Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37513190

RESUMO

The larger size and diversity of phage display peptide libraries enhance the probability of finding clinically valuable ligands. A simple way of increasing the throughput of selection is to mix multiple peptide libraries with different characteristics of displayed peptides and use it as biopanning input. In phage display, the peptide is genetically coupled with a biological entity (the phage), and the representation of peptides in the selection system is dependent on the propagation capacity of phages. Little is known about how the characteristics of displayed peptides affect the propagation capacity of the pooled library. In this work, next-generation sequencing (NGS) was used to investigate the amplification capacity of three widely used commercial phage display peptide libraries (Ph.D.™-7, Ph.D.™-12, and Ph.D.™-C7C from New England Biolabs). The three libraries were pooled and subjected to competitive propagation, and the proportion of each library in the pool was quantitated at two time points during propagation. The results of the inter-library competitive propagation assay led to the conclusion that the propagation capacity of phage libraries on a population level is decreased with increasing length and cyclic conformation of displayed peptides. Moreover, the enrichment factor (EF) analysis of the phage population revealed a higher propagation capacity of the Ph.D.TM-7 library. Our findings provide evidence for the contribution of the length and structural conformation of displayed peptides to the unequal propagation rates of phage display libraries and suggest that it is important to take peptide characteristics into account once pooling multiple combinatorial libraries for phage display selection through biopanning.


Assuntos
Bacteriófagos , Biblioteca de Peptídeos , Peptídeos/química , Técnicas de Visualização da Superfície Celular , Bacteriófagos/genética , Conformação Molecular
2.
Bioorg Med Chem Lett ; 24(2): 462-6, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24388690

RESUMO

Poly(ADP-ribose)polymerase-I (PARP-1) enzyme is involved in maintaining DNA integrity and programmed cell death. A virtual screening of commercial libraries led to the identification of five novel scaffolds with inhibitory profile in the low nanomolar range. A hit-to-lead optimization led to the identification of a group of new potent PARP-1 inhibitors, acyl-piperazinylamides of 3-(4-oxo-3,4-dihydro-quinazolin-2-yl)-propionic acid. Molecular modeling studies highlighted the preponderant role of the propanoyl side chain.


Assuntos
Antineoplásicos/química , Inibidores de Poli(ADP-Ribose) Polimerases , Quinazolinonas/química , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Camundongos , Camundongos SCID , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Quinazolinonas/farmacologia , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA