Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 426
Filtrar
1.
Pestic Biochem Physiol ; 202: 105951, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879336

RESUMO

The abuse of chemical insecticides has led to strong resistance in cockroaches, and biopesticides with active ingredients based on insect pathogens have good development prospects; however, their slow effect has limited their practical application, and improving their effectiveness has become an urgent problem. In this study, the interaction between Serratia marcescens and Metarhizium anisopliae enhanced their virulence against Blattella germanica and exhibited a synergistic effect. The combination of S. marcescens and M. anisopliae caused more severe tissue damage and accelerated the proliferation of the insect pathogen. The results of high-throughput sequencing demonstrated that the gut microbiota was dysbiotic, the abundance of the opportunistic pathogen Weissella cibaria increased, and entry into the hemocoel accelerated the death of the German cockroaches. In addition, the combination of these two agents strongly downregulated the expression of Imd and Akirin in the IMD pathway and ultimately inhibited the expression of antimicrobial peptides (AMPs). S. marcescens released prodigiosin to disrupted the gut homeostasis and structure, M. anisopliae released destruxin to damaged crucial organs, opportunistic pathogen Weissella cibaria overproliferated, broke the gut epithelium and entered the hemocoel, leading to the death of pests. These findings will allow us to optimize the use of insect pathogens for the management of pests and produce more effective biopesticides.


Assuntos
Baratas , Microbioma Gastrointestinal , Metarhizium , Serratia marcescens , Animais , Serratia marcescens/patogenicidade , Serratia marcescens/fisiologia , Metarhizium/patogenicidade , Metarhizium/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Baratas/microbiologia , Prodigiosina/farmacologia , Micotoxinas/metabolismo , Blattellidae/microbiologia , Controle Biológico de Vetores/métodos , Virulência , Depsipeptídeos
2.
Int Arch Allergy Immunol ; : 1-8, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38901413

RESUMO

INTRODUCTION: Sensitivity to indoor allergens increases the risks of asthma and the emergence of allergic diseases. Indoor allergens include house dust mite (HDM), pet dander, cockroach (CR), and molds. We investigated how CR sensitivity was affected during the pandemic period. METHODS: This study included patients aged ≥18 years who visited the allergy unit of our clinic between March 2018 and March 2022 and who underwent skin prick tests (SPTs) for aeroallergens. Patients were divided into two groups: those of the prepandemic and pandemic periods, depending on the visit dates. RESULTS: In all, 7,687 patients were recruited; 5,074 individuals with negative SPT results were excluded. Among the 2,613 atopic patients, CR sensitivity was detected in 278 (10.6%). The prevalence of CR sensitivity was significantly higher in the pandemic group than in the prepandemic group (12% vs. 8.6%; p < 0.05). The frequency of asthma was higher in patients with CR sensitivity than in others (33.1% vs. 26%, p = 0.011). In addition, individuals with CR sensitivity were older than others (p = 0.001). CR sensitivity was more common in males than in females (44.2% vs. 37.7%, p = 0.034). Moreover, dog and HDM sensitivities were more common in individuals with CR sensitivity than in others (p = 0.004, p < 0.001, respectively). CONCLUSION: This study reveals an increased sensitivity to CR during the pandemic and establishes an association between such sensitivity and the frequency of asthma. Variability in terms of CR sensitivity across different countries is emphasized. In addition, HDM and dog sensitivities were more common in individuals with CR sensitivity.

3.
Infect Genet Evol ; 123: 105624, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901621

RESUMO

The German cockroach, Blattella germanica, can be a vector of human enteric bacterial pathogens, including Salmonella enterica serovar Typhimurium (S. Typhimurium). Transmission of such pathogens by cockroaches has largely been considered a passive mechanical process, but recent studies have argued against this dogma by demonstrating bacterial proliferation within the cockroach gut and the necessity of specific bacterial genes for successful transmission in the feces, revealing unappreciated biological complexity in the vector-pathogen relationship between cockroaches and S. Typhimurium. However, the influence of naturally occurring variation among cockroach populations on pathogen infection and dissemination has not been investigated. Thus, this study aimed to examine whether distinct strains of B. germanica exhibit differences in their ability to become infected by and disseminate S. Typhimurium. We performed controlled infections of one long-term laboratory strain and three recently field-collected strains reared under identical conditions, then compared bacterial loads in the body and excreta of individual insects. Separately, we also compared rates of necrophagy, a behavior known to contribute to the horizontal spread of S. Typhimurium among cockroaches. Our data show significant differences in infection susceptibility, pathogen shedding in the excreta, and necrophagy between laboratory and field strains as well as between some field strains. These observations represent the first evidence that genomic variation among cockroach populations may influence their ability to become infected by and disseminate pathogens, providing further support for the hypothesis that German cockroaches are active biological vectors rather than passive mechanical vectors of S. Typhimurium. Additional studies are needed to identify the genomic drivers of vector competence for S. Typhimurium in B. germanica.

4.
Poult Sci ; 103(9): 103967, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38941789

RESUMO

Periplaneta americana residue is a byproduct of using Periplaneta americana in pharmaceutical research and development for extracting active ingredients. Three hundred Three-yellow chickens were selected for the experiment and randomly divided into 6 groups (5 replications per group, 10 chickens per replicate): the control group (group A) was fed a basal ration, and the experimental groups (groups B, C, D, E, and F) were fed experimental diets in which P. americana residue replaced puffed soybean meal at proportions of 20, 40, 60, 80, and 100%, respectively, for a period of 42 d. The aim was to assess the impact of different levels of P. americana residue on the growth, survival, intestinal morphology, digestive enzyme activity, intestinal flora, and intestinal transcriptional responses of Three-yellow chickens. The results indicated that the increase in P. americana residue levels had a linear and quadratic impact on the average daily gain (ADG) and feed conversion ratio (FCR), respectively. The ADG was notably greater in the 40% group than in the 100% group, while the FCR was significantly lower in the 20% and 40% groups than in the 100% group (P < 0.05). Protease, lipase, and amylase activities exhibited a quadratic increase with increasing concentrations of P. americana residue (P < 0.05). Protease and lipase activities were notably greater in the 20% and 40% groups than in the 0% group (control group), amylase activity was significantly greater in the 40% group than in the 0% group (control group) (P < 0.05). Duodenal crypt depth (CD) decreased quadratically with increasing P. americana residue (P < 0.05). The duodenal villus height/crypt depth ratio (V/C) was significantly lower in the 100% group than in the 60% group (P < 0.05). The intestinal villus height (VH) increased quadratically with increasing levels of P. americana residue. The VH in the 60% group was significantly greater than that in the 0% (control group), 20, 80, and 100% groups (P < 0.05). The Chao and Ace indices demonstrated linear and quadratic increases with increasing levels of P. americana residue, while the Pd index showed a quadratic increase with increasing levels of P. americana residue (P < 0.05). The relative abundance profile of Lactobacillus exhibited a linear and quadratic decrease with increasing levels of P. americana residue, with the 100% group showing a significantly lower abundance than the 0% (control group) and 40% groups (P < 0.05). The transcriptome results showed that P. americana residue could enhance the digestive system by promoting vitamin, fat, carbohydrate digestion and absorption, cholesterol metabolism, etc. In conclusion, P. americana residue can replace puffed soybean meal without negatively affecting the growth performance of three-yellow chickens. The low and medium groups had positive effects on the growth performance, digestive enzyme activity, intestinal morphology, intestinal flora, and substance digestion and absorption of three-yellow chickens. The recommended replacement of P. americana residue for puffed soybean meal in the diets of three-yellow chickens ranged from 20% to 60%.

5.
J Chem Ecol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727793

RESUMO

Insect cuticular hydrocarbons (CHCs) serve as important waterproofing barriers and as signals and cues in chemical communication. Over the past 30 years, numerous studies on CHCs have been conducted in the German cockroach, Blattella germanica, leading to substantial progress in the field. However, there has not been a systematic review of CHC studies in this species in recent years. This review aims to provide a concise overview of the chemical composition, storage, transport, and physical properties of different CHCs in B. germanica. Additionally, we focus on the biosynthetic pathway and the genetic regulation of HC biosynthesis in this species. A considerable amount of biochemical evidence regarding the biosynthetic pathway of insect CHCs has been gathered from studies conducted in B. germanica. In recent years, there has also been an improved understanding of the molecular mechanisms that underlie CHC production in this insect. In this article, we summarize the biosynthesis of different classes of CHCs in B. germanica. Then, we review CHCs reaction to various environmental conditions and stressors and internal physiological states. Additionally, we review a body of work showing that in B. germanica, CHC profiles exhibit significant sexual dimorphism, specific CHCs act as essential precursors for female contact sex pheromone components, and we summarize the molecular regulatory mechanisms that underlie sexual dimorphism of CHC profiles. Finally, we highlight future directions and challenges in research on the biosynthesis and regulatory mechanisms of CHCs in B. germanica, and also identify potential applications of CHC studies in the pest control.

6.
PNAS Nexus ; 3(4): pgae162, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38689705

RESUMO

Many animals use multicomponent sex pheromones for mating, but the specific function and neural processing of each pheromone component remain unclear. The cockroach Periplaneta americana is a model for studying sex pheromone communication, and an adult female emits major and minor sex pheromone components, periplanone-B and -A (PB and PA), respectively. Attraction and courtship behaviors (wing-raising and abdominal extension) are strongly expressed when adult males are exposed to PB but weakly expressed when they are exposed to PA. When major PB is presented together with minor PA, behaviors elicited by PB were impaired, indicating that PA can both promote and suppress courtship behaviors depending on the pheromonal context. In this study, we identified the receptor genes for PA and PB and investigated the effects of knocking down each receptor gene on the activities of PA- and PB-responsive sensory neurons (PA- and PB-SNs), and their postsynaptic interneurons, and as well as effects on courtship behaviors in males. We found that PB strongly and PA weakly activate PB-SNs and their postsynaptic neurons, and activation of the PB-processing pathway is critical for the expression of courtship behaviors. PA also activates PA-SNs and the PA-processing pathway. When PA and PB are simultaneously presented, the PB-processing pathway undergoes inhibitory control by the PA-processing pathway, which weakens the expression of courtship behaviors. Our data indicate that physiological interactions between the PA- and PB-processing pathways positively and negatively mediate the attraction and courtship behaviors elicited by sex pheromones.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38718950

RESUMO

BACKGROUND: Cockroach allergy contributes to morbidity among urban children with asthma. Few trials address the effect of subcutaneous immunotherapy (SCIT) with cockroach allergen among these at-risk children. OBJECTIVES: We sought to determine whether nasal allergen challenge (NAC) responses to cockroach allergen would improve following 1 year of SCIT. METHODS: Urban children with asthma, who were cockroach-sensitized and reactive on NAC, participated in a year-long randomized double-blind placebo-controlled SCIT trial using German cockroach extract. The primary endpoint was the change in mean Total Nasal Symptom Score (TNSS) during NAC after 12 months of SCIT. Changes in nasal transcriptomic responses during NAC, skin prick test wheal size, serum allergen-specific antibody production, and T-cell responses to cockroach allergen were assessed. RESULTS: Changes in mean NAC TNSS did not differ between SCIT-assigned (n = 28) versus placebo-assigned (n = 29) participants (P = .63). Nasal transcriptomic responses correlated with TNSS, but a treatment effect was not observed. Cockroach serum-specific IgE decreased to a similar extent in both groups, while decreased cockroach skin prick test wheal size was greater among SCIT participants (P = .04). A 200-fold increase in cockroach serum-specific IgG4 was observed among subjects receiving SCIT (P < .001) but was unchanged in the placebo group. T-cell IL-4 responses following cockroach allergen stimulation decreased to a greater extent among SCIT versus placebo (P = .002), while no effect was observed for IL-10 or IFN-γ. CONCLUSIONS: A year of SCIT failed to alter NAC TNSS and nasal transcriptome responses to cockroach allergen challenge despite systemic effects on allergen-specific skin tests, induction of serum-specific IgG4 serum production and down-modulation of allergen-stimulated T-cell responses.

8.
J Allergy Clin Immunol Glob ; 3(2): 100236, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38590754

RESUMO

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a spectrum of clinical outcomes that may be complicated by severe asthma. Antiviral immunity is often compromised in patients with asthma; however, whether this is true for SARS-CoV-2 immunity and children is unknown. Objective: We aimed to evaluate SARS-CoV-2 immunity in children with asthma on the basis of infection or vaccination history and compared to respiratory syncytial viral or allergen (eg, cockroach, dust mite)-specific immunity. Methods: Fifty-three children from an urban asthma study were evaluated for medical history, lung function, and virus- or allergen-specific immunity using antibody or T-cell assays. Results: Polyclonal antibody responses to spike were observed in most children from infection and/or vaccination history. Children with atopic asthma or high allergen-specific IgE, particularly to dust mites, exhibited reduced seroconversion, antibody magnitude, and SARS-CoV-2 virus neutralization after SARS-CoV-2 infection or vaccination. TH1 responses to SARS-CoV-2 and respiratory syncytial virus correlated with antigen-respective IgG. Cockroach-specific T-cell activation as well as IL-17A and IL-21 cytokines negatively correlated with SARS-CoV-2 antibodies and effector functions, distinct from total and dust mite IgE. Allergen-specific IgE and lack of vaccination were associated with recent health care utilization. Reduced lung function (forced expiratory volume in 1 second ≤ 80%) was independently associated with (SARS-CoV-2) peptide-induced cytokines, including IL-31, whereas poor asthma control was associated with cockroach-specific cytokine responses. Conclusion: Mechanisms underpinning atopic and nonatopic asthma may complicate the development of memory to SARS-CoV-2 infection or vaccination and lead to a higher risk of repeated infection in these children.

9.
Arch Insect Biochem Physiol ; 115(4): e22114, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38659314

RESUMO

The insect cuticle plays a key role in maintaining the insect's physiological function and behavior. Herein, the yellow-y protein is required to produce black melanin, and is expressed in a pattern that correlates with the distribution of this pigment. However, yellow-y can also have other functions, for instance, in insect behavior, but not much is known. In this study, we have studied the yellow-y gene in one important model and pest species, namely the German cockroach (Blattella germanica), which is to our knowledge the first time reported. In essence, we identified the yellow-y gene (BgY-y) and characterized its function by using RNA interference (RNAi). Silencing of BgY-y gene led to different developmental abnormalities (body weight and wings) in both genders. Specifically, there was an abundant decrease in melanin, turning the body color in pale yellow and the cuticle softer and more transparent. Interestingly, we also observed that the knockdown of BgY-y impaired the male cockroaches to display a weaker response to female-emitted contact sex pheromones, and also that the oviposition ability was weakened in the RNAi females. This study comprehensively analyzed the biological functions of the yellow-y gene in German cockroaches from the perspectives of development, body color, courtship behavior and oviposition, and as a consequence, this may opens new avenues to explore it as a novel pest control gene.


Assuntos
Blattellidae , Proteínas de Insetos , Oviposição , Pigmentação , Interferência de RNA , Animais , Blattellidae/genética , Blattellidae/fisiologia , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Pigmentação/genética , Corte , Melaninas/metabolismo , Comportamento Sexual Animal
10.
Pest Manag Sci ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676657

RESUMO

BACKGROUND: Cockroaches are widely acknowledged as significant vectors of pathogenic microorganisms. The Periplaneta fuliginosa densovirus (PfDNV) infects the smoky-brown cockroach P. fuliginosa and causes host mortality, which identifies the PfDNV as a species-specific and environmentally friendly biopesticide. However, although the biochemical characterization of PfDNV has been extensively studied, the immune response against PfDNV remains largely unclear. RESULTS: Here, we investigated the replication of PfDNV and its associated pathological phenotype in the foregut and hindgut. Consequently, we dissected and performed transcriptome sequencing on the foregut, midgut, and hindgut separately. We revealed the up-regulation of immune response signaling pathway c-Jun N-terminal kinase (JNK) and apoptosis in response to viral infection. Furthermore, knockdown of the JNK upstream gene Ben resulted in a decrease in virus titer and delayed host mortality. CONCLUSION: Taken together, our findings provide evidence that the Ben-JNK signaling plays a crucial role in PfDNV infection, leading to excessive apoptosis in intestinal tissues and ultimately resulting in the death of the host. Our results indicated that the host response to PfDNV fosters viral infection, thereby increasing host lethality. This underscores the potential of PfDNV as a viable, environmentally friendly biopesticide. © 2024 Society of Chemical Industry.

11.
Parasitol Res ; 123(4): 198, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38671303

RESUMO

The German cockroach Blattella germanica is commonly infected with the pinworm Blatticola blattae. To determine the effect of pinworm infection on cockroach survival, we artificially altered the pinworm infection status of cockroaches and determined the number of survival days under no-feeding conditions, with and without opportunities for fecal feeding. Four lines of the German cockroach (Wn, Wp, Nn, and Np groups) were used in the experiment. Wp and Np were pinworm-infected lines. Wn and Nn were pinworm-free lines. The 50% survival days of cockroaches in the absence of opportunities for fecal feeding were not significantly different in Wp (3.45 days) vs Wn (3.27), and in Np (4.60) vs Nn (4.48). In contrast, in the presence of fecal feeding, the 50% survival times for the pinworm-infected Wp (4.04) and Np (6.65) were significantly longer than those for the pinworm-free Wn (2.77) and Nn (5.46). The number of survival days without feeding was significantly higher in the pinworm-infected group given the opportunity to eat feces than in the non-infected group. These results suggest that pinworm infection of cockroaches during starvation, in association with fecal feeding, may be associated with longer survival.


Assuntos
Fezes , Animais , Fezes/parasitologia , Blattellidae/parasitologia , Análise de Sobrevida , Enterobius/isolamento & purificação , Baratas/parasitologia , Comportamento Alimentar
12.
Sci Rep ; 14(1): 9762, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684676

RESUMO

The American cockroach, Periplaneta americana (Linnaeus, 1758) (Blattodea: Blattidae), is one of the most common pests that thrive in diverse environments and carries various pathogens, causing critical threats to public health and the ecosystem. We thus report in this study the first observation of decapitated American cockroaches as a result of infestation with scuttle fly parasitoids. Interestingly, behavioral alterations in the form of zombification-like behavior could be observed in cockroaches reared in the laboratory before being decapitated, implying that the insect targets cockroach heads. To identify this parasitoid, cockroaches' corpora were isolated in jars, and apodous larvae were observed. Larvae developed into small coarctate pupae, and adults emerged. The scuttle flies were collected and exhibited tiny black, brown, to yellowish bodies. The fly was initially identified based on its morphological properties as a member of the order Diptera, family Phoridae. To provide further insights into the morphological attributes of the phorid species, the fly was examined using a scanning electron microscope (SEM) and then identified as Megaselia scalaris accordingly. SEM analysis revealed the distinctive structure of M. scalaris concerning the head, mouth parts, and legs. Specifically, the mouth parts include the labrum, labellum, rostrum, and maxillary palps. Although further investigations are still required to understand the complicated relationships between M. scalaris and American cockroaches, our findings provide a prominent step in the control of American cockroaches using M. scalaris as an efficient biological control agent.


Assuntos
Dípteros , Periplaneta , Animais , Periplaneta/parasitologia , Dípteros/fisiologia , Controle Biológico de Vetores/métodos , Larva/fisiologia , Pupa
13.
J Parasit Dis ; 48(1): 67-73, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38440767

RESUMO

American cockroach (Periplaneta americana) has been implicated as mechanical vector of parasites of humans and animals. Therefore, this study aimed to identify and determine the prevalence of human intestinal parasites associated with the body surface and gut of P. americana. A total of 221 cockroaches which include 104 males and 117 females were collected from household kitchen, toilet area and canteen after which they were brought to laboratory for study. The body surface of the cockroach was washed with 5 ml normal saline solution to remove external parasites on the body surface for examination and later rinsed with 70% alcohol and dried before dissecting. The cockroach was dissected to examine internal parasites. Eleven parasites were recovered and identified, these include Ascaris lumbricoides (51.58%), Strongyloides stercoralis (48.42%) Trichuris trichiura (52.49%), Enterobius vermicularis (37.10%), Taenia spp (14.93%), Toxocara (31.67%), Ancylostoma spp (34.84%), Necator americanus (53.39%), and Diphylidium spp (66.23%) Balantidium coli (66.52%). The parasites were recorded both on the body surface and gut of the cockroach. There is no significant difference (p > 0.05) between parasites infection rate comparing both sexes; though, female cockroach having a higher infection rate (91.45%) than male (81.5%). Cockroach collected from toilets carried more parasites (96.34%) as compared to those from restaurants/canteen (89.71%) and household kitchens (81.69%). All parasites encountered were pathogenic to human and animals. This study has revealed that P. americana can act as mechanical vector by transporting and transmitting these parasites easily to man and animal. Good sanitary practices, reinforcement of worms' eradication programs, and the fight against these insects remain a necessity to contain the menace of parasites burden and cockroach control.

14.
Insects ; 15(3)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38535367

RESUMO

The Turkestan cockroach, Periplaneta lateralis (Walker), is an invasive urban pest prevalent in dry areas of the southwestern United States. Treatment with liquid spray formulations containing insecticides is the most conventional method to decrease Turkestan cockroach population abundance around buildings. Intensive application of insecticide treatments near natural environments has prompted concerns regarding the impacts on non-target aquatic and terrestrial ecosystems. Technologies embedding insecticides in a paint matrix have successfully been used for the long-term reduction in disease-vector populations in tropical areas. Here, we evaluated the potential effectiveness of three pyrethroid-based paints against Turkestan cockroach nymphs on common surfaces inhabited by this species. Turkestan cockroaches continuously exposed for 1 h to 1-month aged alphacypermethrin and deltamethrin paints applied to concrete, metal, or PVC caused moderate to high mortality. Evaluations using choice boxes indicated that deltamethrin and transfluthrin paints had combined lethal and repellent effects on cockroaches. Alphacypermethrin also caused repellency and killed cockroaches rapidly. We discuss the implications of these findings on cockroach control practices.

15.
FASEB J ; 38(5): e23531, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38466220

RESUMO

Inhaled aeroallergens can directly activate airway epithelial cells (AECs). Exposure to cockroach allergens is a strong risk factor for asthma. Cockroach allergens mediate some of their effects through their serine protease activity; protease activity is also a major contributor to allergenicity. The Th2 cytokine interleukin-13 (IL-13) induces upregulation of the eosinophil chemotactic factor CCL26. CCL26 induces eosinophil migration in allergic inflammation. In this work, we studied the effect of cockroach proteases on IL-13-induced effects. Immersed cultures of the human bronchial epithelial cell line BEAS-2B and air-liquid interface (ALI) cultures of primary normal human bronchial epithelial (NHBE) cells were stimulated with IL-13, Blattella Germanica cockroach extract (CE), or both. IL-13-induced genes were analyzed with qRT-PCR. IL-13 induced upregulation of CCL26, periostin, and IL-13Rα2 in bronchial epithelial cells which were decreased by CE. CE was heat-inactivated (HICE) or pre-incubated with protease inhibitors. HICE and CE preincubated with serine protease inhibitors did not prevent IL-13-induced CCL26 upregulation. CE-degraded IL-13 and specific cleavage sites were identified. CE also decreased IL-4-induced CCL26 upregulation and degraded IL-4. Other serine proteases such as bovine trypsin and house dust mite (HDM) serine proteases did not have the same effects on IL-13-induced CCL26. We conclude that CE serine proteases antagonize IL-13-induced effects in AECs, and this CE effect is mediated primarily through proteolytic cleavage of IL-13. IL-13 cleavage by cockroach serine proteases may modulate CCL26-mediated effects in allergic airway inflammation by interfering directly with the pro-inflammatory effects of IL-13 in vivo.


Assuntos
Blattellidae , Humanos , Animais , Bovinos , Interleucina-13 , Interleucina-4 , Serina Proteases , Serina Endopeptidases , Inflamação , Quimiocina CCL26
16.
PeerJ ; 12: e17095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525276

RESUMO

The brown-banded cockroach (Supella longipalpa) is a widespread nuisance and public health pest. Like the German cockroach (Blattella germanica), this species is adapted to the indoor biome and completes the entirety of its life cycle in human-built structures. Recently, understanding the contributions of commensal and symbiotic microbes to the biology of cockroach pests, as well as the applications of targeting these microbes for pest control, have garnered significant scientific interest. However, relative to B. germanica, the biology of S. longipalpa, including its microbial associations, is understudied. Therefore, the goal of the present study was to quantitatively examine and characterize both the endosymbiont and gut bacterial communities of S. longipalpa for the first time. To do so, bacterial 16S rRNA gene amplicon sequencing was conducted on DNA extracts from whole adult females and males, early instar nymphs, and late instar nymphs. The results demonstrate that the gut microbiome is dominated by two genera of bacteria known to have beneficial probiotic effects in other organisms, namely Lactobacillus and Akkermansia. Furthermore, our data show a significant effect of nymphal development on diversity and variation in the gut microbiome. Lastly, we reveal significant negative correlations between the two intracellular endosymbionts, Blattabacterium and Wolbachia, as well as between Blattabacterium and the gut microbiome, suggesting that Blattabacterium endosymbionts could directly or indirectly influence the composition of other bacterial populations. These findings have implications for understanding the adaptation of S. longipalpa to the indoor biome, its divergence from other indoor cockroach pest species such as B. germanica, the development of novel control approaches that target the microbiome, and fundamental insect-microbe interactions more broadly.


Assuntos
Blattellidae , Flavobacteriaceae , Microbioma Gastrointestinal , Masculino , Animais , Feminino , Adulto , Humanos , Blattellidae/genética , RNA Ribossômico 16S/genética , Flavobacteriaceae/genética , Simbiose/genética
17.
Neotrop Entomol ; 53(3): 694-700, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38478302

RESUMO

Lactones are cyclic esters of hydroxy carboxylic acids, present in several fruits and animals consumed by humans. There is evidence that some lactones modify insect behavior. The aim of the present study was to evaluate the repellent effect of four lactones (γ- and δ-nonalactone, and γ- and δ-dodecalactone) in first instar nymphs of the German cockroach, Blattella germanica (Linnaeus). To assess repellency, a nymph was placed on a circle of filter paper, half of which had been treated with lactone dissolved in acetone and the other half with acetone alone. The behavior of the nymph was recorded and the time the nymph spent in each half of the paper was quantified using Ethovision XT 10.1 software. Values of Distribution Coefficient (DC) were calculated: DC = (Tt - TA) / Tt, where Tt is the experimental time and TA is the time the nymph spent in the area treated with the repellent agent. DC can vary between 0 and 1. Values significantly higher than 0.5 indicate repellency. N,N-diethyl-meta-toluamide (DEET) was used as a positive control. DEET, δ- and γ-nonalactone caused repellency as from 77.9 µg/cm2, whereas γ- and δ-dodecalactone had a repellent effect starting at 779.0 µg/cm2. The values of DC for these concentrations were 0.89 (DEET), 0.86 (γ-nonalactone), 0.87 (δ-nonalactone), 0.83 (γ-dodecalactone), and 0.72 (δ-dodecalactone). To our knowledge, this is the first report of repellency produced by lactones in the German cockroach. This work allowed to identify two lactones that have a repellent effect similar to DEET.


Assuntos
Blattellidae , Repelentes de Insetos , Lactonas , Animais , Blattellidae/efeitos dos fármacos
18.
Sci China Life Sci ; 67(7): 1455-1467, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38523236

RESUMO

Volatile sex pheromones are vital for sexual communication between males and females. Females of the American cockroach, Periplaneta americana, produce and emit two sex pheromone components, periplanone-A (PA) and periplanone-B (PB). Although PB is the major sex attractant and can attract males, how it interacts with PA in regulating sexual behaviors is still unknown. In this study, we found that in male cockroaches, PA counteracted PB attraction. We identified two odorant receptors (ORs), OR53 and OR100, as PB/PA and PA receptors, respectively. OR53 and OR100 were predominantly expressed in the antennae of sexually mature males, and their expression levels were regulated by the sex differentiation pathway and nutrition-responsive signals. Cellular localization of OR53 and OR100 in male antennae further revealed that two types of sensilla coordinate a complex two-pheromone-two-receptor pathway in regulating cockroach sexual behaviors. These findings indicate distinct functions of the two sex pheromone components, identify their receptors and possible regulatory mechanisms underlying the male-specific and age-dependent sexual behaviors, and can guide novel strategies for pest management.


Assuntos
Periplaneta , Receptores Odorantes , Atrativos Sexuais , Comportamento Sexual Animal , Animais , Masculino , Atrativos Sexuais/metabolismo , Feminino , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Periplaneta/metabolismo , Periplaneta/fisiologia , Periplaneta/genética , Comportamento Sexual Animal/fisiologia , Antenas de Artrópodes/metabolismo , Antenas de Artrópodes/fisiologia , Comunicação Animal , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Receptores de Feromônios/metabolismo , Receptores de Feromônios/genética
19.
Cell Rep ; 43(3): 113889, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416646

RESUMO

The mystery of appendage regeneration has fascinated humans for centuries, while the underlying regulatory mechanisms remain unclear. In this study, we establish a transcriptional landscape of regenerating leg in the American cockroach, Periplaneta americana, an ideal model in appendage regeneration studies showing remarkable regeneration capacity. Through a large-scale in vivo screening, we identify multiple signaling pathways and transcription factors controlling leg regeneration. Specifically, zfh-2 and bowl contribute to blastema cell proliferation and morphogenesis in two transcriptional cascades: bone morphogenetic protein (BMP)/JAK-STAT-zfh-2-B-H2 and Notch-drm/bowl-bab1. Notably, we find zfh-2 is working as a direct target of BMP signaling to promote cell proliferation in the blastema. These mechanisms might be conserved in the appendage regeneration of vertebrates from an evolutionary perspective. Overall, our findings reveal that two crucial transcriptional cascades orchestrate distinct cockroach leg regeneration processes, significantly advancing the comprehension of molecular mechanism in appendage regeneration.


Assuntos
Baratas , Animais , Humanos , Fatores de Transcrição , Morfogênese
20.
Zookeys ; 1191: 1-21, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357249

RESUMO

We examined new Allacta materials from Yunnan and Hainan Province, China, and discovered new species using both morphological and molecular species delimitation (ABGD) methods. Five new species are described: A.bifolium Li & Wang, sp. nov., A.hemiptera Li & Wang, sp. nov., A.lunulara Li & Wang, sp. nov., A.redacta Li & Wang, sp. nov., and A.unicaudata Li & Wang, sp. nov. All five species are placed under the hamifera species group. An updated key and checklist of Allacta species from China are provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...