Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 986
Filtrar
1.
Methods Mol Biol ; 2830: 93-104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977571

RESUMO

In flowering plants, proper seed development is achieved through the constant interplay of fertilization products, embryo and endosperm, and maternal tissues. Understanding such a complex biological process requires microscopy techniques able to unveil the seed internal morphological structure. Seed thickness and relatively low permeability make conventional tissue staining techniques impractical unless combined with time-consuming dissecting methods. Here, we describe two techniques to imaging the three-dimensional structure of Arabidopsis seeds by confocal laser scanning microscopy. Both procedures, while differing in their time of execution and resolution, are based on cell wall staining of seed tissues with fluorescent dyes.


Assuntos
Arabidopsis , Microscopia Confocal , Sementes , Sementes/crescimento & desenvolvimento , Microscopia Confocal/métodos , Imageamento Tridimensional/métodos , Corantes Fluorescentes/química , Parede Celular/ultraestrutura , Coloração e Rotulagem/métodos
2.
Clin Endosc ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978396

RESUMO

Pancreatic cystic lesions (PCLs) have increased in prevalence due to the increased usage and advancements in cross-sectional abdominal imaging. Current diagnostic techniques cannot distinguish between PCLs requiring surgery, close surveillance, or expectant management. This has increased the morbidity and healthcare costs from inappropriately aggressive and conservative management strategies. Endoscopic ultrasound (EUS) needle-based confocal laser endomicroscopy (nCLE) allows for microscopic examination and delineation of the surface epithelium of PCLs. Landmark studies have identified characteristics distinguishing various types of PCLs, confirmed the high diagnostic yield of EUS-nCLE (especially for PCLs with an equivocal diagnosis), and shown that EUS-nCLE helps to change management and reduce healthcare costs. Refining procedure technique and reducing procedure length have improved the safety of EUS-nCLE. The utilization of artificial intelligence and its combination with other EUS-based advanced diagnostic techniques would further improve the results of EUS-based PCL diagnosis. A structured training program and device improvements to allow more complete mapping of the pancreas cyst epithelium will be crucial for the widespread adoption of this promising technology.

3.
Nanotechnology ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955175

RESUMO

Efficiently coupling single-photon emitters in the telecommunication C-band that are not deterministically positioned to photonic structures requires both spatial and spectral mapping. This study introduces the photoluminescence mapping of telecom C-band self-assembled quantum dots (QDs) by confocal laser scanning microscopy, a technique previously unexplored in this wavelength range which fulfills these two requirements. We consider the effects of distortions inherent to any imaging system but largely disregarded in prior works to derive accurate coordinates from photoluminescence maps. We obtain a position uncertainty below 11 nm for 10\% of the QDs when assuming no distortions, highlighting the potential of the scanning approach. After distortion correction, we found that the previously determined positions are on average shifted by 428 nm from the corrected positions, demonstrating the necessity of this correction for accurate positioning. Then, through error propagation, the position uncertainty for 10\% of the QDs increases to 110 nm.

4.
Aust Endod J ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946230

RESUMO

The aim was to analyse the influence of an apical ledge on root canal disinfection. Forty-four single-rooted teeth were micro-CT scanned and inoculated with Enterococcus faecalis. In Group S shaping was performed with ProTaper Next (PTN) up to X3 at working length (WL). In Group L an apical ledge was created with K-Files #40 and shaping completed up to PTN X3. NaOCl 5% and EDTA 10% irrigant solutions were alternated. Confocal laser scanning microscope (CLSM) and viability staining were used to analyse the proportions of dead (red) and live (green) bacteria and penetration ability inside dentinal tubules. Data were analysed with the Mann-Whitney test with Bonferroni correction (p < 0.05). In Group L the amount of red fluorescence resulted significantly lower, and penetration ability was decreased in the apical and middle portion (p < 0.05). The presence of an apical ledge may negatively influence the disinfection both in the apical and middle third.

5.
Cureus ; 16(6): e62480, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39022486

RESUMO

OBJECTIVE: Sodium hypochlorite (NaOCl) is regarded as the most frequently used root canal irrigant. Its high surface tension prevents its penetration into complex canal anatomies. The present study assesses the contact angle and penetration depth of 2.5% NaOCl with 0.2% cetrimide and propylene glycol. MATERIAL AND METHODS: Sixty recently extracted mandibular premolars with a single root were obtained. Thirty were sectioned longitudinally, and the remaining 30 teeth were sectioned transversely. Acrylic blocks were used to mount the parts, and 5 µL of each of the following solutions was placed on the dentin surface: Group 1: 2.5% NaOCl (control), Group 2: 0.2% cetrimide + 2.5% NaOCl, and Group 3: propylene glycol + 2.5% NaOCl. Following this, contact angle analysis was made using a contact angle goniometer. We prepared and instrumented access cavities in 30 teeth to work up to the size of the ProTaper Gold F2 (Dentsply Tulsa Dental Specialties, Tulsa, OK). Samples were allocated to the three groups, and irrigation was done accordingly. They were sectioned at the coronal, middle, and apical thirds and then subjected to confocal laser scanning microscopy. The data were analyzed using a one-way ANOVA and a Tukey multiple comparison test. RESULTS: Group 2 had the least contact angle (35.20°) and the highest depth of penetration (DOP; 752.409 µm) when compared to Groups 1 and 3. The DOP decreased significantly from the coronal, middle, and apical thirds. No discernible variation in the contact angle was found between the radicular and coronal portions. CONCLUSION: 0.2% cetrimide improved the efficiency of 2.5% NaOCl as an irrigant by lowering its contact angle and increasing its DOP.

6.
Food Res Int ; 190: 114565, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945564

RESUMO

In cereal products, the use of flour containing clusters of intact cells has been indicated as a potential strategy to decrease starch digestion. Rye possesses more uniform and thicker cell walls than wheat but its protective effect against starch digestion has not been elucidated. In this study, rye flours with three different particle sizes, large (LF) (∼1700 µm), medium (MF) (∼1200 µm), and small (SF) (∼350 µm), were used to produce model bread. The textural properties of these breads were analysed using Textural Profile Analysis (TPA). The starch digestibility of both the flour and the bread was measured using Englyst's method, while the presence of intact cell clusters was examined using Confocal Laser Scanning Microscopy (CLSM). Additionally, the disintegration of bread digesta during simulated digestion was assessed through image analysis. CLSM micrographs revealed that bread made with MF and LF retained clusters of intact cells after processing, whereas bread made with SF showed damaged cell walls. Starch digestibility in LF and MF was lower (p ≤ 0.05) than that in SF. Bread produced with MF and LF exhibited the least (p ≤ 0.05) cohesive and resilient texture, disintegrated more during digestion, and exhibited higher starch digestibility (p ≤ 0.05) than bread made with SF. These results highlight the central role of bread texture on in vitro starch digestibility.


Assuntos
Pão , Digestão , Farinha , Tamanho da Partícula , Secale , Amido , Pão/análise , Amido/química , Amido/metabolismo , Secale/química , Farinha/análise , Manipulação de Alimentos/métodos , Microscopia Confocal , Parede Celular/química
7.
Colloids Surf B Biointerfaces ; 241: 114016, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38865870

RESUMO

Ultrasound spectroscopy and confocal laser scanning microscopy (CLSM) methods were developed to visualize the interaction between sodium caseinate (SC) and whey protein isolate (WPI) with a mild preheat treatment (57°C, 10 min) followed by adding glucono-δ-lactone (GDL). Ultrasonic velocity changes during incubation at 25°C after adding GDL for four kinds of mixtures (no-treated SC plus no-treated WPI, preheated SC plus no-treated WPI, no-treated SC plus preheated WPI and preheated SC plus preheated WPI) were monitored. The results reveal that the mild preheating treatment of the proteins affected the timing of the increase in compressibility of each system. CLSM observation with individualized dyes which have different maxima of excitation and emission wavelengths, showed the preheated SC plus no-treated WPI mixture had a slightly coarse structure and the highest correlation coefficient, suggesting the highest colocalization of the SC and WPI among the four kinds of mixed-protein systems. Furthermore, the scanning electron microscopy (SEM) observation suggests that there are some differences among the gels, namely, preheated WPI leads to the formation of developed three-dimensional gel networks with filamentous structures, whereas SC promotes the formation of cluster-like crowded networks composed of more fine aggregated particles instead of developed filamentous structures. These results demonstrated that although SC is known as a heat-stable protein, pretreated SC could lead to an increase of the collaboration with WPI in the presence of GDL. This finding anticipated the possibility creating a food material with another texture using a milk-protein mixed system.

8.
Clin Oral Investig ; 28(6): 324, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761225

RESUMO

OBJECTIVES: To assess the growth of a multispecies biofilm on root canal dentin under different radiotherapy regimens. MATERIALS AND METHODS: Sixty-three human root dentin cylinders were distributed into six groups. In three groups, no biofilm was formed (n = 3): NoRT) non-irradiated dentin; RT55) 55 Gy; and RT70) 70 Gy. In the other three groups (n = 18), a 21-day multispecies biofilm (Enterococcus faecalis, Streptococcus mutans, and Candida albicans) was formed in the canal: NoRT + Bio) non-irradiated + biofilm; RT55 + Bio) 55 Gy + biofilm; and RT70 + Bio) 70 Gy + biofilm. The biofilm was quantified (CFUs/mL). Biofilm microstructure was assessed under SEM. Microbial penetration into dentinal tubules was assessed under CLSM. For the biofilm biomass and dentin microhardness pre- and after biofilm growth assessments, 45 bovine dentin specimens were distributed into three groups (n = 15): NoRT) non-irradiated + biofilm; RT55 + Bio) 55 Gy + biofilm; and RT70 + Bio) 70 Gy + biofilm. RESULTS: Irradiated specimens (70 Gy) had higher quantity of microorganisms than non-irradiated (p = .010). There was gradual increase in biofilm biomass from non-irradiated to 55 Gy and 70 Gy (p < .001). Irradiated specimens had greater reduction in microhardness after biofilm growth. Irradiated dentin led to the growth of a more complex and irregular biofilm. There was microbial penetration into the dentinal tubules, regardless of the radiation regimen. CONCLUSION: Radiotherapy increased the number of microorganisms and biofilm biomass and reduced dentin microhardness. Microbial penetration into dentinal tubules was noticeable. CLINICAL RELEVANCE: Cumulative and potentially irreversible side effects of radiotherapy affect biofilm growth on root dentin. These changes could compromise the success of endodontic treatment in oncological patients undergoing head and neck radiotherapy.


Assuntos
Biofilmes , Candida albicans , Cavidade Pulpar , Dentina , Enterococcus faecalis , Streptococcus mutans , Biofilmes/efeitos da radiação , Dentina/microbiologia , Dentina/efeitos da radiação , Humanos , Cavidade Pulpar/microbiologia , Cavidade Pulpar/efeitos da radiação , Candida albicans/efeitos da radiação , Animais , Enterococcus faecalis/efeitos da radiação , Streptococcus mutans/efeitos da radiação , Bovinos , Microscopia Eletrônica de Varredura , Dureza , Microscopia Confocal , Dosagem Radioterapêutica
9.
Dent Mater ; 40(7): 1015-1024, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38744567

RESUMO

OBJECTIVES: This in vitro pilot study aimed to evaluate whether different pre-treatments (demineralization, deproteinization, (chemo-)mechanical reduction of the surface layer) influence the penetration depth of a resin infiltrant into MIH-affected enamel compared to initial carious lesions. METHODS: Thirty extracted human permanent molars with non-cavitated initial carious lesions (n = 5) or MIH (n = 25) were chosen and randomly assigned to six experimental groups: IC: initial caries; M: MIH; MN: MIH, 5.25% sodium hypochlorite; MM: MIH, microabrasion; MA: MIH, air abrasion; MAN: MIH, air abrasion and 5.25% sodium hypochlorite. A modified indirect dual fluorescence staining method was adopted to assess the penetration depth (PD) of the resin infiltrant and the lesion depth (LD) by confocal laser scanning microscopy (CLSM). Exemplarily, scanning electron microscopic (SEM) images were captured. The relationship between group assignment and penetration/lesion depth was estimated using a linear mixed model incorporating the tooth as random effect (two observations/tooth). The significance level was set at p < 0.05. RESULTS: For MIH-affected molars, the mean PD (in µm; median, [minimum-maximum]) were M (178.2 [32.5-748.9]), MN (275.6 [105.3-1131.0]), MM (48.7 [0.0-334.4]), MA (287.7 [239.4-491.7]), and MAN (245.4 [76.1-313.5]). Despite the observed differences in PD between the groups, these could not be statistically verified (Bonferroni, p = 0.322). The percentage penetration was significantly higher for IC than for MIH groups (Bonferroni, p < 0.05). SIGNIFICANCE: Compared to IC, resin infiltration into MIH-affected enamel ist more variable. Different pre-treatments influence the resin penetration into developmentally hypomineralized enamel to a fluctuating level.


Assuntos
Hipoplasia do Esmalte Dentário , Esmalte Dentário , Microscopia Confocal , Microscopia Eletrônica de Varredura , Dente Molar , Humanos , Técnicas In Vitro , Hipoplasia do Esmalte Dentário/patologia , Projetos Piloto , Cárie Dentária/terapia , Propriedades de Superfície , Resinas Sintéticas/química , Hipoclorito de Sódio , Abrasão Dental por Ar , Desmineralização do Dente , Hipomineralização Molar
10.
Forensic Sci Int ; 360: 112028, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772063

RESUMO

There is a significant gap in the availability of comprehensive identification keys for the early larval stages of forensically important fly species. While well-documented identification keys exist for the third instar larvae, particularly for the Calliphoridae, Muscidae and Sarcophagidae families, there is a notable scarcity of keys for the first, except Calliphoridae, and the second instar larvae, with no such resources available for muscid species. The second instar larvae suffer the most from the lack of morphological descriptions and available identification keys. The Muscidae is one of the most frequently reported dipteran families of forensic importance colonising animal cadavers and human corpses. Nevertheless, descriptions of the morphology of their early instars remain scarce and limited to only a few species, thus their larval identification is challenging or impossible. Considering the numerous challenges associated with studying small-sized entomological material, we tested whether it is feasible to identify muscid flies to the species or at least genus level based predominantly on the details of the cephaloskeleton. To overcome the obstacle of observing details of small sclerites, especially their shapes and interconnections, we effectively employed confocal laser scanning microscopy (CLSM) as a supplementary method for light microscopy (LM). This study provides an identification key for first and second instar larvae of forensically important muscid species from the western Palaearctic (Europe, North Africa, Middle East). The proposed key primarily utilises details of the cephaloskeleton with only addition of external morphology.


Assuntos
Entomologia Forense , Larva , Microscopia Confocal , Muscidae , Animais , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Muscidae/anatomia & histologia , Muscidae/crescimento & desenvolvimento , Comportamento Alimentar , Microscopia
11.
BMC Oral Health ; 24(1): 584, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773504

RESUMO

BACKGROUND: Apical surgery with standard retrograde maneuvers may be challenging in certain cases. Simplifying apical surgery to reduce operating time and streamline retrograde manipulation is an emerging need in clinical endodontics. AIM OF THE STUDY: The aim of the study was to compare the bacterial sealing ability of a calcium silicate-based sealer with the single cone technique combined with root end resection only, and calcium silicate-based sealer as a retrograde filling versus MTA retrofilling, and to analyze bacterial viability using confocal laser scanning microscope (CLSM). MATERIALS AND METHODS: In this in vitro experimental study, 50 extracted human maxillary incisor teeth were instrumented and randomly divided into five groups: three experimental groups, a positive control group, and a negative control group (n = 10/group). In the experimental groups, the roots were obturated using the single cone technique (SCT) and a calcium silicate-based sealer. In group 1, the roots were resected 3 mm from the apex with no further retrograde preparation or filling. In groups 2 and 3, the roots were resected, retroprepared, and retrofilled with either a calcium silicate-based sealer or MTA, respectively. Group 4 (positive control) was filled with a single gutta-percha cone without any sealer. In group 5 (negative control), the canals were left empty, and the roots were sealed with wax and nail varnish. A bacterial leakage model using Enterococcus faecalis was employed to assess the sealing ability over a 30-day period, checking for turbidity and analyzing colony forming units (CFUs) per milliliter. Five specimens from each group were examined using CLSM for bacterial viability. Data for the bacterial sealing ability were statistically analyzed using chi-squared and Kruskal-Wallis tests. RESULTS: The three experimental groups did not show significant differences in terms of bacterial leakage, or bacterial counts (CFUs) (P > 0.05). However, significant differences were observed when comparing the experimental groups to the positive control group. Notably, the calcium silicate-based sealer, when used as a retrofilling, yielded the best sealing ability. CLSM imaging revealed viable bacterial penetration in all the positive control group specimens while for the experimental groups, dead bacteria was the prominent feature seen. CONCLUSION: Within the limitations of this study, it could be concluded that the bacterial sealing ability of calcium silicate-based sealer with the single cone technique combined with root end resection only and calcium silicate-based sealer as a retrograde filling were comparable with MTA retrofilling during endodontic surgical procedures.


Assuntos
Compostos de Cálcio , Materiais Restauradores do Canal Radicular , Silicatos , Silicatos/uso terapêutico , Compostos de Cálcio/uso terapêutico , Humanos , Materiais Restauradores do Canal Radicular/farmacologia , Materiais Restauradores do Canal Radicular/uso terapêutico , Óxidos/farmacologia , Óxidos/uso terapêutico , Combinação de Medicamentos , Compostos de Alumínio/uso terapêutico , Técnicas In Vitro , Microscopia Confocal , Infiltração Dentária/microbiologia , Obturação Retrógrada/métodos , Enterococcus faecalis/efeitos dos fármacos , Viabilidade Microbiana , Incisivo , Apicectomia/métodos
12.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731557

RESUMO

The supramolecular solvent (SUPRAS) has garnered significant attention as an innovative, efficient, and environmentally friendly solvent for the effective extraction and separation of bioactive compounds from natural resources. However, research on the use of a SUPRAS for the extraction of phenolic compounds from plants, which are highly valued in food products due to their exceptional antioxidant properties, remains scarce. The present study developed a green, ultra-sound-assisted SUPRAS method for the simultaneous determination of three phenolic acids in Prunella vulgaris using high-performance liquid chromatography (HPLC). The experimental parameters were meticulously optimized. The efficiency and antioxidant properties of the phenolic compounds obtained using different extraction methods were also compared. Under optimal conditions, the extraction efficiency of the SUPRAS, prepared with octanoic acid reverse micelles dispersed in ethanol-water, significantly exceeded that of conventional organic solvents. Moreover, the SUPRAS method demonstrated greater antioxidant capacity. Confocal laser scanning microscopy (CLSM) images revealed the spherical droplet structure of the SUPRAS, characterized by a well-defined circular fluorescence position, which coincided with the position of the phenolic acids. The phenolic acids were encapsulated within the SUPRAS droplets, indicating their efficient extraction capacity. Furthermore, molecular dynamics simulations combined with CLSM supported the proposed method's mechanism and theoretically demonstrated the superior extraction performance of the SUPRAS. In contrast to conventional methods, the higher extraction efficiency of the SUPRAS can be attributed to the larger solvent contact surface area, the formation of more types of hydrogen bonds between the extractants and the supramolecular solvents, and stronger, more stable interaction forces. The results of the theoretical studies corroborate the experimental outcomes.


Assuntos
Antioxidantes , Fenóis , Extratos Vegetais , Solventes , Solventes/química , Fenóis/química , Fenóis/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão/métodos , Química Verde , Simulação de Dinâmica Molecular , Hidroxibenzoatos/química , Hidroxibenzoatos/isolamento & purificação
13.
Sci Rep ; 14(1): 12444, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816512

RESUMO

This preregistered ex vivo investigation examined the dentinal hybrid layer formation of a resinous infiltrant (Icon), with reference to both thickness (HLT) and homogeneity when combined with modified tunnel preparation (occlusal cavity only) and internal/external caries infiltration. The adhesives Syntac and Scotchbond MP were used as controls (Groups 1 and 3) or in combination with Icon (Groups 2 and 4). A split-tooth design using healthy third molars from 20 donors resulted in 20 prepared dentine cavities per experimental group. The cavity surfaces (n = 80) were etched (37% H3PO4), rinsed, and air-dried. Rewetting with ethanol was followed by application of the respective primers. After labeling with fluorescent dyes, either Syntac Adhesive/Heliobond or Scotchbond MP Adhesive was used alone or supplemented with Icon. HLT, as evaluated by scanning electron microscopy, did not significantly differ (P > 0.05), and confocal laser scanning microscopy revealed homogeneously mixed/polymerized resin-dentine interdiffusion zones in all groups. Icon can be successfully integrated into an ethanol-wet dentine bonding strategy, and will result in compact and homogeneous hybrid layers of comparable thickness considered equivalent to the non-Icon controls, thus allowing for preservation of the tooth's marginal ridge and interdental space in the case of internal/external infiltration of proximal caries.


Assuntos
Colagem Dentária , Esmalte Dentário , Dentina , Etanol , Humanos , Etanol/química , Colagem Dentária/métodos , Adesivos Dentinários/química , Dente Serotino , Cimentos de Resina/química , Restauração Dentária Permanente/métodos , Microscopia Confocal , Resinas Sintéticas/química , Cárie Dentária/terapia , Microscopia Eletrônica de Varredura , Resinas Compostas/química
14.
Biochim Biophys Acta Proteins Proteom ; 1872(4): 141013, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582358

RESUMO

Posttranslational modifications in fibrinogen resulting from induced oxidation or oxidative stress in the organism can have deleterious influence on optimal functioning of fibrinogen, causing a disturbance in assembly and properties of fibrin. The protective mechanism supporting the ability of fibrinogen to function in ROS-generating environment remains completely unexplored. The effects of very low and moderately low HOCl/-OCl concentrations on fibrinogen oxidative modifications, the fibrin network structure as well as the kinetics of both fibrinogen-to-fibrin conversion and fibrin hydrolysis have been explored in the current study. As opposed to 25 Μm, HOCl/-OCl, 10 µM HOCl/-OCl did not affect the functional activity of fibrinogen. It is shown for the first time that a number of Met residues, AαMet476, AαMet517, AαMet584, BßMet367, γMet264, and γMet94, identified in 10 µM HOCl/-OCl fibrinogen by the HPLC-MS/MS method, operate as ROS scavengers, performing an important antioxidant function. In turn, this indicates that the fibrinogen structure is adapted to the detrimental action of ROS. The results obtained in our study provide evidence for a protective mechanism responsible for maintaining the structure and functioning of fibrinogen molecules in the bloodstream under conditions of mild and moderate oxidative stress.


Assuntos
Fibrinogênio , Metionina , Oxirredução , Estresse Oxidativo , Fibrinogênio/química , Fibrinogênio/metabolismo , Humanos , Metionina/metabolismo , Metionina/química , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo , Ácido Hipocloroso/química , Ácido Hipocloroso/metabolismo , Fibrina/metabolismo , Fibrina/química , Espectrometria de Massas em Tandem
15.
Small Methods ; : e2301713, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564783

RESUMO

The label-free imaging of inorganic nanoparticles (NPs) using confocal laser scanning microscopy (CLSM) provides a powerful and versatile tool for studying interactions between NPs and biological systems. Without the need for exogenous labels or markers, it simply benefits from the differential scattering of visible photons between biomaterials and inorganic NPs. Validation experiments conducted on fixed and living cells in real-time, as well as mouse tissue sections following parenteral administration of NPs. Additionally, by incorporating reporter fluorophores and utilizing both reflectance and fluorescence imaging modalities, the method enables high-resolution multiplex imaging of cellular structures and NPs. Different sizes and concentrations of Au NPs are tested as for Ag, Fe3O4, and CeO2 NPs, all with biological interest. Overall, the comprehensive study of NP imaging by confocal microscopy in reflectance mode provides valuable insights and tools for researchers interested in monitoring the nano-bio interactions.

16.
Food Res Int ; 184: 114210, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609211

RESUMO

When casein is replaced with starch in imitation cheese, the functionality changes. Three different microscopy methods were applied to understand the microstructural differences in the product depending on which component dominates the microstructure. Confocal Laser Scanning Microscopy (CLSM) for component identification. Scanning Electron Microscopy (SEM) and Cryogenic Scanning Electron Microscopy (Cryo-SEM) for studying surface structures. Differences in the surface structures were detected between SEM and Cryo-SEM. In SEM, starch appeared rough and protein smooth, while in Cryo-SEM no starch roughness of the surface was found. A change in starch modification and effects of protein prehydration was also analysed. Adding octenyl succinic anhydride (OSA) modified starch for emulsifying properties resulted in a microstructure with fragmented protein at a protein level of 7 %, but not at 9 or 12 %. Protein prehydration had limited effect on microstructure. On a macrostructural level, the change to an emulsifying starch increased hardness in imitation cheese with 7 and 9 % protein. Protein prehydration slightly decreased the hardness, but the difference was not significant at all concentrations. This research provides valuable information about the microstructure of imitation cheese at a 50/50 composition, how the microstructure changes with an emulsifying starch and what occurs after a protein prehydration was included in the production.


Assuntos
Queijo , Comportamento Imitativo , Microscopia Eletrônica de Varredura , Caseínas , Amido
17.
Artigo em Inglês | MEDLINE | ID: mdl-38662963

RESUMO

The stripping reaction of lithium (Li) will greatly impact the cyclability and safety of Li-metal batteries. However, Li pits' nucleation and growth, the origin of uneven stripping, are still poorly understood. In this study, we analyze the nucleation mechanism of Li pits and their morphology evolution with a large population and electrode area (>0.45 cm2). We elucidate the dependence of the pit size and density on the current density and overpotential, which are aligned with classical nucleation theory. With a confocal laser scanning microscope, we reveal the preferential stripping on certain crystal grains and a new stripping mode between pure pitting and stripping without pitting. Descriptors like circularity and the aspect ratio (R) of the pit radius to depth are used to quantify the evolution of Li pits in three dimensions. As the pits grow, growth predominates along the through-planedirection, surpassing the expanding rate in the in-plane direction. After analyzing more than 1000 pits at each condition, we validate that the overpotential is inversely related to the pit radius and exponentially related to the rate of nucleation. With this established nucleation-overpotential relationship, we can better understand and predict the evolution of the surface area and roughness of Li electrodes under different stripping conditions. The knowledge and methodology developed in this work will significantly benefit Li-metal batteries' charging/discharging profile design and the assessment of large-scale Li-metal foils.

18.
Curr Eye Res ; 49(6): 582-590, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38444179

RESUMO

PURPOSE: During life up to 70% of aniridia subjects develop aniridia-associated keratopathy (AAK). AAK is characterized by limbal stem cell insufficiency, impaired corneal epithelial cell differentiation and abnormal cell adhesion, which leads to centripetal spreading vascularization, conjunctivalization, and thickening of the cornea. Our aim was to examine the subbasal nerve plexus and central corneal stromal microstructure in subjects with congenital aniridia, using in vivo confocal laser scanning microscopy CLSM. METHODS: 31 eyes of 18 patients (55.6% males, mean age: 25.22 ± 16.35 years) with congenital aniridia and 46 eyes of 29 healthy subjects (41.4% males, mean age 30 ± 14.82 years) were examined using the Rostock Cornea Module of Heidelberg Retina Tomograph-III. At the subbasal nerve plexus, corneal nerve fiber density (CNFD), corneal nerve fiber length (CNFL), corneal total branch density (CTBD), and corneal nerve fiber width (CNFW) were analyzed using ACCMetrics software. Keratocyte density in the anterior, middle and posterior stroma was assessed manually. RESULTS: The CNFD (2.02 ± 4.08 vs 13.99 ± 6.34/mm2), CNFL (5.78 ± 2.68 vs 10.56 ± 2.82 mm/mm2) and CTBD (15.08 ± 15.62 vs 27.44 ± 15.05/mm2) were significantly lower in congenital aniridia subjects than in controls (p < 0.001 for all). CNFW was significantly higher in aniridia subjects than in controls (0.03 ± 0.004 vs 0.02 ± 0.003 mm/mm2) (p = 0.003). Keratocyte density was significantly lower in all stromal layers of aniridia subjects than in controls (p < 0.001 for all). Stromal alterations included confluent keratocytes, keratocytes with long extensions and hyperreflective dots between keratocytes in aniridia. CONCLUSIONS: Decrease in CNFD, CNFL, and CTBD, as well as increase in CNFW well refer to the congenital aniridia-associated neuropathy. The decreased keratocyte density and the stromal alterations may be related to an increased cell death in congenital aniridia, nevertheless, stromal changes in different stages of AAK have to be further analyzed in detail.


Assuntos
Aniridia , Substância Própria , Microscopia Confocal , Fibras Nervosas , Humanos , Aniridia/diagnóstico , Feminino , Masculino , Adulto , Substância Própria/patologia , Substância Própria/inervação , Fibras Nervosas/patologia , Adulto Jovem , Adolescente , Pessoa de Meia-Idade , Nervo Oftálmico/patologia , Criança
19.
Colloids Surf B Biointerfaces ; 237: 113831, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508084

RESUMO

Biofilms are complex porous materials formed by microorganisms, polysaccharides, proteins, eDNA, inorganic matter, and water. They are ubiquitous in various environmental niches and are known to grow at solid-liquid, solid-air and air-liquid interfaces, often causing problems in several industrial and sanitary fields. Their removal is a challenge in many applications and numerous studies have been conducted to identify promising chemical species as cleaning agents. While these substances target specific components of biofilm structure, the role of water content in biofilm, and how it can influence wettability and detergent absorption have been quite neglected in the literature. Estimating water content in biofilm is a challenging task due to its heterogeneity in morphology and chemical composition. In this study, we controlled water content in Pseudomonas fluorescens AR 11 biofilms grown on submerged glass slides by regulating environmental relative humidity after drying. Interfacial properties of biofilm were investigated by measuring wetting of water and soybean oil. The morphology of biofilm structure was evaluated using Confocal Laser Scanning Microscopy and Scanning Electron Microscopy. The results showed that biofilm water content has a significant and measurable effect on its wettability, leading to the hypothesis that a preliminary control of water content can play a crucial role in biofilm removal process.


Assuntos
Pseudomonas fluorescens , Molhabilidade , Pseudomonas fluorescens/fisiologia , Umidade , Biofilmes , Água
20.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542256

RESUMO

This study aimed to evaluate the impact of Candida albicans on subgingival biofilm formation on dental implant surfaces. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were used to compare biofilm structure and microbial biomass in the presence and absence of the fungus after periods of 24, 48, and 72 h. Quantitative polymerase chain reaction (qPCR) was used to quantify the number of viable and total micro-organisms for each of the biofilm-forming strains. A general linear model was applied to compare CLSM and qPCR results between the control and test conditions. The biofilm developed with C. albicans at 72 h had a higher bacterial biomass and a significantly higher cell viability (p < 0.05). After both 48 and 72 h of incubation, in the presence of C. albicans, there was a significant increase in counts of Fusobacterium nucleatum and Porphyromonas gingivalis and in the cell viability of Streptococcus oralis, Aggregatibacter actinomycetemcomitans, F. nucleatum, and P. gingivalis. Using a dynamic in vitro multispecies biofilm model, C. albicans exacerbated the development of the biofilm grown on dental implant surfaces, significantly increasing the number and cell viability of periodontal bacteria.


Assuntos
Candida albicans , Implantes Dentários , Sobrevivência Celular , Biofilmes , Porphyromonas gingivalis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...