a single plant or population. This may be especially problematic for species growing under contrasting climate conditions, as is the case for species with a wide geographic range. We used Puya chilensis, a species previously reported as CAM and C3, to study among-population variation in expression of the CAM pathway within its distribution range, which spans a significant climate gradient. We carried out a wide sampling scheme, including five populations and a combination of analytical methods (quantification of nocturnal acidification and stable isotope measurements). The study populations of P. chilensis encompass the entire latitudinal distribution range, from semi-arid to temperate oceanic climates. Our results indicate that CAM decreased with latitude. However, even in the southern (wetter) populations, where δ13C values were indicative of C3 metabolism, we found some nocturnal acidification. We stress the value of using two methods along with the use of samples from different populations, as this allows more reliable conclusions on the photosynthetic pathway for 'probable' CAM species that face varying climate conditions within their distribution ranges.