Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1866(7): 184371, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39025256

RESUMO

Septins are cytoskeletal proteins and their interaction with membranes is crucial for their role in various cellular processes. Septins have polybasic regions (PB1 and PB2) which are important for lipid interaction. Earlier, we and others have highlighted the role of the septin C-terminal domain (CTD) to membrane interaction. However, detailed information on residues/group of residues important for such feature is lacking. In this study, we investigate the lipid-binding profile of Schistosoma mansoni Septin10 (SmSEPT10) using PIP strip and Langmuir monolayer adsorption assays. Our findings highlight the CTD as the primary domain responsible for lipid interaction in SmSEPT10, showing binding to phosphatidylinositol phosphates. SmSEPT10 CTD contains a conserved polybasic region (PB3) present in both animals and fungi septins, and a Lys (K367) within its putative amphipathic helix (AH) that we demonstrate as important for lipid binding. PB3 deletion or mutation of this Lys (K367A) strongly impairs lipid interaction. Remarkably, we observe that the AH within a construct lacking the final 43 amino acid residues is insufficient for lipid binding. Furthermore, we investigate the homocomplex formed by SmSEPT10 CTD in solution by cross-linking experiments, CD spectroscopy, SEC-MALS and SEC-SAXS. Taken together, our studies define the lipid-binding region in SmSEPT10 and offer insights into the molecular basis of septin-membrane binding. This information is particularly relevant for less-studied non-human septins, such as SmSEPT10.


Assuntos
Schistosoma mansoni , Septinas , Schistosoma mansoni/genética , Schistosoma mansoni/metabolismo , Septinas/metabolismo , Septinas/química , Septinas/genética , Animais , Ligação Proteica , Domínios Proteicos , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Lipídeos/química
2.
Front Cell Dev Biol ; 9: 765085, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869357

RESUMO

In order to fully understand any complex biochemical system from a mechanistic point of view, it is necessary to have access to the three-dimensional structures of the molecular components involved. Septins and their oligomers, filaments and higher-order complexes are no exception. Indeed, the spontaneous recruitment of different septin monomers to specific positions along a filament represents a fascinating example of subtle molecular recognition. Over the last few years, the amount of structural information available about these important cytoskeletal proteins has increased dramatically. This has allowed for a more detailed description of their individual domains and the different interfaces formed between them, which are the basis for stabilizing higher-order structures such as hexamers, octamers and fully formed filaments. The flexibility of these structures and the plasticity of the individual interfaces have also begun to be understood. Furthermore, recently, light has been shed on how filaments may bundle into higher-order structures by the formation of antiparallel coiled coils involving the C-terminal domains. Nevertheless, even with these advances, there is still some way to go before we fully understand how the structure and dynamics of septin assemblies are related to their physiological roles, including their interactions with biological membranes and other cytoskeletal components. In this review, we aim to bring together the various strands of structural evidence currently available into a more coherent picture. Although it would be an exaggeration to say that this is complete, recent progress seems to suggest that headway is being made in that direction.

3.
J Mol Biol ; 433(9): 166889, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33639214

RESUMO

Septins are an example of subtle molecular recognition whereby different paralogues must correctly assemble into functional filaments important for essential cellular events such as cytokinesis. Most possess C-terminal domains capable of forming coiled coils which are believed to be involved in filament formation and bundling. Here, we report an integrated structural approach which aims to unravel their architectural diversity and in so doing provide direct structural information for the coiled-coil regions of five human septins. Unexpectedly, we encounter dimeric structures presenting both parallel and antiparallel arrangements which are in consonance with molecular modelling suggesting that both are energetically accessible. These sequences therefore code for two metastable states of different orientations which employ different but overlapping interfaces. The antiparallel structures present a mixed coiled-coil interface, one side of which is dominated by a continuous chain of core hydrophilic residues. This unusual type of coiled coil could be used to expand the toolkit currently available to the protein engineer for the design of previously unforeseen coiled-coil based assemblies. Within a physiological context, our data provide the first atomic details related to the assumption that the parallel orientation is likely formed between septin monomers from the same filament whilst antiparallelism may participate in the widely described interfilament cross bridges necessary for higher order structures and thereby septin function.


Assuntos
Septinas/química , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Septinas/metabolismo , Soluções , Termodinâmica
4.
Parasitol Res ; 120(3): 1067-1076, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33515065

RESUMO

Giardia intestinalis is a human parasite that causes a diarrheal disease in developing countries. G. intestinalis has a cytoskeleton (CSK) composed of microtubules and microfilaments, and the Giardia genome does not code for the canonical CSK-binding proteins described in other eukaryotic cells. To identify candidate actin and tubulin cross-linking proteins, we performed a BLAST analysis of the Giardia genome using a spectraplakins consensus sequence as a query. Based on the highest BLAST score, we selected a 259-kDa sequence designated as a cytoskeleton linker protein (CLP259). The sequence was cloned in three fragments and characterized by immunoprecipitation, confocal microscopy, and mass spectrometry (MS). CLP259 was located in the cytoplasm in the form of clusters of thick rods and colocalized with actin at numerous sites and with tubulin in the median body. Immunoprecipitation followed by mass spectrometry revealed that CLP259 interacts with structural proteins such as giardins, SALP-1, axonemal, and eight coiled-coils. The vesicular traffic proteins detected were Mu adaptin, Vacuolar ATP synthase subunit B, Bip, Sec61 alpha, NSF, AP complex subunit beta, and dynamin. These results indicate that CLP259 in trophozoites is a CSK linker protein for actin and tubulin and could act as a scaffold protein driving vesicular traffic.


Assuntos
Actinas/metabolismo , Giardia lamblia/metabolismo , Plaquinas/metabolismo , Tubulina (Proteína)/metabolismo , Actinas/química , Sequência de Aminoácidos , Animais , Anquirinas/química , Sequência de Bases , Western Blotting , Biologia Computacional , Sequência Consenso , Citoplasma/química , Citoesqueleto/química , Citoesqueleto/fisiologia , Citoesqueleto/ultraestrutura , Dinaminas/análise , Feminino , Imunofluorescência , Giardia lamblia/química , Giardia lamblia/ultraestrutura , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Plaquinas/química , Alinhamento de Sequência , Tubulina (Proteína)/química
5.
Cells ; 8(11)2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671734

RESUMO

Neurons release neurotransmitters at a specialized region of the presynaptic membrane, the active zone (AZ), where a complex meshwork of proteins organizes the release apparatus. The formation of this proteinaceous cytomatrix at the AZ (CAZ) depends on precise homo- and hetero-oligomerizations of distinct CAZ proteins. The CAZ protein CAST1/ERC2 contains four coiled-coil (CC) domains that interact with other CAZ proteins, but also promote self-assembly, which is an essential step for its integration during AZ formation. The self-assembly and synaptic recruitment of the Drosophila protein Bruchpilot (BRP), a partial homolog of CAST1/ERC2, is modulated by the serine-arginine protein kinase (SRPK79D). Here, we demonstrate that overexpression of the vertebrate SRPK2 regulates the self-assembly of CAST1/ERC2 in HEK293T, SH-SY5Y and HT-22 cells and the CC1 and CC4 domains are involved in this process. Moreover, the isoform SRPK2 forms a complex with CAST1/ERC2 when co-expressed in HEK293T and SH-SY5Y cells. More importantly, SRPK2 is present in brain synaptic fractions and synapses, suggesting that this protein kinase might control the level of self-aggregation of CAST1/ERC2 in synapses, and thereby modulate presynaptic assembly.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Neurônios/metabolismo , Multimerização Proteica , Proteínas Serina-Treonina Quinases/fisiologia , Sinapses/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Células Cultivadas , Proteínas do Citoesqueleto/química , Embrião de Mamíferos , Feminino , Células HEK293 , Humanos , Neurônios/citologia , Multimerização Proteica/genética , Proteínas Serina-Treonina Quinases/genética , Ratos , Ratos Sprague-Dawley , Sinapses/química , Sinapses/genética
6.
J Pept Sci ; 25(3): e3149, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30746861

RESUMO

Human pathogenic gram-negative bacteria, such as enteropathogenic Escherichia coli (EPEC), rely on type III secretion systems (T3SS) to translocate virulence factors directly into host cells. The coiled-coil domains present in the structural proteins of T3SS are conformed by amphipathic alpha-helical structures that play an important role in the protein-protein interaction and are essential for the assembly of the translocation complex. To investigate the inhibitory capacity of these domains on the T3SS of EPEC, we synthesized peptides between 7 and 34 amino acids based on the coiled-coil domains of proteins that make up this secretion system. This analysis was performed through in vitro hemolysis assays by assessing the reduction of T3SS-dependent red blood cell lysis in the presence of the synthesized peptides. After confirming its inhibitory capacity, we performed molecular modeling assays using combined techniques, docking-molecular dynamic simulations, and quantum-mechanic calculations of the various peptide-protein complexes, to improve the affinity of the peptides to the target proteins selected from T3SS. These techniques allowed us to demonstrate that the peptides with greater inhibitory activity, directed against the coiled-coil domain of the C-terminal region of EspA, present favorable hydrophobic and hydrogen bond molecular interactions. Particularly, the hydrogen bond component is responsible for the stabilization of the peptide-protein complex. This study demonstrates that compounds targeting T3SS from pathogenic bacteria can indeed inhibit bacterial infection by presenting a higher specificity than broad-spectrum antibiotics. In turn, these peptides could be taken as initial structures to design and synthesize new compounds that mimic their inhibitory pharmacophoric pattern.


Assuntos
Antibacterianos/farmacologia , Escherichia coli Enteropatogênica/efeitos dos fármacos , Escherichia coli Enteropatogênica/metabolismo , Peptídeos/farmacologia , Sistemas de Secreção Tipo III/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Dicroísmo Circular , Escherichia coli Enteropatogênica/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Peptídeos/síntese química , Peptídeos/química , Termodinâmica
7.
J Allergy Clin Immunol ; 143(2): 591-603.e3, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29935218

RESUMO

BACKGROUND: The effect of Staphylococcus aureus on nasal epithelial repair has never been assessed in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). OBJECTIVE: This study aimed to determine whether (1) nasal epithelial cell cultures from patients with CRSwNP and control subjects repair differently; (2) S aureus exoproducts compromise nasal epithelial repair; (3) S aureus alters lamellipodial dynamics; and (4) deleterious effects could be counteracted by the Rho-associated coiled-coil kinase inhibitor Y-27632. METHODS: Primary nasal epithelial cells (pNECs) collected during surgeries were cultured and injured under 3 conditions: (1) basal conditions, (2) exposed to S aureus exoproducts, and (3) exposed to S aureus exoproducts and Y-27632. Epithelial repair, lamellipodial dynamics, and cytoskeletal organization were assessed. RESULTS: Under basal conditions, pNEC cultures from patients with CRSwNP presented significantly lower repair rates and reduced lamellipodial protrusion length and velocity than those from control subjects. S aureus exoproducts significantly decreased repair rates and protrusion dynamics in both control subjects and patients with CRSwNP; however, the effect of S aureus on cell protrusions was more sustained over time in patients with CRSwNP. Under basal conditions, immunofluorescence assays showed significantly reduced percentages of cells with lamellipodia at the wound edge in patients with CRSwNP compared with control subjects. S aureus altered cell polarity and decreased the percentage of cells with lamellipodia in both groups. Finally, Y-27632 prevented the deleterious effects of S aureus exoproducts on CRSwNP repair rates, as well as on lamellipodial dynamics and formation. CONCLUSIONS: S aureus exoproducts significantly alter epithelial repair and lamellipodial dynamics on pNECs, and this impairment was more pronounced in patients with CRSwNP. Importantly, Y-27632 restored epithelial repair and lamellipodial dynamics in the presence of S aureus exoproducts.


Assuntos
Pólipos Nasais/imunologia , Seios Paranasais/patologia , Mucosa Respiratória/fisiologia , Rinite/imunologia , Sinusite/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Adulto , Idoso , Amidas/farmacologia , Células Cultivadas , Doença Crônica , Citoesqueleto/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Seios Paranasais/microbiologia , Piridinas/farmacologia , Mucosa Respiratória/patologia , Cicatrização , Quinases Associadas a rho/metabolismo
8.
J Oral Pathol Med ; 47(2): 121-127, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29052912

RESUMO

BACKGROUND: Rho-associated coiled-coil kinase 2 (ROCK2) is an oncoprotein that controls cytoskeleton organization and acts as prognostic marker in different types of solid tumors. ROCK2 overexpression is also observed in cancer-associated fibroblasts (CAF), which suggests its relevance within the tumor microenvironment. This study aimed to access the prognostic value of ROCK2 in oral squamous cell carcinomas (OSCCs) and its association with CAF density. METHODS: Rho-associated coiled-coil kinase 2 immunohistochemical analysis was applied in 93 OSCC samples from 2 centers in Brazil and Finland. The samples were also stained for isoform α of smooth muscle actin (α-SMA) to characterize the presence of CAF in the tumor stroma. Clinicopathological associations were analyzed using Chi-squared test, survival curves were constructed according to the Kaplan-Meier method, and Cox proportional hazard model was applied for multivariate survival analysis. RESULTS: Advanced clinical stage (P = .002) and increased density of CAF (P = .002) were significantly associated with high ROCK2 expression. The high expression of ROCK2 was also associated with shortened disease-specific survival (HR: 2.22, 95% CI: 1.15-4.38, P = .04), but the association did not withstand the Cox multivariate survival analysis. CONCLUSIONS: The findings suggest that high ROCK2 expression in OSCC is associated with advanced disease and follows the increase in CAF density, which may be important for tumor progression.


Assuntos
Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/enzimologia , Neoplasias Bucais/patologia , Quinases Associadas a rho/metabolismo , Actinas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Consumo de Bebidas Alcoólicas , Biomarcadores Tumorais/análise , Brasil , Fibroblastos Associados a Câncer/patologia , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/cirurgia , Feminino , Finlândia , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/mortalidade , Neoplasias Bucais/cirurgia , Análise Multivariada , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Fatores de Risco , Fumar , Análise de Sobrevida , Microambiente Tumoral
9.
Biol. Res ; 48: 1-15, 2015. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-950812

RESUMO

BACKGROUND: The collective cell migration of stratified epithelial cells is considered to be an important phenomenon in wound healing, development, and cancer invasion; however, little is known about the mechanisms involved. Furthermore, whereas Rho family proteins, including RhoA, play important roles in cell migration, the exact role of Rho-associated coiled coil-containing protein kinases (ROCKs) in cell migration is controversial and might be cell-type dependent. Here, we report the development of a novel modified scratch assay that was used to observe the collective cell migration of stratified TE-10 cells derived from a human esophageal cancer specimen. RESULTS: Desmosomes were found between the TE-10 cells and microvilli of the surface of the cell sheet. The leading edge of cells in the cell sheet formed a simple layer and moved forward regularly; these rows were followed by the stratified epithelium. ROCK inhibitors and ROCK small interfering RNAs (siRNAs) disturbed not only the collective migration of the leading edge of this cell sheet, but also the stratified layer in the rear. In contrast, RhoA siRNA treatment resulted in more rapid migration of the leading rows and disturbed movement of the stratified portion. CONCLUSIONS: The data presented in this study suggest that ROCKs play an important role in mediating the collective migration of TE-10 cell sheets. In addition, differences between the effects of siRNAs targeting either RhoA or ROCKs suggested that distinct mechanisms regulate the collective cell migration in the simple epithelium of the wound edge versus the stratified layer of the epithelium.


Assuntos
Humanos , Movimento Celular/fisiologia , RNA Interferente Pequeno/farmacologia , Quinases Associadas a rho/fisiologia , Neoplasias Esofágicas , MicroRNAs/fisiologia , Linhagem Celular Tumoral , Quinases Associadas a rho/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA