Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Med Phys ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977285

RESUMO

BACKGROUND: The dynamic collimation system (DCS) provides energy layer-specific collimation for pencil beam scanning (PBS) proton therapy using two pairs of orthogonal nickel trimmer blades. While excellent measurement-to-calculation agreement has been demonstrated for simple cube-shaped DCS-trimmed dose distributions, no comparison of measurement and dose calculation has been made for patient-specific treatment plans. PURPOSE: To validate a patient-specific quality assurance (PSQA) process for DCS-trimmed PBS treatment plans and evaluate the agreement between measured and calculated dose distributions. METHODS: Three intracranial patient cases were considered. Standard uncollimated PBS and DCS-collimated treatment plans were generated for each patient using the Astroid treatment planning system (TPS). Plans were recalculated in a water phantom and delivered at the Miami Cancer Institute (MCI) using an Ion Beam Applications (IBA) dedicated nozzle system and prototype DCS. Planar dose measurements were acquired at two depths within low-gradient regions of the target volume using an IBA MatriXX ion chamber array. RESULTS: Measured and calculated dose distributions were compared using 2D gamma analysis with 3%/3 mm criteria and low dose threshold of 10% of the maximum dose. Median gamma pass rates across all plans and measurement depths were 99.0% (PBS) and 98.3% (DCS), with a minimum gamma pass rate of 88.5% (PBS) and 91.2% (DCS). CONCLUSIONS: The PSQA process has been validated and experimentally verified for DCS-collimated PBS. Dosimetric agreement between the measured and calculated doses was demonstrated to be similar for DCS-collimated PBS to that achievable with noncollimated PBS.

2.
Pediatr Radiol ; 54(5): 758-763, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38308740

RESUMO

BACKGROUND: Adaptive collimation reduces the dose deposited outside the imaged volume along the z-axis. An increase in the dose deposited outside the imaged volume (to the lens and thyroid) in the z-axis direction is a concern in paediatric computed tomography (CT). OBJECTIVE: To compare the dose deposited outside the imaged volume (to the lens and thyroid) between 40-mm and 80-mm collimation during thoracic paediatric helical CT. MATERIALS AND METHODS: We used anthropomorphic phantoms of newborns and 5-year-olds with 40-mm and 80-mm collimation during helical CT. We compared the measured dose deposited outside the imaged volume using optically stimulated luminescence dosimeters (OSLD) at the surfaces of the lens and thyroid and the image noise between the 40-mm and 80-mm collimations. RESULTS: There were significant differences in the dose deposited outside the imaged volume (to the lens and thyroid) between the 40-mm and 80-mm collimations for both phantoms (P < 0.01). CONCLUSION: Compared with that observed for 80-mm collimation in helical CT scans of the paediatric thorax, the dose deposited outside the imaged volume (to the lens and thyroid) was significantly lower in newborns and 5-year-olds with 40-mm collimation.


Assuntos
Cristalino , Imagens de Fantasmas , Doses de Radiação , Radiografia Torácica , Glândula Tireoide , Humanos , Glândula Tireoide/diagnóstico por imagem , Recém-Nascido , Cristalino/diagnóstico por imagem , Cristalino/efeitos da radiação , Radiografia Torácica/métodos , Radiografia Torácica/instrumentação , Pré-Escolar , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada Espiral/métodos
3.
J Appl Clin Med Phys ; 25(2): e14173, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37858985

RESUMO

The purpose is to reduce normal tissue radiation toxicity for electron therapy through the creation of a surface-conforming electron multileaf collimator (SCEM). The SCEM combines the benefits of skin collimation, electron conformal radiotherapy, and modulated electron radiotherapy. An early concept for the SCEM was constructed. It consists of leaves that protrude towards the patient, allowing the leaves to conform closely to irregular patient surfaces. The leaves are made of acrylic to decrease bremsstrahlung, thereby decreasing the out-of-field dose. Water tank scans were performed with the SCEM in place for various field sizes for all available electron energies (6, 9, 12, and 15 MeV) with a 0.5 cm air gap to the water surface at 100 cm source-to-surface distance (SSD). These measurements were compared with Cerrobend cutouts with the field size-matched at 100 and 110 cm SSD. Output factor measurements were taken in solid water for each energy at dmax for both the cerrobend cutouts and SCEM at 100 cm SSD. Percent depth dose (PDD) curves for the SCEM shifted shallower for all energies and field sizes. The SCEM also produced a higher surface dose relative to Cerrobend cutouts, with the maximum being a 9.8% increase for the 3 cm × 9 cm field at 9 MeV. When compared to the Cerrobend cutouts at 110 cm SSD, the SCEM showed a significant decrease in the penumbra, particularly for lower energies (i.e., 6 and 9 MeV). The SCEM also showed reduced out-of-field dose and lower bremsstrahlung production than the Cerrobend cutouts. The SCEM provides significant improvement in the penumbra and out-of-field dose by allowing collimation close to the skin surface compared to Cerrobend cutouts. However, the added scatter from the SCEM increases shallow PDD values. Future work will focus on reducing this scatter while maintaining the penumbra and out-of-field benefits the SCEM has over conventional collimation.


Assuntos
Elétrons , Aceleradores de Partículas , Humanos , Dosagem Radioterapêutica , Radiometria , Planejamento da Radioterapia Assistida por Computador , Água
4.
Discov Nano ; 18(1): 160, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127160

RESUMO

A simple numerical method is proposed for the design of two aspherical surfaces, each comprising multiple segmented refractive planes, for generating a collimated beam with a specific irradiance profile in a beam shaping system with a divergent light source. However, in real-world manufacturing, this performance improvement is obtained at the expense of a greater cost and complexity. Accordingly, a second algorithm is proposed which maximizes the number of rays passing through the central regions of the refractive planes in the second aspherical surface and hence minimizes the total number of segments required to achieve the same beam shaping performance. The feasibility of the proposed method is demonstrated through the design of two aspherical lenses for generating collimated output beams with ring- and triangle-like irradiance profiles, respectively. The experimental results show that the beam profiles are in close agreement with the desired irradiance distributions. In general, the results indicate that the proposed method provides a versatile and efficient approach for achieving the desired collimated profile in beam forming systems with a divergent light source.

5.
Med Phys ; 50(12): 7462-7477, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37905916

RESUMO

BACKGROUND: Myocardial perfusion imaging is commonly performed using SPECT, where both general-purpose and dedicated scanners are available. A limitation with general-purpose systems has been the inability to image dynamically since different projections are obtained far apart in time due to scanner rotation. Dedicated systems can have this capability since they acquire completely sampled projections (i.e., those with enough angular views for reconstruction) with short time frames. C-SPECT, does not need any scanner or patient motion to obtain complete projections, allowing fast dynamics. When imaging fast dynamics, the optimal collimator settings are not necessarily the same as for static imaging, where longer acquisitions can be utilized. Thus, C-SPECT offers adaptive collimation in the transverse and axial directions. PURPOSE: The performance of adaptation in the axial direction was characterized herein. METHODS: The ratio of the resolution metric in high-sensitivity mode to that in the high-resolution mode, termed resolution boost factor, was determined. Analogously, the sensitivity boost factor was also determined. Comparisons were made with theory and simulations. RESULTS: The boost factors for resolution and sensitivity, averaged over the 14 modules of the system, were determined to be 1.72 and 1.75, respectively. CONCLUSIONS: The boost factors, which ideally would be two, were between 10% and 15% below optimal values and tracked each other, suggesting mechanical challenges in the apparatus, such as incomplete closure of adjacent slats, but show reasonably successful adaptation between modes.


Assuntos
Algoritmos , Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Imagens de Fantasmas , Rotação
6.
Biomed Phys Eng Express ; 9(6)2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37832529

RESUMO

Objective.To integrate a Dynamic Collimation System (DCS) into a pencil beam scanning (PBS) proton therapy system and validate its dosimetric impact.Approach.Uncollimated and collimated treatment fields were developed for clinically relevant targets using an in-house treatment plan optimizer and an experimentally validated Monte Carlo model of the DCS and IBA dedicated nozzle (DN) system. The dose reduction induced by the DCS was quantified by calculating the mean dose in 10- and 30-mm two-dimensional rinds surrounding the target. A select number of plans were then used to experimentally validate the mechanical integration of the DCS and beam scanning controller system through measurements with the MatriXX-PT ionization chamber array and EBT3 film. Absolute doses were verified at the central axis at various depths using the IBA MatriXX-PT and PPC05 ionization chamber.Main results.Simulations demonstrated a maximum mean dose reduction of 12% for the 10 mm rind region and 45% for the 30 mm rind region when utilizing the DCS. Excellent agreement was observed between Monte Carlo simulations, EBT3 film, and MatriXX-PT measurements, with gamma pass rates exceeding 94.9% for all tested plans at the 3%/2 mm criterion. Absolute central axis doses showed an average verification difference of 1.4% between Monte Carlo and MatriXX-PT/PPC05 measurements.Significance.We have successfully dosimetrically validated the delivery of dynamically collimated proton therapy for clinically relevant delivery patterns and dose distributions with the DCS. Monte Carlo simulations were employed to assess dose reductions and treatment planning considerations associated with the DCS.


Assuntos
Terapia com Prótons , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Imagens de Fantasmas , Radiometria
7.
Biomed Phys Eng Express ; 9(4)2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37267924

RESUMO

Objective. Proton therapy conformity has improved over the years by evolving from passive scattering to spot scanning delivery technologies with smaller proton beam spot sizes. Ancillary collimation devices, such the Dynamic Collimation System (DCS), further improves high dose conformity by sharpening the lateral penumbra. However, as spot sizes are reduced, collimator positional errors play a significant impact on the dose distributions and hence accurate collimator to radiation field alignment is critical.Approach. The purpose of this work was to develop a system to align and verify coincidence between the center of the DCS and the proton beam central axis. The Central Axis Alignment Device (CAAD) is composed of a camera and scintillating screen-based beam characterization system. Within a light-tight box, a 12.3-megapixel camera monitors a P43/Gadox scintillating screen via a 45° first-surface mirror. When a collimator trimmer of the DCS is placed in the uncalibrated center of the field, the proton radiation beam continuously scans a 7×7 cm2square field across the scintillator and collimator trimmer while a 7 s exposure is acquired. From the relative positioning of the trimmer to the radiation field, the true center of the radiation field can be calculated.Main results.The CAAD can calculate the offset between the proton beam radiation central axis and the DCS central axis within 0.054 mm accuracy and 0.075 mm reproducibility.Significance.Using the CAAD, the DCS is now able to be aligned accurately to the proton radiation beam central axis and no longer relies on an x-ray source in the gantry head which is only validated to within 1.0 mm of the proton beam.


Assuntos
Terapia com Prótons , Prótons , Reprodutibilidade dos Testes , Imagens de Fantasmas
8.
Med Phys ; 50(11): 7263-7280, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37370239

RESUMO

BACKGROUND: The Dynamic Collimation System (DCS) has been shown to produce superior treatment plans to uncollimated pencil beam scanning (PBS) proton therapy using an in-house treatment planning system (TPS) designed for research. Clinical implementation of the DCS requires the development and benchmarking of a rigorous dose calculation algorithm that accounts for pencil beam trimming, performs monitor unit calculations to produce deliverable plans at all beam energies, and is ideally implemented with a commercially available TPS. PURPOSE: To present an analytical Pencil bEam TRimming Algorithm (PETRA) for the DCS, with and without its range shifter, implemented in the Astroid TPS (.decimal, Sanford, Florida, USA). MATERIALS: PETRA was derived by generalizing an existing pencil beam dose calculation model to account for the DCS-specific effects of lateral penumbra blurring due to the nickel trimmers in two different planes, integral depth dose variation due to the trimming process, and the presence and absence of the range shifter. Tuning parameters were introduced to enable agreement between PETRA and a measurement-validated Dynamic Collimation Monte Carlo (DCMC) model of the Miami Cancer Institute's IBA Proteus Plus system equipped with the DCS. Trimmer position, spot position, beam energy, and the presence or absence of a range shifter were all used as variables for the characterization of the model. The model was calibrated for pencil beam monitor unit calculations using procedures specified by International Atomic Energy Agency Technical Report Series 398 (IAEA TRS-398). RESULTS: The integral depth dose curves (IDDs) for energies between 70 MeV and 160 MeV among all simulated trimmer combinations, with and without the ranger shifter, agreed between PETRA and DCMC at the 1%/1 mm 1-D gamma criteria for 99.99% of points. For lateral dose profiles, the median 2-D gamma pass rate for all profiles at 1.5%/1.5 mm was 99.99% at the water phantom surface, plateau, and Bragg peak depths without the range shifter and at the surface and Bragg peak depths with the range shifter. The minimum 1.5%/1.5 mm gamma pass rates for the 2-D profiles at the water phantom surface without and with the range shifter were 98.02% and 97.91%, respectively, and, at the Bragg peak, the minimum pass rates were 97.80% and 97.5%, respectively. CONCLUSION: The PETRA model for DCS dose calculations was successfully defined and benchmarked for use in a commercially available TPS.


Assuntos
Terapia com Prótons , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador , Dosagem Radioterapêutica , Algoritmos , Imagens de Fantasmas , Método de Monte Carlo , Água
9.
Radiography (Lond) ; 29(3): 647-652, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141685

RESUMO

INTRODUCTION: Chest Radiography (CXR) is a common radiographic procedure. Radiation exposure to patients should be kept as low as reasonably achievable (ALARA), and monitored continuously as part of quality assurance (QA) programs. One of the most effective dose reduction tools is proper collimation practice. The purpose of this study is to determine whether a U-Net convolutional neural networks (U-CNN) can be trained to automatically segment the lungs and calculate an optimized collimation border on a limited CXR dataset. METHODS: 662 CXRs with manual lung segmentations were obtained from an open-source dataset. These were used to train and validate three different U-CNNs for automatic lung segmentation and optimal collimation. The U-CNN dimensions were 128 × 128, 256 × 256, and 512 × 512 pixels and validated with five-fold cross validation. The U-CNN with the highest area under the curve (AUC) was tested externally, using a dataset of 50 CXRs. Dice scores (DS) were used to compare U-CNN segmentations with manual segmentations by three radiographers and two junior radiologists. RESULTS: DS for the three U-CNN dimensions with segmentation of the lungs ranged from 0.93 to 0.96, respectively. DS of the collimation border for each U-CNN was 0.95 compared to the ground truth labels. DS for lung segmentation and collimation border between the junior radiologists was 0.97 and 0.97. One radiographer differed significantly from the U-CNN (p = 0.016). CONCLUSION: We demonstrated that a U-CNN could reliably segment the lungs and suggest a collimation border with great accuracy compared to junior radiologists. This algorithm has the potential to automate collimation auditing of CXRs. IMPLICATIONS FOR PRACTICE: Creating an automatic segmentation model of the lungs can produce a collimation border, which can be used in CXR QA programs.


Assuntos
Algoritmos , Redes Neurais de Computação , Humanos , Radiografia , Pulmão/diagnóstico por imagem , Radiologistas
10.
Phys Med ; 108: 102558, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36905775

RESUMO

PURPOSE: To compare quantitatively and qualitatively brain image quality acquired in helical and axial modes on two wide collimation CT systems according to the dose level and algorithm used. METHODS: Acquisitions were performed on an image quality and an anthropomorphic phantoms at three dose levels (CTDIvol: 45/35/25 mGy) on two wide collimation CT systems (GE Healthcare and Canon Medical Systems) in axial and helical modes. Raw data were reconstructed using iterative reconstruction (IR) and deep-learning image reconstruction (DLR) algorithms. The noise power spectrum (NPS) was computed on both phantoms and the task-based transfer function (TTF) on the image quality phantom. The subjective quality of images from an anthropomorphic brain phantom was evaluated by two radiologists including overall image quality. RESULTS: For the GE system, noise magnitude and noise texture (average NPS spatial frequency) were lower with DLR than with IR. For the Canon system, noise magnitude values were lower with DLR than with IR for similar noise texture but the opposite was true for spatial resolution. For both CT systems, noise magnitude was lower with the axial mode than with the helical mode for similar noise texture and spatial resolution. Radiologists rated the overall quality of all brain images as "satisfactory for clinical use", whatever the dose level, algorithm or acquisition mode. CONCLUSIONS: Using 16-cm axial acquisition reduces image noise without changing the spatial resolution and image texture compared to helical acquisitions. Axial acquisition can be used in clinical routine for brain CT examinations with an explored length of less than 16 cm.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Imagens de Fantasmas , Encéfalo , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
11.
Phys Med Biol ; 68(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36821866

RESUMO

Objective. The lateral dose fall-off in proton pencil beam scanning (PBS) technique remains the preferred choice for sparing adjacent organs at risk as opposed to the distal edge due to the proton range uncertainties and potentially high relative biological effectiveness. However, because of the substantial spot size along with the scattering in the air and in the patient, the lateral penumbra in PBS can be degraded. Combining PBS with an aperture can result in a sharper dose fall-off, particularly for shallow targets.Approach. The aim of this work was to characterize the radiation fields produced by collimated and uncollimated 100 and 140 MeV proton beams, using Monte Carlo simulations and measurements with a MiniPIX-Timepix detector. The dose and the linear energy transfer (LET) were then coupled with publishedin silicobiophysical models to elucidate the potential biological effects of collimated and uncollimated fields.Main results. Combining an aperture with PBS reduced the absorbed dose in the lateral fall-off and out-of-field by 60%. However, the results also showed that the absolute frequency-averaged LET (LETF) values increased by a maximum of 3.5 keVµm-1in collimated relative to uncollimated fields, while the dose-averaged LET (LETD) increased by a maximum of 7 keVµm-1. Despite the higher LET values produced by collimated fields, the predicted DNA damage yields remained lower, owing to the large dose reduction.Significance. This work demonstrated the dosimetric advantages of combining an aperture with PBS coupled with lower DNA damage induction. A methodology for calculating dose in water derived from measurements with a silicon-based detector was also presented. This work is the first to demonstrate experimentally the increase in LET caused by combining PBS with aperture, and to assess the potential DNA damage which is the initial step in the cascade of events leading to the majority of radiation-induced biological effects.


Assuntos
Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Método de Monte Carlo
12.
Sensors (Basel) ; 23(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679750

RESUMO

(1) Background: Gamma cameras have wide applications in industry, including nuclear power plant monitoring, emergency response, and homeland security. The desirable properties of a gamma camera include small weight, good resolution, large field of view (FOV), and wide imageable source energy range. Compton cameras can have a 4π FOV but have limited sensitivity at low energy. Coded-aperture gamma cameras are operatable at a wide photon energy range but typically have a limited FOV and increased weight due to the thick heavy metal collimators and shielding. In our lab, we previously proposed a 4π-view gamma imaging approach with a 3D position-sensitive detector, with which each detector element acts as the collimator for other detector elements. We presented promising imaging performance for 99mTc, 18F, and 137Cs sources. However, the imaging performance for middle- and high-energy sources requires further improvement. (2) Methods: In this study, we present a new gamma camera design to achieve satisfactory imaging performance in a wide gamma energy range. The proposed gamma camera consists of interspaced bar-shaped GAGG (Ce) crystals and tungsten absorbers. The metal bars enhance collimation for high-energy gamma photons without sacrificing the FOV. We assembled a gamma camera prototype and conducted experiments to evaluate the gamma camera's performance for imaging 57Co, 137Cs, and 60Co point sources. (3) Results: Results show that the proposed gamma camera achieves a positioning accuracy of <3° for all gamma energies. It can clearly resolve two 137Cs point sources with 10° separation, two 57Co and two 60Co point sources with 20° separation, as well as a 2 × 3 137Cs point-source array with 20° separation. (4) Conclusions: We conclude that the proposed gamma camera design has comprehensive merits, including portability, 4π-view FOV, and good angular resolution across a wide energy range. The presented approach has promising potential in nuclear security applications.


Assuntos
Câmaras gama , Metais Pesados , Desenho de Equipamento , Diagnóstico por Imagem
13.
Phys Med Biol ; 68(5)2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36706460

RESUMO

Objective. Pencil beam scanning (PBS) proton therapy target dose conformity can be improved with energy layer-specific collimation. One such collimator is the dynamic collimation system (DCS), which consists of four nickel trimmer blades that intercept the scanning beam as it approaches the lateral extent of the target. While the dosimetric benefits of the DCS have been demonstrated through computational treatment planning studies, there has yet to be experimental verification of these benefits for composite multi-energy layer fields. The objective of this work is to dosimetrically characterize and experimentally validate the delivery of dynamically collimated proton therapy with the DCS equipped to a clinical PBS system.Approach. Optimized single field, uniform dose treatment plans for 3 × 3 × 3 cm3target volumes were generated using Monte Carlo dose calculations with depths ranging from 5 to 15 cm, trimmer-to-surface distances ranging from 5 to 18.15 cm, with and without a 4 cm thick polyethylene range shifter. Treatment plans were then delivered to a water phantom using a prototype DCS and an IBA dedicated nozzle system and measured with a Zebra multilayer ionization chamber, a MatriXX PT ionization chamber array, and Gafchromic™ EBT3 film.Main results. For measurements made within the SOBPs, average 2D gamma pass rates exceeded 98.5% for the MatriXX PT and 96.5% for film at the 2%/2 mm criterion across all measured uncollimated and collimated plans, respectively. For verification of the penumbra width reduction with collimation, film agreed with Monte Carlo with differences within 0.3 mm on average compared to 0.9 mm for the MatriXX PT.Significance. We have experimentally verified the delivery of DCS-collimated fields using a clinical PBS system and commonly available dosimeters and have also identified potential weaknesses for dosimeters subject to steep dose gradients.


Assuntos
Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador , Planejamento da Radioterapia Assistida por Computador/métodos , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Imagens de Fantasmas , Método de Monte Carlo
14.
Swiss Dent J ; 133(1): 12-20, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36098380

RESUMO

Patient contact shielding to reduce radiation exposure to radiosensitive organs of patients is known to be used inconsistently in the field of dento-maxillofacial radiology (DMFR). There is an ongoing discussion if its use is still justified with regard to recent technical enhancements in the field. Thus, the aim of this study was to investigate the recommended and applied safety standards regarding dose protection measures in dental radiology within European countries. With an online questionnaire the use of safety measures, especially lead protection and collimation, in different patient groups (adults, children, pregnant women) was interrogated including leading experts in the field of DMFR. Among the 24 participants from 13 different countries, there was a tendency towards lead protection for intraoral radiography and towards collimation for extraoral radiography. Participants based their decision mainly on law and societal guidelines. Overall, the application of radiation protection measures varies within Europe. It seems safe to say that lead protection as a measure of radiation dose limitation is still recommendable even though collimation and technical advancements have led to great dose reductions. Collimation should be used more broadly and a standardization of protection measures and an update of radiation protection guidelines in Europe is desirable.


Assuntos
Radiografia Dentária , Radiologia , Gravidez , Criança , Adulto , Humanos , Feminino , Doses de Radiação , Radiografia , Europa (Continente) , Inquéritos e Questionários
15.
J Med Radiat Sci ; 70(1): 21-29, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36319191

RESUMO

INTRODUCTION: Collimation of the primary beam is an important factor in radiography to reduce dose and improve image quality. The introduction of larger detector plates in direct digital radiography (DR) allows the exposed area to be calculated by removing cropping applied to the image. The aim of this study was to assess whether the exposed area was larger than a reference standard across five different projections on different body types, with the reference size being the corresponding cassette size used in traditional film/screen or computed radiography (CR). METHOD: A retrospective clinical audit of five common musculoskeletal radiographic projections (AP knee, AP shoulder, horizontal beam lateral hip, lateral cervical spine and lateral facial bones), of 359 patients was undertaken. The electronic cropping was removed from projections, and the superior-inferior, antero-posterior and medio-lateral collimation size was measured, depending on the projection. The two measurements were multiplied to give an exposed field of view area. The three measurements were compared with a reference standard, being the size of the corresponding cassette size used in the department on film/screen or computed radiography. RESULTS: From the five projections, 1071 measurements were analysed. 416 (38.8%) of these measurements were less than or equal to the agreed reference standard. 655 (61.2%) were greater than the agreed reference standard. CONCLUSION: The study demonstrates that the majority (61.2%) of the measurements taken were above the reference standard. This results in an increase in radiation dose to patients and detrimental impacts on image quality.


Assuntos
Intensificação de Imagem Radiográfica , Centros de Traumatologia , Humanos , Adulto , Estudos Retrospectivos , Doses de Radiação , Intensificação de Imagem Radiográfica/métodos , Radiografia
16.
Front Oncol ; 12: 1031340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439436

RESUMO

The purpose of this work is to investigate collimating individual proton beamlets from a dosimetric perspective and to introduce a new device concept, the spot scanning aperture (SSA). The SSA consists of a thin aperture with a small cylindrical opening attached to a robotics system, which allows the aperture to follow and align with individual beamlets during spot delivery. Additionally, a range shifter is incorporated (source-side) for treating shallow depths. Since the SSA trims beamlets spot by spot, the patient-facing portion of the device only needs to be large enough to trim a single proton beamlet. The SSA has been modelled in an open-source Monte-Carlo-based dose engine (MCsquare) to characterize its dosimetric properties in water at depths between 0 and 10 cm while varying the following parameters: the aperture material, thickness, distance to the water phantom, distance between the aperture and attached range shifter, and the aperture opening radius. Overall, the SSA greatly reduced spot sizes for all the aperture opening radii that were tested (1 - 4 mm), especially in comparison with the extended range shifter (ranger shifter placed at 30 cm from patient); greater than 50% when placed less than 10 cm away from the patient at depths in water less than 50 mm. The peak to entrance dose ratio and linear energy transfer was found to depend on the thickness of the aperture and therefore the aperture material. Neutron production rates were also investigated and discussed.

17.
Clin Imaging ; 90: 59-62, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35917663

RESUMO

OBJECTIVE: Sequential posteroanterior chest radiographs (CXRs) on any one patient are commonly displayed at different sizes on PACS monitors. The purpose of this study was to determine the cause of these differences, the percentage of radiographs affected, the relative change in magnification seen and if radiologists were aware of this display difference. METHODS: Differences in routine radiographer collimation pre-acquisition and image cropping (shuttering) post acquisition were noted. From three different hospitals, 300 posteroanterior (PA) erect CXRs with prior comparative studies were viewed side-by-side on a standard landscape display monitor. Variation in display size was calculated using the number of detector elements in the autofitted axis of the radiograph, when compared with the prior study. Correlation between patient gender and extent of magnification between images was recorded. Following this, a national survey was circulated to see if radiologists were aware of this phenomenon. RESULTS: Large variations in display size were noted. The mean extent of magnification between sequential PA chest radiographs was ±6.8% (range 0-21.6%). 98% of CXRs had some degree of variability in display size. There was no significant difference in the extent of variation in magnification based on age or gender. 86% of the radiologists who responded to the survey (n = 132) were unaware of any display size variability. CONCLUSION: Sequential DR acquired chest radiographs are routinely displayed with varying degrees of magnification on PACS monitors due to differences in radiographer practice and auto-fit display settings. Most radiologists surveyed were unaware of these differences and their causation.


Assuntos
Radiografia Torácica , Radiologistas , Humanos , Prevalência , Radiografia , Radiografia Torácica/métodos
18.
Med Phys ; 49(12): 7623-7637, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35904020

RESUMO

PURPOSE: In radiation therapy, x-ray dose must be precisely sculpted to the tumor, while simultaneously avoiding surrounding organs at risk. This requires modulation of x-ray intensity in space and/or time. Typically, this is achieved using a multi leaf collimator (MLC)-a complex mechatronic device comprising over one hundred individually powered tungsten 'leaves' that move in or out of the radiation field as required. Here, an all-electronic x-ray collimation concept with no moving parts is presented, termed "SPHINX": Scanning Pencil-beam High-speed Intensity-modulated X-ray source. SPHINX utilizes a spatially distributed bremsstrahlung target and collimator array in conjunction with magnetic scanning of a high energy electron beam to generate a plurality of small x-ray "beamlets." METHODS: A simulation framework was developed in Topas Monte Carlo incorporating a phase space electron source, transport through user defined magnetic fields, bremsstrahlung x-ray production, transport through a SPHINX collimator, and dose in water. This framework was completely parametric, meaning a simulation could be built and run for any supplied geometric parameters. This functionality was coupled with Bayesian optimization to find the best parameter set based on an objective function which included terms to maximize dose rate for a user defined beamlet width while constraining inter-channel cross talk and electron contamination. Designs for beamlet widths of 5, 7, and 10 mm2 were generated. Each optimization was run for 300 iterations and took approximately 40 h on a 24-core computer. For the optimized 7-mm model, a simulation of all beamlets in water was carried out including a linear scanning magnet calibration simulation. Finally, a back-of-envelope dose rate formalism was developed and used to estimate dose rate under various conditions. RESULTS: The optimized 5-, 7-, and 10-mm models had beamlet widths of 5.1 , 7.2 , and 10.1 mm2 and dose rates of 3574, 6351, and 10 015 Gy/C, respectively. The reduction in dose rate for smaller beamlet widths is a result of both increased collimation and source occlusion. For the simulation of all beamlets in water, the scanning magnet calibration reduced the offset between the collimator channels and beam centroids from 2.9 ±1.9 mm to 0.01 ±0.03 mm. A slight reduction in dose rate of approximately 2% per degree of scanning angle was observed. Based on a back-of-envelope dose rate formalism, SPHINX in conjunction with next-generation linear accelerators has the potential to achieve substantially higher dose rates than conventional MLC-based delivery, with delivery of an intensity modulated 100 × 100 mm2 field achievable in 0.9 to 10.6 s depending on the beamlet widths used. CONCLUSIONS: Bayesian optimization was coupled with Monte Carlo modeling to generate SPHINX geometries for various beamlet widths. A complete Monte Carlo simulation for one of these designs was developed, including electron beam transport of all beamlets through scanning magnets, x-ray production and collimation, and dose in water. These results demonstrate that SPHINX is a promising candidate for sculpting radiation dose with no moving parts, and has the potential to vastly improve both the speed and robustness of radiotherapy delivery. A multi-beam SPHINX system may be a candidate for delivering magavoltage FLASH RT in humans.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Raios X , Teorema de Bayes , Método de Monte Carlo
19.
Nanomaterials (Basel) ; 12(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35745323

RESUMO

Photonic hypercrystals (PHCs) are materials combining hyperbolic metamaterials (HMMs) with widely used photonic crystals. We found that finite-sized Type-I HMMs can support unique electromagnetic modes, which could be utilized in two-dimensional photonic crystals to achieve PHCs with twisted bands in the infrared region. Numerical investigation of the PHCs showed that the twisted bands have degenerate points that can support all-angle self-collimation effects. The behaviors of light beams change dramatically in such bands, which provides an effective method in controlling light propagation and can be applied as switching. The effect of the filling factor and the permittivity of the dielectric medium of the HMM on the twisted bands were studied. Furthermore, by considering the nonlinear effect of the dielectric layers, an all-optical switch working on the PHC twisted bands is proposed, which has low switching power and high extinction ratio (19.75 dB), superior to conventional HMM switches that require type transformation of metamaterial.

20.
Biomed Phys Eng Express ; 8(2)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35130520

RESUMO

Purpose. The Dynamic Collimation System (DCS) is an energy layer-specific collimation device designed to reduce the lateral penumbra in pencil beam scanning proton therapy. The DCS consists of two pairs of nickel trimmers that rapidly and independently move and rotate to intercept the scanning proton beam and an integrated range shifter to treat targets less than 4 cm deep. This work examines the validity of a single aperture approximation to model the DCS, a commonly used approximation in commercial treatment planning systems, as well as higher-order aperture-based approximations for modeling DCS-collimated dose distributions.Methods. An experimentally validated TOPAS/Geant4-based Monte Carlo model of the DCS integrated with a beam model of the IBA pencil beam scanning dedicated nozzle was used to simulate DCS- and aperture-collimated 100 MeV beamlets and composite treatment plans. The DCS was represented by three different aperture approximations: a single aperture placed halfway between the upper and lower trimmer planes, two apertures located at the upper and lower trimmer planes, and four apertures, located at both the upstream and downstream faces of each pair of trimmers. Line profiles and three-dimensional regions of interest were used to evaluate the validity and limitations of the aperture approximations investigated.Results. For pencil beams without a range shifter, minimal differences were observed between the DCS and single aperture approximation. For range shifted beamlets, the single aperture approximation yielded wider penumbra widths (up to 18%) in the X-direction and sharper widths (up to 9.4%) in the Y-direction. For the example treatment plan, the root-mean-square errors (RMSEs) in an overall three-dimensional region of interest were 1.7%, 1.3%, and 1.7% for the single aperture, two aperture, and four aperture models, respectively. If the region of interest only encompasses the lateral edges outside of the target, the resulting RMSEs were 1.7%, 1.1%, and 0.5% single aperture, two aperture, and four aperture models, respectively.Conclusions. Monte Carlo simulations of the DCS demonstrated that a single aperture approximation is sufficient for modeling pristine fields at the Bragg depth while range shifted fields require a higher-order aperture approximation. For the treatment plan considered, the double aperture model performed the best overall, however, the four-aperture model most accurately modeled the lateral field edges at the expense of increased dose differences proximal to and within the target.


Assuntos
Terapia com Prótons , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...