Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37513190

RESUMO

The larger size and diversity of phage display peptide libraries enhance the probability of finding clinically valuable ligands. A simple way of increasing the throughput of selection is to mix multiple peptide libraries with different characteristics of displayed peptides and use it as biopanning input. In phage display, the peptide is genetically coupled with a biological entity (the phage), and the representation of peptides in the selection system is dependent on the propagation capacity of phages. Little is known about how the characteristics of displayed peptides affect the propagation capacity of the pooled library. In this work, next-generation sequencing (NGS) was used to investigate the amplification capacity of three widely used commercial phage display peptide libraries (Ph.D.™-7, Ph.D.™-12, and Ph.D.™-C7C from New England Biolabs). The three libraries were pooled and subjected to competitive propagation, and the proportion of each library in the pool was quantitated at two time points during propagation. The results of the inter-library competitive propagation assay led to the conclusion that the propagation capacity of phage libraries on a population level is decreased with increasing length and cyclic conformation of displayed peptides. Moreover, the enrichment factor (EF) analysis of the phage population revealed a higher propagation capacity of the Ph.D.TM-7 library. Our findings provide evidence for the contribution of the length and structural conformation of displayed peptides to the unequal propagation rates of phage display libraries and suggest that it is important to take peptide characteristics into account once pooling multiple combinatorial libraries for phage display selection through biopanning.


Assuntos
Bacteriófagos , Biblioteca de Peptídeos , Peptídeos/química , Técnicas de Visualização da Superfície Celular , Bacteriófagos/genética , Conformação Molecular
2.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328728

RESUMO

The nonspecific enrichment of target-unrelated peptides during biopanning remains a major drawback for phage display technology. The commercial Ph.D.TM-7 phage display library is used extensively for peptide discovery. This library is based on the M13KE vector, which carries the lacZα sequence, leading to the formation of blue plaques on IPTG-X-gal agar plates. In the current study, we report the isolation of a fast-propagating white clone (displaying WSLGYTG peptide) identified through screening against a recombinant protein. Sanger sequencing demonstrated that white plaques are not contamination from environmental M13-like phages, but derive from the library itself. Whole genome sequencing revealed that the white color of the plaques results from a large 827-nucleotide genomic deletion. The phenotypic characterization of propagation capacity through plaque count- and NGS-based competitive propagation assay supported the higher propagation rate of Ph-WSLGYTG clone compared with the library. According to our data, white plaques are likely to arise endogenously in Ph.D. libraries due to mutations in the M13KE genome and should not always be viewed as exogenous contamination. Our findings also led to the conclusion that the deletion observed here might be an ancestral mutation already present in the naïve library, which causes target-unrelated nonspecific enrichment of white clone during biopanning due to propagation advantage.


Assuntos
Bacteriófagos , Biblioteca de Peptídeos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Bioprospecção , Mutação , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA