Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Foods ; 13(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998528

RESUMO

Controlled-release tablets offer several benefits, such as controlled release, odor masking, ease of use, stability, extended shelf life, and reduced production costs. This study developed combined curcumin controlled-release tablets (CCCTs) to increase the bioavailability of curcumin with hydroxypropyl methylcellulose (HPMC), chitosan, and sodium alginate. The hardness of the CCCTs was 5.63-1.98 kgf, friability was 0.00-1.22%, and disintegration time was 0.00-401.25 min. Differential scanning calorimetry and Fourier-transform infrared spectroscopy indicated a high compatibility between the excipients and curcumin. CCCTs with chitosan formed a gel structure, impeded disintegration, and reduced the release rate to 72.5% in simulated gastric fluid. In simulated intestinal fluid, CCCT with the HPMC-sodium alginate group formed a polyelectrolyte membrane hydrogel to prolong release from 6 to 12 h. This study developed various CCCT formulations that can be delivered through the gastric or intestinal tracts, using chitosan and HPMC-sodium alginate as excipients, respectively. CCCT can be used as a reference strategy for controlled-release curcumin delivery in the functional and healthcare supplement development.

2.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-973003

RESUMO

@#In order to mask the bitterness of azithromycin (AZI) and individually regulate the drug release rate to reduce gastrointestinal irritation, immediate-release AZI-AmberliteTM IRP64/HPC and delayed-release AZI-AmberliteTM IRP69/RS100 were prepared by modifying with hydroxypropyl cellulose (HPC) and Eudragit RS100, respectively, and further combined to achieve controlled release.The drug loading and drug utilization rate of AZI-ion exchange resin complexes were measured; the structure of AZI-ion exchange resin complexes was characterized by differential scanning calorimetry and X-ray diffraction; and the wetting humidity, odor masking effects, in vitro dissolution and release behaviors were determined.The results showed that the formation of AZI-ion exchange resin complexes changed the original crystallization state of the drug, that the 2.5% HPC-modified AZI-AmberliteTM IRP64/HPC and the 0.5% RS100-modified AZI-AmberliteTM IRP69/RS100 demonstrated good taste masking effect, and that their combination in the drug content ratio of 13∶67 achieved the expected drug release behavior, i.e.rapid release of AZI in the first 10 min and smooth release in the later 6 h.These results indicated that the AZI-ion exchange resin complexes prepared by surface modification and their composites could mask the bitterness of AZI and realize the flexible adjustment of drug release rate, which lays the foundation for the research and development of new AZI preparations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA