Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.070
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39231365

RESUMO

This paper presents a comprehensive study of the structural optimization of polyimide-film (PI-film) capacitive humidity sensors, with a focus on enhancing their performance for application in new energy vehicles (NEVs). Given the critical role of humidity sensors in ensuring the safety and efficiency of vehicle operations─particularly in monitoring lithium-ion battery systems─the study explores the intricate relationship between the interdigitated electrode (IDE) dimensions and the PI-film thickness to optimize sensor responsiveness and reliability. Through a combination of COMSOL Multiphysics simulations (a powerful finite element analysis, solver, and simulation software) and experimental validation, the research identifies the optimal geometrical combination that maximizes the sensitivity and minimizes the response time. The fabrication process is streamlined for batch preparation, leveraging the spin-coating process to achieve consistent and reliable PI films. Extensive characterizations confirm the superior morphology, chemical composition, and humidity-sensing capabilities of the developed sensors. Practical performance tests further validate their exceptional repeatability, long-term stability, low hysteresis, and excellent selectivity, underpinning their suitability for automotive applications. The final explanation of the sensing mechanism provides a solid theoretical foundation for observed performance improvements. This work not only advances the field of humidity sensing for vehicle safety but also offers a robust theoretical and practical framework for the batch preparation of PI-film humidity sensors, promising enhanced safety and reliability for NEVs.

2.
Colloids Surf B Biointerfaces ; 245: 114204, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39236361

RESUMO

The fast biodegradation and poor biocompatibility of Mg alloys in physiological environments are still the main problems restricting their application in cardiovascular stents. In this study, the hydrogel coatings (SBMA-AAM) with different proportions of methacryloyl ethyl sulfobetaine (SBMA) and acrylamide (AAM) were built on the surface of AZ31B magnesium alloy through ultraviolet (UV) polymerization. The corrosion degradation behavior, hemocompatibility, and endothelial cell (EC) growth performance of the samples were studied in detail. The findings revealed that the uniform and dense SBMA-AAM coatings could significantly enhance the corrosion resistance. In addition, the hydrogel coatings showed excellent hydrophilicity, which increased the albumin adsorption while inhibiting the fibrinogen adsorption, and thus reduced the platelet adhesion and activation and hemolysis rate, accordingly significantly enhancing their anticoagulant performance. Furthermore, SBMA-AAM hydrogel coating promoted the EC adhesion and proliferation and the vascular endothelial growth factor (VEGF) and nitric oxide (NO) secretion of ECs, which is conducive to promoting endothelialization. When the concentration ratio of SBMA and AAM was 1: 2, the modified magnesium alloy showed the best corrosion resistance and biocompatibility. Therefore, the SBMA-AAM hydrogel coating could effectively regulate the corrosion degradation performance and biocompatibility of Mg alloys, laying a foundation for the application of Mg alloys in cardiovascular stents.

3.
Tissue Cell ; 91: 102551, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39255743

RESUMO

Widespread adoption for substitutes of artificial bone grafts based on proper bioceramics has been generated in recent years. Among them, calcium-silicate-based bioceramics, which possess osteoconductive properties and can directly attach to biological organs, have attracted substantial attention for broad ranges of applications in bone tissue engineering. Approaches exist for a novel strategy to promote the drawbacks of bioceramics such as the incorporation of Zn2+, Mg2+, and Zr4+ ions into calcium-silicate networks, and the improvement of their physical, mechanical, and biological properties. Recently, hardystonite (Ca2ZnSi2O7) bioceramics, as one of the most proper calcium-silicate-based bioceramics, has presented excellent biocompatibility, bioactivity, and interaction. Due to its physical, mechanical, and biological behaviors and ability to be shaped utilizing a variety of fabrication techniques, hardystonite possesses the potential to be applied in biomedical and tissue engineering, mainly bone tissue engineering. A notable potential exists for the newly developed bioceramics to help therapies supply clinical outputs. The promising review paper has been presented by considering major aims to summarize and discuss the most applicable studies carried out for its physical, mechanical, and biological behaviors.

4.
Int J Biol Macromol ; : 135498, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39255887

RESUMO

Organosolv lignin extracted from vine pruning residues was added to hydroxypropyl methylcellulose (HPMC)-based films using three strategies: i) lignin incorporated into the film (lignin-based film), ii) lignin nanoparticles (LNPs) incorporated into the film (LNPs-based film), and iii) lignin coated on HPMC films' surface (lignin-coated film). The films obtained by solvent casting were evaluated in terms of morphology, water barrier and mechanical properties, and antioxidant capacity. Results showed that LNPs incorporation did not affect the films´ water vapour permeability (WVP). Nonetheless, the lignin-based and lignin-coated films improved the water barrier properties of HPMC-based films, achieving a 31.5 and 36 % reduction of WVP, respectively. The morphological evaluation, performed by scanning electron microscopy, revealed films' morphology changes with the lignin incorporation, which was more evident in the lignin-based films. Fourier transform infrared spectroscopy (FTIR) showed minor changes in the film's structure using the different lignin incorporation methods. The mechanical properties were improved, including a significant increase in the tensile strength in the lignin-based and lignin-coated films. All films showed high radical scavenging activity (RSA) after 24 h, with a gradual increase in the lignin-coated films throughout time. The lignin-coated films showed to be the most promising incorporation strategy to improve the HPMC-based film's properties.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39256056

RESUMO

Polydopamine (PDA) is well known as a mussel-inspired adhesive material composed of oligomeric heteropolymers. However, the conventional eumelanin-like structural assumption of PDA seems deficient in explaining its interfacial adhesion. To determine the decisive mechanism of PDA coating formation, experiments and simulations were performed in this study. 5,6-Dihydroxyindole (DHI), the signature building block of eumelanin, was introduced as the control group. Various typical building blocks in PDA were quantified by physicochemical characterizations, and the polar-group-dominated interfacial interaction was evaluated by classic molecular dynamics and metadynamics methods. Aminoethyl has been proven to be the key functional group inducing the adsorption of PDA on the hydroxylated silica substrates, while DHI shows limited adhesion to the substrate due to the absence of aminoethyl as the catechol-indole structure of DHI exhibits poor affinity to the silica surface. Pyrrole carboxylic acid, as an oxidative product detected from PDA/DHI, is unfavorable for its adhesion to silica substrates. Overall, the coating formation and self-aggregating precipitation of PDA are two competitive aminoethyl-consuming paths; thus, the in situ oxidative coupling of dopamine is indispensable for the PDA coating preparation. The collected PDA precipitates can no longer present satisfactory coating forming behavior, resulting from a shortage of aminoethyl moieties.

6.
Proc Inst Mech Eng H ; : 9544119241277697, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39257086

RESUMO

Explant analysis can provide important understanding of how artificial joints perform in the human body. The articulating surfaces of the metacarpal head and the radius cup from a chromium nitride coated metal-on-metal Motec wrist implant were analysed. Due to bone resorption and aseptic loosening, the implant was removed after 6 years in the patient, and metallosis was observed during removal. Visually, some areas of the articulating surfaces appeared polished, others were dulled. A chemical composition analysis of the metacarpal head showed that the polished surfaces were chromium rich, implying this surface was the original chromium nitride coating, whereas the dulled surfaces were cobalt rich, indicating the underlying cobalt chromium substrate. In addition, the underlying cobalt chromium substrate was an order of magnitude rougher than the polished surface, indicating the scale of damage to it. It is speculated that the loss of the coating, and the subsequent damage to the underlying substrate due to a third-body wear process, led to osteolysis and the metallosis seen at revision surgery.

7.
Physiol Behav ; : 114690, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39251153

RESUMO

We investigated the effects of complex textural attributes of food i.e. lubricity and oral coating, on appetite ratings, food intake, salivary and gut peptides for the first time. Milk protein-rich beverages (whey and casein) were instrumentally analyzed (tribology, viscosity and adsorption, latter representing oral coating) using in vitro measurements. Then these protein beverage preloads differing in their coating properties (low coating, medium coating and high coating) were assessed in two cross-over satiety trials (Study 1, n=37; Study 2, n=15; Total n= 52). Fullness ratings increased in the high coating beverage condition (p<0.05) only after 20 min with limited effects on other time points, suggesting a sporadic effect of oral coating on appetite ratings (n=37). There was a correlation between concentration of protein in saliva and appetite ratings; the higher the concentration of protein in saliva the lower the desire to eat (r = - 0.963; p <0.05) and prospective food consumption ratings (r =- 0.980; p <0.05). Human saliva was more lubricating after ingesting preload with high coating properties, thus explaining the results on appetite ratings. There was no effect of oral coating on energy intake and gut peptides (n=15), suggesting that complex textural attributes having influence on oral processing might not have any effect on the later parts of the satiety cascade. Oral coating/ lubricity appears to have a subtle and sporadic effect on appetite suppression, which needs further investigation with changing macronutrients/energy load and degree of coating/ lubricity.

8.
Sci Rep ; 14(1): 21024, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251625

RESUMO

A new conducting polymer of the cellulose acetate poly acrylonitrile (CAPA)-SiC composite was produced using an in situ oxidative polymerization technique in an aqueous medium. SiC was synthesized from Cinachyrella sp. as a source of carbon and silicon at 1200 °C under an argon atmosphere via a catalytic reduction process. The structure and morphology of the CAPA-SiC composite were characterized using surface area studies (BET), X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), and surface morphology (SEM & TEM). To protect copper, the produced CAPA-SiC composite was mixed with commercial epoxy paint using a casting technique, and the copper surface was coated with the three components of the CAPA-SiC/epoxy paint mixture. The corrosion inhibition improvement of the CAPA-SiC/paint coating was assessed using electrochemical impedance spectroscopy followed by Tafel polarization measurements in a 3.5 wt% NaCl solution. The corrosion protection ability of the CAPA-SiC/epoxy coating was found to be outstanding at 97.4% when compared to that of a CAPA/paint coating. SEM and XRD were used to illustrate the coating on the copper surface.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39259403

RESUMO

PURPOSE: Periprosthetic joint infection is a complication of total joint arthroplasty with treatment costs over $1.6 billion dollars per year in the US with high failure rates. Therefore, generation of coatings that can prevent infection is paramount. Diamond-like carbon (DLC) is an ideal coating for implants as they are wear-resistant, corrosion-resistant, inert, and have a low friction coefficient. The purpose of this study was to test the efficacy of DLC surface treatment in prevention of biofilm on titanium discs infected with Staphylococcus aureus in vitro. METHODS: Titanium alloy discs (n = 4 non-coated and n = 4 DLC-coated) were infected with 5 × 105 colony-forming units (CFU) of S. aureus for 2 weeks then analysed via crystal violet and scanning electron microscopy (SEM). RESULTS: Crystal violet analysis yielded differences in the appearance of biofilm on implant surface where DLC-coated had a clumpier appearance but no difference in biofilm quantification. Interestingly, this clumpy appearance did lead to differences in SEM biofilm coverage where significantly less biofilm coverage was found on DLC-coated discs (81.78% vs. 54.17%, p < 0.003). CONCLUSION: DLC-coated titanium alloy implants may have preventative properties in S. aureus infection. Observing differences in biofilm coverage does warrant additional testing including CFU titration and biofilm kinetics with eventual use in an animal model of periprosthetic joint infection.

10.
Adv Mater ; : e2408463, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221676

RESUMO

The burgeoning accumulation of spent lithium-ion batteries (LIBs), a byproduct from the widespread adoption of portable electronics and electric vehicles, necessitates efficient recycling strategies. Direct recycling represents a promising strategy to maximize the value of LIB waste and minimize harmful environmental outcomes. However, current efforts to large-scale direct recycling face challenges stemming from heterophase residues (e.g., Li2CO3, LiOH) in the recycled products and uncontrolled interfacial instability, often requiring repeated washing that generates significant wastewater. Here, a refined direct recycling process is proposed to improve cathode interface stability by leveraging in situ reaction between surface residual lithium species and a weak inorganic acid to form a conformal Li+ conductive coating that stabilizes the regenerated Ni-rich cathodes with significantly reduced water footprint. The findings reveal that the conductive coating also prevents direct contact between contaminants and the cathode surface, thus improving the ambient storage stability. By eliminating the need for extensive washing, this intensified recycling process offers a more sustainable approach with the potential to transition from laboratory to industrial-scale applications, improving both product quality and environmental sustainability.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39221854

RESUMO

Chitosan-based biomass packaging materials are a promising material for food preservation, but their limited solubility, antioxidant capacity, UV resistance, and mechanical properties severely restrict their application. In this study, we developed a novel chitosan-based coating/packaging composite (QCTO) using quaternary ammonium salt and tannic acid (TA)-modified chitosan (QCS-TA) and oxidized chitosan (OCS). The introduction of quaternary ammonium salt and TA effectively improves the water solubility and antibacterial, antioxidant, and UV-resistant properties of chitosan. The Schiff-base bond formed between OCS and QCS-TA, along with the TA-mediated multiple interactions, conferred the prepared composite film with good mechanical properties (69.9 MPa tensile strength) and gas barrier performance to water (14.3 g·h-1·m-2) and oxygen (3.5 g·mm·m-2·h-1). Meanwhile, the prepared QCTO composites demonstrate excellent biocompatibility and safety and are applied as coatings for strawberries and bananas as well as packaging films for mushrooms. These preservation experiments demonstrated that the prepared composites are able to effectively reduce weight loss, prevent microbial growth, maintain color, and significantly prolong the shelf life of fresh products (bananas, strawberries, and mushrooms extended shelf life by 6, 5, and 6 days, respectively). Therefore, the developed QCTO coating/packaging film shows great potential for applications in the field of food preservation and packaging.

12.
Artigo em Inglês | MEDLINE | ID: mdl-39222057

RESUMO

The miniaturization and widespread deployment of electronic devices across diverse environments have heightened their vulnerability to corrosion, particularly affecting copper traces within printed circuit boards (PCBs). Conventional protective methods, such as conformal coatings, face challenges including the necessity for a critical thickness to ensure effective barrier properties and the requirement for multiple steps of drying and curing to eliminate solvent entrapment within polymer coatings. This study investigates cold atmospheric plasma (CAP) as an innovative technique for directly depositing ultrathin silicon oxide (SiOx) coatings onto copper surfaces to enhance corrosion protection in PCBs. A systematic investigation was undertaken to examine how the scanning speed of the CAP deposition head impacts the film quality and corrosion resistance. The research aims to determine the optimal scanning speed of the CAP deposition head that achieves complete surface coverage while promoting effective cross-linking and minimizing unreacted precursor entrapment, resulting in superior electrical barrier and mechanical properties. The CAP coating process demonstrated the capability of depositing SiOx onto copper surfaces at various thicknesses ranging from 70 to 1110 nm through a single deposition process by simply adjusting the scanning speed of the plasma head (5-75 mm/s). Evaluation of material corrosion barrier characteristics revealed that scanning speeds of 45 mm/s of the plasma deposition head provided an effective coating thickness of 140 nm, exhibiting superior corrosion resistance (30-fold) compared to that of uncoated copper. As a proof of concept, the efficacy of CAP-deposited SiOx coatings was demonstrated by protecting an LED circuit in saltwater and by coating printed circuits for potential agricultural sensor applications. These CAP-deposited coatings offer performance comparable to or superior to traditional conformal polymeric coatings. This research presents CAP-deposited SiOx coatings as a promising approach for effective and scalable corrosion protection in miniaturized electronics.

13.
ACS Appl Bio Mater ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240218

RESUMO

In this study, we synthesized polyelectrolyte complexed nanoparticles using an ion exchange reaction between poly(hexamethylene guanidine hydrochloride) and sodium caffeate. The morphology of the obtained antiparticle was observed by scanning electron microscopy, and FT-IR and XPS were employed for the structural characterization. The antimicrobial properties of E. coli and S. aureus were characterized through minimum inhibitory concentration (MIC), growth curve analysis, plate colony counting method, and crystal violet method. Notably, the sample showed a 100% bactericidal rate against E. coli at 0.095 µg/mL and against S. aureus at 0.375 µg/mL within 1 h, demonstrating excellent antimicrobial performance against E. coli and S. aureus. The CA-PHMG-containing acrylic resin coatings exhibited exceptional antimicrobial and antiadhesive properties when examined under an inverted fluorescence microscope, particularly at a 4% weight concentration of the antibacterial agent. This study holds vast potential for development in the field of antimicrobial coatings.

14.
Biomater Adv ; 166: 214025, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39244828

RESUMO

Refractory bleeding presents a critical, life-threatening challenge, and the goal of medical professionals and researchers has always been to achieve safe and effective hemostasis for bleeding wounds. In this study, we utilized the benefits of a self-expanding cellulose sponge to control incompressible bleeding, which is achieved this by creating a tannic acid/metal ion coating on the surface and within the pores of the sponge to improve its hemostatic effectiveness. The effects of various types and concentrations of metal ions (calcium, magnesium, iron, and zinc) on hemostatic efficiency and biosafety is systematically investigated. The results from bacteriostasis and in vitro coagulation experiments identified 0.3 wt% Fe3+ as the optimal metal ion coating. Scanning electron microscope energy spectrum analysis confirmed the uniform distribution of Fe3+ within the cellulose sponge. Furthermore, the in vivo and in vitro results demonstrated that the prepared tannic acid/Fe3+ coated composite hemostatic sponge exhibits excellent coagulation ability and biocompatibility. Both the bleeding time and theblood loss in two bleeding models are significantly reduced, showing promising potential for treating extensive surface bleeding and deep penetrating wounds. Furthermore, the straightforward preparation method for this composite hemostatic sponge facilitates additional research towards market application.

15.
Int J Biol Macromol ; : 135317, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245117

RESUMO

Microbial seed coatings serve as effective, labor-saving, and ecofriendly means of controlling soil-borne plant diseases. However, the survival of microbial agents on seed surfaces and in the rhizosphere remains a crucial challenge. In this work, we embedded a biocontrol bacteria (Bacillus subtilis ZF71) in sodium alginate (SA)/pectin (PC) hydrogel as a seed coating agent to control Fusarium root rot in cucumber. The formula of SA/PC hydrogel was optimized with the highest coating uniformity of 90 % in cucumber seeds. SA/PC hydrogel was characterized using rheological, gel content, and water content tests, thermal gravimetric analysis, and Fourier transform infrared spectroscopy. Bacillus subtilis ZF71 within the SA/PC hydrogel network formed a biofilm-like structure with a high viable cell content (8.30 log CFU/seed). After 37 days of storage, there was still a high number of Bacillus subtilis ZF71 cells (7.23 log CFU/seed) surviving on the surface of cucumber seeds. Pot experiments revealed a higher control efficiency against Fusarium root rot in ZF71-SA/PC cucumber seeds (53.26 %) compared with roots irrigated with a ZF71 suspension. Overall, this study introduced a promising microbial seed coating strategy based on biofilm formation that improved performance against soil-borne plant diseases.

16.
Small Methods ; : e2401028, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39246115

RESUMO

Titanium alloys have been widely used in marine engineering fields. However, because of high biocompatibility, they are vulnerable to biofouling. In this work, based on the micro-arc oxidation technology and spontaneous galvanic replacement reaction, a temperature-responsive low-toxic smart coating consisting of liquid metal particles is designed to control the release of Ga3+, Cu2+, and Cu1+ ions in different temperatures. This technology can ensure the full release of active ingredients within the target temperature range, intelligently maintaining the excellent anti-biofouling performance, while saving active ingredients. After being immersed in culture media with Sulfate-Reducing Bacteria (SRB) for 14 days at 10, 20, and 30 °C, at the optimal activity temperature of 30 °C for SRB, the best sample releases the highest amounts of Ga3+, Cu2+, and Cu1+ ions, demonstrating a 99.9% bactericidal rate. When the temperature decreases to 10 °C, the activity level of SRB is very low, and the smart coating can also reduce the released ions correspondingly, still with a 97.3% bactericidal rate. The remarkable anti-biofouling performance is attributed to the physical damage and lethal ions interaction. Furthermore, the best sample exhibits good corrosion resistance. This work presents a design route for smart anti-biofouling coatings for temperature-responsive.

17.
Small Methods ; : e2400680, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39246206

RESUMO

Lithium iron phosphate (LiFePO4, LFP) batteries are widely used in electric vehicles and energy storage systems due to their excellent cycling stability, affordability and safety. However, the rate performance of LFP remains limited due to its low intrinsic electronic and ionic conductivities. In this work, an ex situ flash carbon coating method is developed to enhance the interfacial properties for fast charging. A continuous, amorphous carbon layer is achieved by rapidly decomposing the precursors and depositing carbon species in a confined space within 10 s. Simultaneously, different heteroatoms can be introduced into the surface carbon matrix, which regulates the irregular growth of cathode-electrolyte interphase (CEI) and selectively facilitates the inorganic region formation. The inorganic-rich, hybrid conductive CEI not only promotes electron and ion transport but also restricts parasitic side reactions. Consequently, LFP cathodes with fluorinated carbon coatings exhibited the highest capacity of 151 mAh g-1 at 0.2 C and 96 mAh g-1 at 10 C, indicating their excellent rate capability over commercial LFP (58 mAh g-1 at 10 C). This solvent-free, versatile surface modification is shown for other electrode materials, providing an efficient platform for electrode-electrolyte interphase engineering through a surface post-treatment.

18.
Carbohydr Polym ; 344: 122496, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39218539

RESUMO

Chitosan is a promising natural polymer for coatings, it combines intrinsic antibacterial and pro-osteoblastic properties, but the literature still has a gap from the development to behavior of these coatings, so this systematic review aimed to answer, "What is the relationship between the physical and chemical properties of polymeric chitosan coatings on titanium implants on antibacterial activity and osteoblast viability?". PRISMA guidelines was followed, the search was applied into 4 databases and grey literature, without the restriction of time and language. The selection process occurred in 2 blinded steps by the authors. The criteria of eligibility were in vitro studies that evaluated the physical, chemical, microbiological, and biological properties of chitosan coatings on titanium surfaces. The risk of bias was analyzed by the specific tool. Of 734 potential articles 10 were included; all had low risk of bias. The coating was assessed according to the technique of fabrication, FT-IR, thickness, adhesion, roughness, wettability, antibacterial activity, and osteoblast viability. The analyzed coatings showed efficacy on antibacterial activity and cytocompatibility dependent on the class of material incorporated. Thus, this review motivates the development of time-dependent studies to optimize manufacturing and allow for an increase in patents and availability on the market.


Assuntos
Antibacterianos , Quitosana , Materiais Revestidos Biocompatíveis , Osteoblastos , Titânio , Quitosana/química , Quitosana/farmacologia , Titânio/química , Titânio/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Propriedades de Superfície , Próteses e Implantes , Animais , Sobrevivência Celular/efeitos dos fármacos
19.
Heliyon ; 10(16): e36141, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39224266

RESUMO

Rice blast disease, caused by Magnaporthe oryzae, poses a significant threat to global rice production, necessitating the development of effective and sustainable management strategies. Biological control using beneficial microbes like Bacillus amyloliquefaciens has emerged as a promising approach due to its ability to enhance plant resistance and reduce disease incidence. Nano-encapsulation of bacteria, which involves embedding beneficial microbes within nanomaterials, offers a novel method to improve the stability, survival, and efficacy of these biocontrol agents. This study evaluated the capacity of encapsulated Bacillus amyloliquefaciens D203, embedded within an alginate-bentonite coating infused with titanium nanoparticles (TNs), to stimulate defense responses in rice seedlings challenged by the Magnaporthe oryzae the causal agent of rice blast disease. Encapsulation was achieved using the extrusion technique, with some modifications. Using a completely randomized design, the experiment was conducted in a greenhouse, with four treatments replicated four times. The experiment used the popular Kenyan rice variety "BASMATI 370". The study investigated the impact of strain D203 on the incidence, severity, and area under disease progress curves related to M. oryzae, as well as the expression of defense-related enzymes. The results demonstrated that rice plants derived from seeds coated with the D203 encapsulated B. amyloliquefaciens strain exhibited higher levels of defense-related enzyme expression, including peroxidase (POD), phenylalanine ammonia-lyase (PAL), superoxide dismutase (SOD) and catalase (CAT), compared to controls. In addition, the incidence and severity of the disease were markedly lower in plants treated with encapsulated B. amyloliquefaciens compared to controls, sometimes paralleling the efficacy of hexaconazole treatment. These findings suggest that the encapsulation of strain D203 has the potential to enhance resistance against rice blast disease by inducing systemic resistance through the production of antioxidant enzymes.

20.
AIMS Microbiol ; 10(3): 596-607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39219752

RESUMO

Microneedles, a novel transdermal delivery system, were designed to improve drug delivery and address the challenges typically encountered with traditional injection practices. Discovering new and safe excipients for microneedle coating to replace existing chemical surfactants is advantageous to minimize their side effect on viable tissues. However, some side effects have also been observed for this application. The vast majority of studies suggest that using synthetic surfactants in microneedle formulations may result in skin irritation among other adverse effects. Hence, increasing knowledge about these components and their potential impacts on skin paves the way for finding preventive strategies to improve their application safety and potential efficacy. Biosurfactants, which are naturally produced surface active microbial products, are proposed as an alternative to synthetic surfactants with reduced side effects. The current review sheds light on potential and regulatory aspects of biosurfactants as safe excipients in the coating of microneedles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA