Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Neuroeng Rehabil ; 18(1): 38, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596960

RESUMO

BACKGROUND: Neuroprosthetic devices controlled by persons with standard limb amputation often lack the dexterity of the physiological limb due to limitations of both the user's ability to output accurate control signals and the control system's ability to formulate dynamic trajectories from those signals. To restore full limb functionality to persons with amputation, it is necessary to first deduce and quantify the motor performance of the missing limbs, then meet these performance requirements through direct, volitional control of neuroprosthetic devices. METHODS: We develop a neuromuscular modeling and optimization paradigm for the agonist-antagonist myoneural interface, a novel tissue architecture and neural interface for the control of myoelectric prostheses, that enables it to generate virtual joint trajectories coordinated with an intact biological joint at full physiologically-relevant movement bandwidth. In this investigation, a baseline of performance is first established in a population of non-amputee control subjects ([Formula: see text]). Then, a neuromuscular modeling and optimization technique is advanced that allows unilateral AMI amputation subjects ([Formula: see text]) and standard amputation subjects ([Formula: see text]) to generate virtual subtalar prosthetic joint kinematics using measured surface electromyography (sEMG) signals generated by musculature within the affected leg residuum. RESULTS: Using their optimized neuromuscular subtalar models under blindfolded conditions with only proprioceptive feedback, AMI amputation subjects demonstrate bilateral subtalar coordination accuracy not significantly different from that of the non-amputee control group (Kolmogorov-Smirnov test, [Formula: see text]) while standard amputation subjects demonstrate significantly poorer performance (Kolmogorov-Smirnov test, [Formula: see text]). CONCLUSIONS: These results suggest that the absence of an intact biological joint does not necessarily remove the ability to produce neurophysical signals with sufficient information to reconstruct physiological movements. Further, the seamless manner in which virtual and intact biological joints are shown to coordinate reinforces the theory that desired movement trajectories are mentally formulated in an abstract task space which does not depend on physical limb configurations.


Assuntos
Algoritmos , Membros Artificiais , Retroalimentação Sensorial/fisiologia , Músculo Esquelético/fisiopatologia , Desempenho Psicomotor/fisiologia , Adulto , Amputação Cirúrgica , Fenômenos Biomecânicos , Eletromiografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Movimento/fisiologia , Processamento de Sinais Assistido por Computador , Interface Usuário-Computador
2.
Curr Opin Physiol ; 8: 161-169, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31763514

RESUMO

Reticulospinal (RS) neurons provide the spinal cord with the executive signals for a large repertoire of motor and autonomic functions, ensuring at the same time that these functions are adapted to the different behavioral contexts. This requires the coordinated action of many RS neurons. In this mini-review, we examine how the RS neurons that carry out specific functions distribute across the three parts of the brain stem. Extensive overlap between populations suggests a need to explore multi-functionality at the single cell-level. We next contrast functional diversity and homogeneity in transmitter phenotype. Then, we examine the molecular genetic mechanisms that specify brain stem development and likely contribute to RS neurons identities. We advocate that a better knowledge of the developmental lineage of the RS neurons and a better knowledge of RS neuron activity across multiple behaviors will help uncover the fundamental principles behind the diversity of RS systems in mammals.

3.
Front Physiol ; 10: 625, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275151

RESUMO

In human quiet standing, the relative position between ankle joint centre and line of gravity is neurally regulated within tight limits. The regulation of the knee and hip configuration is unclear and thought to be controlled passively. However, perturbed standing experiments have shown a lower limb multi-joint coordination. Here, measuring the relative alignment between lower limb joints and the line of gravity in quiet standing after walking, we investigated whether the configuration is maintained over time through passive mechanisms or active control. Thirteen healthy adults walked without following a path and then stood quietly for 7.6 s on a force platform (up to four trials). The transition between initiation and steady-state standing (7.6 s) was measured using motion capture. Sagittal lower limb joint centres' position relative to line of gravity (CoGAP) and their time constants were calculated in each trial. Ankle, knee, and hip joint moments were also calculated through inverse dynamics. After walking, the body decelerated (τ = 0.16 s). The ankle and hip joints' position relative to CoGAP measured at two time intervals of quiet standing (Mid = 0.5-0.55 s; End = 7.55-7.6 s) were different (mean ± SEM, CoGAP-Ankle_Mid = 47 ± 4 mm, CoGAP-Ankle_End = 58 ± 5 mm; CoGAP-Hip_Mid = 2 ± 5 mm, CoGAP-Hip_End = -5 ± 5 mm). The ankle, knee, and hip flexion-extension moments significantly changed. Changes in joints position relative to CoGAP and misalignment suggest that joint position is not maintained over 7.6 s, but regulated relative to a standing reference. Higher joint moments at steady-state standing suggest mechanisms other than passive knee and hip regulation are involved in standing.

4.
F1000Res ; 82019.
Artigo em Inglês | MEDLINE | ID: mdl-31275561

RESUMO

For years, neurophysiological studies of the cerebral cortical mechanisms of voluntary motor control were limited to single-electrode recordings of the activity of one or a few neurons at a time. This approach was supported by the widely accepted belief that single neurons were the fundamental computational units of the brain (the "neuron doctrine"). Experiments were guided by motor-control models that proposed that the motor system attempted to plan and control specific parameters of a desired action, such as the direction, speed or causal forces of a reaching movement in specific coordinate frameworks, and that assumed that the controlled parameters would be expressed in the task-related activity of single neurons. The advent of chronically implanted multi-electrode arrays about 20 years ago permitted the simultaneous recording of the activity of many neurons. This greatly enhanced the ability to study neural control mechanisms at the population level. It has also shifted the focus of the analysis of neural activity from quantifying single-neuron correlates with different movement parameters to probing the structure of multi-neuron activity patterns to identify the emergent computational properties of cortical neural circuits. In particular, recent advances in "dimension reduction" algorithms have attempted to identify specific covariance patterns in multi-neuron activity which are presumed to reflect the underlying computational processes by which neural circuits convert the intention to perform a particular movement into the required causal descending motor commands. These analyses have led to many new perspectives and insights on how cortical motor circuits covertly plan and prepare to initiate a movement without causing muscle contractions, transition from preparation to overt execution of the desired movement, generate muscle-centered motor output commands, and learn new motor skills. Progress is also being made to import optical-imaging and optogenetic toolboxes from rodents to non-human primates to overcome some technical limitations of multi-electrode recording technology.


Assuntos
Córtex Motor/fisiologia , Movimento , Neurônios/fisiologia , Primatas/fisiologia , Animais , Eletrodos Implantados
6.
J Biomech ; 87: 150-156, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876735

RESUMO

It has long been held that hip abduction compensates for reduced swing-phase knee flexion angle, especially in those after stroke. However, there are other compensatory motions such as pelvic obliquity (hip hiking) that could also be used to facilitate foot clearance with greater energy efficiency. Our previous work suggested that hip abduction may not be a compensation for reduced knee flexion after stroke. Previous study applied robotic knee flexion assistance in people with post-stroke Stiff-Knee Gait (SKG) during pre-swing, finding increased abduction despite improved knee flexion and toe clearance. Thus, our hypothesis was that hip abduction is not a compensation for reduced knee flexion. We simulated the kinematics of post-stroke SKG on unimpaired individuals with three factors: a knee orthosis to reduce knee flexion, an ankle-foot orthosis commonly worn by those post-stroke, and matching gait speeds. We compared spatiotemporal measures and kinematics between experimental factors within healthy controls and with a previously recorded cohort of people with post-stroke SKG. We focused on frontal plane motions of hip and pelvis as possible compensatory mechanisms. We observed that regardless of gait speed, knee flexion restriction increased pelvic obliquity (2.8°, p < 0.01) compared to unrestricted walking (1.5°, p < 0.01), but similar to post-stroke SKG (3.4°). However, those with post-stroke SKG had greater hip abduction (8.2°) compared to unimpaired individuals with restricted knee flexion (4.2°, p < 0.05). These results show that pelvic obliquity, not hip abduction, compensates for reduced knee flexion angle. Thus, other factors, possibly neural, facilitate exaggerated hip abduction observed in post-stroke SKG.


Assuntos
Marcha , Articulação do Quadril , Articulação do Joelho , Amplitude de Movimento Articular , Fenômenos Biomecânicos , Simulação por Computador , Feminino , Articulação do Quadril/fisiologia , Humanos , Articulação do Joelho/fisiologia , Masculino , Pessoa de Meia-Idade , Caminhada
7.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 35(6): 860-863, 2018 12 25.
Artigo em Chinês | MEDLINE | ID: mdl-30583309

RESUMO

Functional electronic stimulation (FES) may provide a means to restore motor function in patients with spinal cord injuries. The goal of this study is to determine the regions in the spinal cord controlling different hindlimb movements in the rats. Normalization was used for the regions dominating the corresponding movements. It has been verified that FES can be used in motor function recovery of the hindlimb. The spinal cord was stimulated by FES with a three-dimensional scan mode in experiments. The results show that stimulation through the electrodes implanted in the ventral locations of the lumbosacral enlargement can produce coordinated single- and multi-joint hindlimb movements. A variety of different hindlimb movements can be induced with the appropriate stimulation sites, and movement vectors of the hindlimb cover the full range of movement directions in the sagittal plane of the hindlimb. This article drew a map about spinal cord motor function of the rat. The regions in the spinal cord which control corresponding movements are normalized. The data in the study provide guidance about the location of electrode tips in the follow-up experiments.

8.
Front Hum Neurosci ; 12: 15, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29445332

RESUMO

During dynamic or sustained isometric contractions, bursts of muscle activity appear in the electromyography (EMG) signal. Theoretically, these bursts of activity likely occur because motor units are constrained to fire temporally close to one another and thus the impulses are "clustered" with short delays to elicit bursts of muscle activity. The purpose of this study was to investigate whether a sequence comprised of "clustered" motor unit action potentials (MUAP) can explain spectral and amplitude changes of the EMG during a simulated motor task. This question would be difficult to answer experimentally and thus, required a model to study this type of muscle activation pattern. To this end, we modeled two EMG signals, whereby a single MUAP was either convolved with a randomly distributed impulse train (EMG-rand) or a "clustered" sequence of impulses (EMG-clust). The clustering occurred in windows lasting 5-100 ms. A final mixed signal of EMG-clust and EMG-rand, with ratios (1:1-1:10), was also modeled. A ratio of 1:1 would indicate that 50% of MUAP were randomly distributed, while 50% of "clustered" MUAP occurred in a given time window (5-100 ms). The results of the model showed that clustering MUAP caused a downshift in the mean power frequency (i.e., ~30 Hz) with the largest shift occurring with a cluster window of 10 ms. The mean frequency shift was largest when the ratio of EMG-clust to EMG-rand was high. Further, the clustering of MUAP also caused a substantial increase in the amplitude of the EMG signal. This model potentially explains an activation pattern that changes the EMG spectra during a motor task and thus, a potential activation pattern of muscles observed experimentally. Changes in EMG measurements during fatiguing conditions are typically attributed to slowing of conduction velocity but could, per this model, also result from changes of the clustering of MUAP. From a clinical standpoint, this type of muscle activation pattern might help describe the pathological movement issues in people with Parkinson's disease or essential tremor. Based on our model, researchers moving forward should consider how MUAP clustering influences EMG spectral and amplitude measurements and how these changes influence movements.

9.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-773345

RESUMO

Functional electronic stimulation (FES) may provide a means to restore motor function in patients with spinal cord injuries. The goal of this study is to determine the regions in the spinal cord controlling different hindlimb movements in the rats. Normalization was used for the regions dominating the corresponding movements. It has been verified that FES can be used in motor function recovery of the hindlimb. The spinal cord was stimulated by FES with a three-dimensional scan mode in experiments. The results show that stimulation through the electrodes implanted in the ventral locations of the lumbosacral enlargement can produce coordinated single- and multi-joint hindlimb movements. A variety of different hindlimb movements can be induced with the appropriate stimulation sites, and movement vectors of the hindlimb cover the full range of movement directions in the sagittal plane of the hindlimb. This article drew a map about spinal cord motor function of the rat. The regions in the spinal cord which control corresponding movements are normalized. The data in the study provide guidance about the location of electrode tips in the follow-up experiments.

10.
Front Aging Neurosci ; 9: 375, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29213235

RESUMO

Predictive control of movement is more efficient than feedback-based control, and is an important skill in everyday life. We tested whether the ability to predictively control movements of the upper arm is affected by age and by cognitive load. A total of 63 participants were tested in two experiments. In both experiments participants were seated, and controlled a cursor on a computer screen by flexing and extending their dominant arm. In Experiment 1, 20 young adults and 20 older adults were asked to continuously change the frequency of their horizontal arm movements, with the goal of inducing an abrupt switch between discrete movements (at low frequencies) and rhythmic movements (at high frequencies). We tested whether that change was performed based on a feed-forward (predictive) or on a feedback (reactive) control. In Experiment 2, 23 young adults performed the same task, while being exposed to a cognitive load half of the time via a serial subtraction task. We found that both aging and cognitive load diminished, on average, the ability of participants to predictively control their movements. Five older adults and one young adult under a cognitive load were not able to perform the switch between rhythmic and discrete movement (or vice versa). In Experiment 1, 40% of the older participants were able to predictively control their movements, compared with 70% in the young group. In Experiment 2, 48% of the participants were able to predictively control their movements with a cognitively loading task, compared with 70% in the no-load condition. The ability to predictively change a motor plan in anticipation of upcoming changes may be an important component in performing everyday functions, such as safe driving and avoiding falls.

11.
J Mot Behav ; 49(1): 1-7, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28166469

RESUMO

Integration of research in the fields of neural control of movement and biomechanics (collectively referred to as movement science) with the field of human occupation directly benefits both areas of study. Specifically, incorporating many of the quantitative scientific methods and analyses employed in movement science can help accelerate the development of rehabilitation-relevant research in occupational therapy (OT) and occupational science (OS). Reciprocally, OT and OS, which focus on the performance of everyday activities (occupations) to promote health and well-being, provide theoretical frameworks to guide research on the performance of actions in the context of social, psychological, and environmental factors. Given both fields' mutual interest in the study of movement as it relates to health and disease, the authors posit that combining OS and OT theories and principles with the theories and methods in movement science may lead to new, impactful, and clinically relevant knowledge. The first step is to ensure that individuals with OS or OT backgrounds are academically prepared to pursue advanced study in movement science. In this article, the authors propose 2 strategies to address this need.


Assuntos
Comunicação Interdisciplinar , Movimento , Saúde Ocupacional , Terapia Ocupacional , Pesquisa Translacional Biomédica/tendências , Fenômenos Biomecânicos , Humanos
12.
J Neurophysiol ; 117(4): 1483-1488, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077666

RESUMO

Older adults exhibit altered activation of the agonist and antagonist muscles during goal-directed movements compared with young adults. However, it remains unclear whether the differential activation of the antagonistic muscles in older adults results from an impaired motor plan or an altered ability of the muscle to contract. The purpose of this study, therefore, was to determine whether the motor plan differs for young and older adults. Ten young (26.1 ± 4.3 yr, 4 women) and 16 older adults (71.9 ± 6.9 yr, 9 women) participated in the study. Participants performed 100 trials of fast goal directed movements with ankle dorsiflexion while we recorded the electromyographic activity of the primary agonist (tibialis anterior; TA) and antagonist (soleus; SOL) muscles. From those 100 trials we selected 5 trials in each of 3 movement end-point categories (fast, accurate, and slow). We investigated age-associated differences in the motor plan by quantifying the individual activity and coordination of the agonist and antagonist muscles. During similar movement end points, older adults exhibited similar activation of the agonist (TA) and antagonist (SOL) muscles compared with young adults. In addition, the coordination of the agonist and antagonist muscles (TA and SOL) was different between the two age groups. Specifically, older adults exhibited lower TA-SOL overlap (F1,23 = 41.2, P < 0.001) and greater TA-SOL peak EMG delay (F1,25 = 35.5, P < 0.001). This finding suggests that although subjects in both age groups displayed similar movement end points, they exhibited a different motor plan, as demonstrated by altered coordination between the agonist and antagonist muscles.NEW & NOTEWORTHY We aimed to determine whether the altered activation of muscles in older adults compared with young adults during fast goal-directed movements is related to an altered motor plan. For matched movements, there were differences in the coordination of antagonistic muscles but no differences in the individual activation of muscles. We provide novel evidence that the differential activation of muscles in older adults is related to an altered motor plan.


Assuntos
Envelhecimento/fisiologia , Objetivos , Movimento/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto , Idoso , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reflexo/fisiologia , Adulto Jovem
13.
Front Pediatr ; 4: 121, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933283

RESUMO

The current rise of neurodevelopmental disorders poses a critical need to detect risk early in order to rapidly intervene. One of the tools pediatricians use to track development is the standard growth chart. The growth charts are somewhat limited in predicting possible neurodevelopmental issues. They rely on linear models and assumptions of normality for physical growth data - obscuring key statistical information about possible neurodevelopmental risk in growth data that actually has accelerated, non-linear rates-of-change and variability encompassing skewed distributions. Here, we use new analytics to profile growth data from 36 newborn babies that were tracked longitudinally for 5 months. By switching to incremental (velocity-based) growth charts and combining these dynamic changes with underlying fluctuations in motor performance - as the transition from spontaneous random noise to a systematic signal - we demonstrate a method to detect very early stunting in the development of voluntary neuromotor control and to flag risk of neurodevelopmental derail.

14.
Front Hum Neurosci ; 9: 315, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26089785

RESUMO

Classic studies in human sensorimotor control use simplified tasks to uncover fundamental control strategies employed by the nervous system. Such simple tasks are critical for isolating specific features of motor, sensory, or cognitive processes, and for inferring causality between these features and observed behavioral changes. However, it remains unclear how these theories translate to complex sensorimotor tasks or to natural behaviors. Part of the difficulty in performing such experiments has been the lack of appropriate tools for measuring complex motor skills in real-world contexts. Robot-assisted surgery (RAS) provides an opportunity to overcome these challenges by enabling unobtrusive measurements of user behavior. In addition, a continuum of tasks with varying complexity-from simple tasks such as those in classic studies to highly complex tasks such as a surgical procedure-can be studied using RAS platforms. Finally, RAS includes a diverse participant population of inexperienced users all the way to expert surgeons. In this perspective, we illustrate how the characteristics of RAS systems make them compelling platforms to extend many theories in human neuroscience, as well as, to develop new theories altogether.

15.
J Anat ; 227(2): 167-77, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26047134

RESUMO

Signals from sensory receptors in muscles and skin enter the central nervous system (CNS), where they contribute to kinaesthesia and the generation of motor commands. Many lines of evidence indicate that sensory input from skin receptors, muscle spindles and Golgi tendon organs play the predominant role in this regard. Yet in spite of over 100 years of research on this topic, some quite fundamental questions remain unresolved. How does the CNS choose to use the ability to control muscle spindle sensitivity during voluntary movements? Do spinal reflexes contribute usefully to load compensation, given that the feedback gain must be quite low to avoid instability? To what extent do signals from skin stretch receptors contribute? This article provides a brief review of various theories, past and present, that address these questions. To what extent has the knowledge gained resulted in clinical applications? Muscles paralyzed as a result of spinal cord injury or stroke can be activated by electrical stimulation delivered by neuroprostheses. In practice, at most two or three sensors can be deployed on the human body, providing only a small fraction of the information supplied by the tens of thousands of sensory receptors in animals. Most of the neuroprostheses developed so far do not provide continuous feedback control. Instead, they switch from one state to another when signals from their one or two sensors meet pre-set thresholds (finite state control). The inherent springiness of electrically activated muscle provides a crucial form of feedback control that helps smooth the resulting movements. In spite of the dissimilarities, parallels can be found between feedback control in neuroprostheses and in animals and this can provide surprising insights in both directions.


Assuntos
Retroalimentação Sensorial/fisiologia , Movimento/fisiologia , Músculo Esquelético/fisiologia , Próteses Neurais , Animais , Eletromiografia , Humanos , Mecanorreceptores/fisiologia , Fusos Musculares/fisiologia , Reflexo/fisiologia
16.
Front Neurosci ; 9: 149, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25999805

RESUMO

To intercept a moving object, one needs to be in the right place at the right time. In order to do this, it is necessary to pick up and use perceptual information that specifies the time to arrival of an object at an interception point. In the present study, we examined the ability to intercept a laterally moving virtual sound object by controlling the displacement of a sliding handle and tested whether and how the interaural time difference (ITD) could be the main source of perceptual information for successfully intercepting the virtual object. The results revealed that in order to accomplish the task, one might need to vary the duration of the movement, control the hand velocity and time to reach the peak velocity (speed coupling), while the adjustment of movement initiation did not facilitate performance. Furthermore, the overall performance was more successful when subjects employed a time-to-contact (tau) coupling strategy. This result shows that prospective information is available in sound for guiding goal-directed actions.

18.
Cortex ; 64: 380-93, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25438744

RESUMO

Alien control phenomena are symptoms reported by patients with schizophrenia whereby feelings of control and ownership of thoughts and movements are lost. Comparable alien control experiences occur in culturally influenced dissociative states. We used fMRI and suggestions for automatic writing in highly hypnotically suggestible individuals to investigate the neural underpinnings of alien control. Targeted suggestions selectively reduced subjective ratings of control and ownership for both thought and movement. Thought insertion (TI) was associated with reduced activation of networks supporting language, movement, and self-related processing. In contrast, alien control of writing movement was associated with increased activity of a left-lateralised cerebellar-parietal network and decreased activity in brain regions involved in voluntary movement, including sensory-motor hand areas and the thalamus. Both experiences involved a reduction in activity of left supplementary motor area (SMA) and were associated with altered functional connectivity (FC) between SMA and brain regions involved in language processing and movement implementation. Collectively these results indicate the SMA plays a central role in alien control phenomena as a high level executive system involved in the sense that we control and own our thoughts and movements.


Assuntos
Encéfalo/fisiopatologia , Movimento/fisiologia , Rede Nervosa/fisiopatologia , Esquizofrenia/fisiopatologia , Adolescente , Adulto , Encéfalo/patologia , Delusões/patologia , Delusões/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/patologia , Desempenho Psicomotor/fisiologia , Esquizofrenia/patologia , Sugestão , Adulto Jovem
19.
Conscious Cogn ; 26: 24-36, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24657632

RESUMO

Our sense of self includes awareness of our thoughts and movements, and our control over them. This feeling can be altered or lost in neuropsychiatric disorders as well as in phenomena such as "automatic writing" whereby writing is attributed to an external source. Here, we employed suggestion in highly hypnotically suggestible participants to model various experiences of automatic writing during a sentence completion task. Results showed that the induction of hypnosis, without additional suggestion, was associated with a small but significant reduction of control, ownership, and awareness for writing. Targeted suggestions produced a double dissociation between thought and movement components of writing, for both feelings of control and ownership, and additionally, reduced awareness of writing. Overall, suggestion produced selective alterations in the control, ownership, and awareness of thought and motor components of writing, thus enabling key aspects of automatic writing, observed across different clinical and cultural settings, to be modelled.


Assuntos
Conscientização/fisiologia , Função Executiva/fisiologia , Atividade Motora/fisiologia , Sugestão , Pensamento/fisiologia , Redação , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
20.
Neuropsychologia ; 55: 25-40, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24334110

RESUMO

Following the princeps investigations of Marc Jeannerod on action-perception, specifically, goal-directed movement, this review article addresses visual and non-visual processes involved in guiding the hand in reaching or grasping tasks. The contributions of different sources of correction of ongoing movements are considered; these include visual feedback of the hand, as well as the often-neglected but important spatial updating and sharpening of goal localization following gaze-saccade orientation. The existence of an automatic online process guiding limb trajectory toward its goal is highlighted by a series of princeps experiments of goal-directed pointing movements. We then review psychophysical, electrophysiological, neuroimaging and clinical studies that have explored the properties of these automatic corrective mechanisms and their neural bases, and established their generality. Finally, the functional significance of automatic corrective mechanisms-referred to as motor flexibility-and their potential use in rehabilitation are discussed.


Assuntos
Braço/fisiologia , Mãos/fisiologia , Desempenho Psicomotor/fisiologia , Animais , Força da Mão/fisiologia , Humanos , Percepção Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...