RESUMO
Ecosystem functions and the biomass of lower trophic levels are frequently controlled by predators. The strength of top-down control in these trophic cascades can be affected by the identity and diversity of predators, prey, and resources, as well as environmental conditions such as temperature, moisture, and nutrient loading, which can all impact interaction strength between trophic levels. Few studies have been able to replicate a complete community over a large geographic area to compare the full trophic cascade in a manipulative experiment. Here, we identify geographic dependency in trophic cascade strength, and the driving factors and specific mechanisms behind it, by combining geographically replicated experiments with a novel approach of community analogues of common garden and transplant experiments. We studied a predator-detritivore-detritus food web in bromeliads in Puerto Rico, Costa Rica, and Brazil. We found that interaction strengths between resources, consumers, and predators were strongly site-specific, but the exact mechanism differed between trophic levels. Large bodied predators created strong interaction strengths between predator and consumer trophic levels, reducing consumer abundance regardless of the geographic location, whereas small-bodied predators created weak interactions with no impact on consumer abundances in any site. In contrast, the interaction strength between consumers and resources varied among sites, depending on the dominant species of leaf detritus. More labile leaf species in Costa Rica created a strong consumer-resource interaction and therefore strong trophic cascade, whereas tougher leaf species in Brazil created a weak consumer-resource interaction, and an overall weaker trophic cascade. Our study highlights the importance of replicating experiments over geographic scales to understand general patterns of ecological processes.
Assuntos
Ecossistema , Cadeia Alimentar , Animais , Brasil , Costa Rica , Comportamento Predatório , Porto RicoRESUMO
The role of Nodal signalling in nervous system asymmetry is still poorly understood. Here, we review and discuss how asymmetric Nodal signalling controls the ontogeny of nervous system asymmetry using a comparative developmental perspective. A detailed analysis of asymmetry in ascidians and fishes reveals a critical context-dependency of Nodal function and emphasizes that bilaterally paired and midline-unpaired structures/organs behave as different entities. We propose a conceptual framework to dissect the developmental function of Nodal as asymmetry inducer and laterality modulator in the nervous system, which can be used to study other types of body and visceral organ asymmetries. Using insights from developmental biology, we also present novel evolutionary hypotheses on how Nodal led the evolution of directional asymmetry in the brain, with a particular focus on the epithalamus. We intend this paper to provide a synthesis on how Nodal signalling controls left-right asymmetry of the nervous system.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.