Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Materials (Basel) ; 15(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35057238

RESUMO

This paper investigates the compression behavior and failure criteria of lightweight aggregate concrete (LAC) under triaxial loading. A total of 156 specimens were tested for three parameters: concrete strength, lateral confining pressure and aggregate immersion time, and their effects on the failure mode of LAC and the triaxial stress-strain relationship of LAC is studied. The research indicated that, as the lateral constraint of the specimen increases, the failure patterns change from vertical splitting failure to oblique shearing failure and then to indistinct traces of damage. The stress-strain curve of LAC specimens has an obvious stress plateau, and the curve no longer appears downward when the confining pressure exceeds 12 MPa. According to the experimental phenomenon and test data, the failure criterion was examined on the Mohr-Coulomb theory, octahedral shear stress theory and Rendulic plane stress theory, which well reflects the behavior of LAC under triaxial compression. For the convenience of analysis and application, the stress-strain constitutive models of LAC under triaxial compression are recommended, and these models correlate well with the test results.

2.
Journal of Medical Biomechanics ; (6): E434-E439, 2019.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-802478

RESUMO

As the main organ of the body, the load-bearing ability of bone is closely connected to its biomechanical properties. Bone is a complex hierarchical biomaterial, whose biomechanical properties are determined by its own structure and biological characteristics. Because of its mechanical adaptability, bone tissues represent different biomechanical properties under different mechanical loading. To quantify the complicated properties of bone and provide an accurate theoretical basis for clinical research, it is necessary to give insight into the biomechanical properties of bone at different levels and the constitutive relationships of bone tissues. In this review, relative researches on constitutive relationships in recent years were summarized based on its hierarchical biomechanical properties.

3.
Journal of Medical Biomechanics ; (6): E434-E439, 2019.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-802375

RESUMO

As the main organ of the body, the load-bearing ability of bone is closely connected to its biomechanical properties. Bone is a complex hierarchical biomaterial, whose biomechanical properties are determined by its own structure and biological characteristics. Because of its mechanical adaptability, bone tissues represent different biomechanical properties under different mechanical loading. To quantify the complicated properties of bone and provide an accurate theoretical basis for clinical research, it is necessary to give insight into the biomechanical properties of bone at different levels and the constitutive relationships of bone tissues. In this review, relative researches on constitutive relationships in recent years were summarized based on its hierarchical biomechanical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...