RESUMO
BACKGROUND: Prenatal and postnatal exposure to drugs such as cocaine is a public health problem that causes deficits in brain development and function in humans and animals. One of the main effects of prenatal and postnatal cocaine exposure is increased vulnerability to developing the substance use disorder at an early age. Furthermore, the negative emotional states associated with cocaine withdrawal increase the fragility of patients to relapse into drug abuse. In this sense, prenatal and postnatal cocaine exposure enhanced the cocaine- and nicotine-induced locomotor activity and locomotor sensitization, and rats exposed prenatally to cocaine displayed an increase in anxiety- and depressive-like behaviors in adulthood (PND 60-70). OBJECTIVE: Therefore, the objective of this study was to determine the effect of prenatal and postnatal cocaine exposure on anxiety- and depressive-like behaviors at different ages (30, 60, 90, and 120 days of age) in rats. METHODS: The study was divided into two stages: prenatal and postnatal. In the prenatal stage, a group of pregnant female Wistar rats was administered daily from GD0 to GD21 cocaine (cocaine pre-exposure group), and another group of pregnant female rats was administered daily saline (saline pre-exposure group). In the postnatal stage, during lactation (PND0 to PND21), pregnant rats received administration of cocaine or saline, respectively. Of the litters resulting from the cocaine pre-exposed and saline pre-exposed pregnant female groups, only the male rats were used for the recording of the anxiety- and depressive-like behaviors at different postnatal ages (30, 60, 90, and 120 days), representative of adolescence, adult, adulthood, and old age. RESULTS: The study found that prenatal and postnatal cocaine exposure generated age-dependent enhancement in anxiety- and depressive-like behaviors, being greater in older adult (PND 120) rats than in adolescent (PND 30) or adults (PND 60-90) rats. CONCLUSIONS: This suggests that prenatal and postnatal cocaine exposure increases anxiety- and depressive-like behaviors, which may increase the vulnerability of subjects to different types of drugs in young and adult age.
Assuntos
Ansiedade , Cocaína , Depressão , Efeitos Tardios da Exposição Pré-Natal , Ratos Wistar , Animais , Gravidez , Cocaína/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Feminino , Ratos , Ansiedade/induzido quimicamente , Depressão/induzido quimicamente , Masculino , Atividade Motora/efeitos dos fármacos , Fatores Etários , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Inibidores da Captação de DopaminaRESUMO
BACKGROUND: Anxiety and depression, key symptoms of the cocaine withdrawal syndrome in human addicts, are considered the main factors that precipitate relapse in chronic cocaine addiction. Preclinical studies have found that rodents exposed to different withdrawal periods show an increase in anxiety and depressive-like behavior. Mirtazapine - a tetracyclic medication - is used primarily to treat depression and, sometimes, anxiety. It has also successfully improved withdrawal symptoms in drug-dependent patients. AIM: This study sought to determine whether chronic dosing of mirtazapine during cocaine withdrawal reduced depression- and anxiety-like behaviors that characterize cocaine withdrawal in animals. METHODS: Cocaine pre-treated Wistar rats were subjected to a 60-day cocaine withdrawal period during which depression- and anxiety-like behaviors were evaluated in open field tests (OFT), the elevated plus-maze (EPM), the light-dark box test (LDT), the forced swimming test (FST) and spontaneous locomotor activity (SLA). RESULTS: We found that chronic dosing with different doses of mirtazapine (30 and 60 mg/kg) decreased depression- and anxiety-like behaviors induced by different doses of cocaine (10, 20 and 40 mg/kg) during the 60-day cocaine withdrawal. INTERPRETATION: Our results suggest that the pharmacological effect of mirtazapine on its target sites of action (α2-adrenergic and 5-HT2A and 5-HT3 receptors) within the brain may improve depression- and anxiety-like behaviors for long periods. CONCLUSION: Therefore, the findings support the use of mirtazapine as a potentially effective therapy to reduce anxiety and depressive-like behavior during cocaine withdrawal.
Assuntos
Antidepressivos/farmacologia , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Comportamento Animal/efeitos dos fármacos , Cocaína/farmacologia , Depressão/tratamento farmacológico , Depressão/etiologia , Inibidores da Captação de Dopamina/farmacologia , Mirtazapina/farmacologia , Síndrome de Abstinência a Substâncias/complicações , Animais , Antidepressivos/administração & dosagem , Cocaína/administração & dosagem , Modelos Animais de Doenças , Inibidores da Captação de Dopamina/administração & dosagem , Masculino , Mirtazapina/administração & dosagem , Ratos , Ratos WistarRESUMO
BACKGROUND: Acute cocaine withdrawal syndrome (ACWS) is characterized as a set of organic alterations triggered by abrupt discontinuation of chronic cocaine consumption, usually occurring at 24-40 hours after withdrawal. However, little is known about the relationship between central and peripheral sympathetic neurotransmission during ACWS. OBJECTIVE AND METHODS: We investigated the mechanisms involved in central and peripheral sympathetic neurotransmission and how ACWS affects the sympathetic functionality. Cocaine was administered twice daily for 5 days in Wistar rats (at least 5 in each group): on the first and second day, 15 mg/kg/i.p.; third day, 20 mg/kg/i.p.; and finally in the last two days, 30 mg/kg/i.p. Subsequently, at 1, 24, 48 and 120 h after cocaine administration the following experiments were done: (i) at the central level, behavioral tests of open-field and elevated plus maze; and (ii) at the peripheral level, tests of catecholamine release, function of α2-adrenergic receptors (α2-ARs), imidazoline receptors (I(1,2)-Rs), L-type voltage-gated (Ca(v1.2)) Ca(2+) channels and α1-ARs. RESULTS: During ACWS, rats showed hypolocomotion and exacerbation of anxiogenic-effects 24 h after cocaine withdrawal. Likewise, a decrease in the catecholamine release and activity of α2-ARs/I(1,2)-Rs at 24-48 h after cocaine withdrawal was observed. A decrease in Ca(v1.2) channels and α1-ARs function at 48 h after cocaine withdrawal was observed. CONCLUSIONS: The relationship of central and peripheral sympathetic neurotransmission during ACWS possibly due to a failure in activation and/or inactivation of presynaptic α2-ARs/I(1,2)-Rs, may offer a potential target for attenuating ACWS.