RESUMO
Theoretical calculations focusing on the cleavage of the C-X bond in methyl halides (CH3X; X = Cl, Br, I) as mediated by CoI-based systems have been carried out using the hybrid functional ωB97-XD together with the basis set 6-311++G(2d,2p). A total of seven CoI-based compounds were evaluated: cob[I]alamin (CoICbl) in its base-on form and cobaloxime (CoICbx) with either no ligand or different ligands (either pyridine (PYR), tributylphosphine (TBP), dimethyl sulfide (DMS), cyclohexylisocyanide (CI), or 5,6-dimethylbenzimidazole (DMB)) at the lower axial position. For the large CoICbl system, an ONIOM scheme was employed, where the high layer was described at the DFT level and the low layer was computed using the semi-empirical method PM6. A full DFT model was employed for the CoICbx cases. An SN2-like mechanism was evaluated in all cases. The intrinsic reaction coordinate profiles suggested early transition states with activation energies of ≈ 12 kcal/mol, ≈ 10 kcal/mol, and ≈ 5 kcal/mol for C-Cl, C-Br, and C-I cleavage, respectively, which is consistent with the leaving group abilities of these halides. The evolutions of the atomic charges in and the bond orders of Co-C and C-X were computed, and the results confirmed the existence of early transition states (δBav≈ 40%), where the polarization Cδ+-Xδ- (%Ev ≈ 43%) is the determining factor in the reaction process. Finally, a comparison of all the determined parameters showed that the reaction in the DMB-CoICbx system resembles the process that occurs in the larger CoICbl, suggesting that the former system could be a reliable model for the study of reductive dehalogenation mediated by vitamin B12, which is key to the anaerobic microbiological treatment of halocarbon contaminants.
RESUMO
Growing antimicrobial resistance is considered a potential threat for human health security by health organizations, such as the WHO, CDC and FDA, pointing to MRSA as an example. New antibacterial drugs and complex derivatives are needed to combat the development of bacterial resistance. Six new copper and cobalt complexes of azole derivatives were synthesized and isolated as air-stable solids and characterized by melting point analyses, elemental analyses, thermogravimetric analyses (TGA), and infrared and ultraviolet/visible spectroscopy. The analyses and spectral data showed that the complexes had 1:1 (M:L) stoichiometries and tetrahedral geometries, the latter being supported by DFT calculations. The antibacterial activities of the metal complexes by themselves and combined with silver nanoparticles (AgNPs; 2 µg mL-1) were assessed in vitro by broth microdilution assays against eight bacterial strains of clinical relevance. The results showed that the complexes alone exhibited moderate antibacterial activities. However, when the metal complexes were combined with AgNPs, their antibacterial activities increased (up to 10-fold in the case of complex 5), while human cell viabilities were maintained. The minimum inhibitory concentration (MIC50) values were in the range of 25-500 µg mL-1. This study thus presents novel approaches for the design of materials for fighting bacterial resistance. The use of azole complexes combined with AgNPs provides a new alternative against bacterial infections, especially when current treatments are associated with the rapid development of antibiotic resistance.