Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38792240

RESUMO

The photocatalyst (PC) zinc tetraphenylporphyrin (ZnTPP) is highly efficient for photoinduced electron/energy transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. However, ZnTPP suffers from poor absorbance of orange light by the so-called Q-band of the absorption spectrum (maximum absorption wavelength λmax = 600 nm, at which molar extinction coefficient εmax = 1.0×104 L/(mol·cm)), hindering photo-curing applications that entail long light penetration paths. Over the past decade, there has not been any competing candidate in terms of efficiency, despite a myriad of efforts in PC design. By theoretical evaluation, here we rationally introduce a peripheral benzo moiety on each of the pyrrole rings of ZnTPP, giving zinc tetraphenyl tetrabenzoporphyrin (ZnTPTBP). This modification not only enlarges the conjugation length of the system, but also alters the a1u occupied π molecular orbital energy level and breaks the accidental degeneracy between the a1u and a2u orbitals, which is responsible for the low absorption intensity of the Q-band. As a consequence, not only is there a pronounced hyperchromic and bathochromic effect (λmax = 655 nm and εmax = 5.2×104 L/(mol·cm)) of the Q-band, but the hyperchromic effect is achieved without increasing the intensity of the less useful, low wavelength absorption peaks of the PC. Remarkably, this strong 655 nm absorption takes advantage of deep-red (650-700 nm) light, a major component of solar light exhibiting good atmosphere penetration, exploited by the natural PC chlorophyll a as well. Compared with ZnTPP, ZnTPTBP displayed a 49% increase in PET-RAFT polymerization rate with good control, marking a significant leap in the area of photo-controlled polymerization.

2.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542851

RESUMO

Fluorinated polymers are important materials in everyday life; however, most monomers of widely used fluoropolymers are gaseous, and their polymerization is difficult in an ordinary laboratory. Therefore, partially fluorinated polymers have recently been reported. As an easy-to-handle fluorine-containing monomer, α-trifluoromethylstyrene (TFMST) can be used to produce partially fluorinated polymers with trifluoromethyl groups in the main chain; however, TFMST does not homopolymerize, and there are limited reports on its copolymerization with styrene (ST). In this study, we applied the controlled radical polymerization method, which is effective for the polymerization of ST, to the copolymerization of TFMST and ST. We also showed that nitroxide-mediated polymerization is effective. The content ratio of TFMST in the TFMST-ST copolymer can be controlled between 10% and 40% by changing its monomer ratio. Additionally, the polymerization of TFMST and ST with substituents was performed to increase structural variations. The thermal stability as well as water and oil repellency of the synthesized polymers with different composition ratios and substituents were also evaluated.

3.
Angew Chem Int Ed Engl ; 63(18): e202401926, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38415944

RESUMO

Block copolymers, comprising polyether and polyolefin segments, are an important and promising category of functional materials. However, the lack of efficient strategies for the construction of polyether-b-polyolefin block copolymers have hindered the development of these materials. Herein, we propose a simple and efficient method to obtain various block copolymers through the copolymerization of epoxides and acrylates via bimetallic synergistic catalysis. The copolymerization of epoxides and acrylates proceeds in a sequence-controlled manner, where the epoxides-involved homo- or copolymerization occurs first, followed by the homopolymerization of acrylates initiated by the alkoxide species from the propagating polymer chain, thus yielding copolymers with a block structure. Notably, the high monomer compatibility of this powerful strategy provides a platform for synthesizing various polyacrylate-based block copolymers comprising polyether, polycarbonate, polythiocarbonate, polyester, and polyurethane segments, respectively.

4.
Angew Chem Int Ed Engl ; 63(12): e202318898, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38284482

RESUMO

Developing reversible-deactivation radical polymerization (RDRP) methods that could directly control the thiyl radical propagation is highly desirable yet remains challenging in modern polymer chemistry. Here, we reported the first reversible thiyl radical addition-fragmentation chain transfer (SRAFT) polymerization strategy, which utilizes allyl sulfides as chain transfer agents for reversibly deactivating the propagating thiyl radicals, thus allowing us to directly control a challenging thiyl radical chain polymerization to afford polymers with well-defined architectures. A linear dependence of molecular weight on conversion, high chain-end fidelity, and efficient chain extension proved good controllability of the polymerization. In addition, density functional theory calculations provided insight into the reversible deactivation ability of allyl sulfides. The SRAFT strategy developed in this work represents a promising platform for discovering new controlled polymerizations based on thiyl radical chemistry.

5.
Proc Natl Acad Sci U S A ; 120(51): e2311396120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079554

RESUMO

Cationic polymers have been identified as a promising type of antibacterial molecules, whose bioactivity can be tuned through structural modulation. Recent studies suggest that the placement of the cationic groups close to the core of the polymeric architecture rather than on appended side chains might improve both their bioactivity and selectivity for bacterial cells over mammalian cells. However, antibacterial main-chain cationic polymers are typically synthesized via polycondensations, which do not afford precise and uniform molecular design. Therefore, accessing main-chain cationic polymers with high degrees of molecular tunability hinges upon the development of controlled polymerizations tolerating cationic motifs (or cation progenitors) near the propagating species. Herein, we report the synthesis and ring-opening metathesis polymerization (ROMP) of N-methylpyridinium-fused norbornene monomers. The identification of reaction conditions leading to a well-controlled ROMP enabled structural diversification of the main-chain cationic polymers and a study of their bioactivity. This family of polyelectrolytes was found to be active against both Gram-negative (Escherichia coli) and Gram-positive (Methicillin-resistant Staphylococcus aureus) bacteria with minimal inhibitory concentrations as low as 25 µg/mL. Additionally, the molar mass of the polymers was found to impact their hemolytic activity with cationic polymers of smaller degrees of polymerization showing increased selectivity for bacteria over human red blood cells.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Polímeros , Animais , Humanos , Polímeros/química , Polimerização , Antibacterianos/farmacologia , Antibacterianos/química , Norbornanos/química , Cátions , Mamíferos
6.
Macromol Rapid Commun ; 44(23): e2300362, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37625446

RESUMO

Molecular bottlebrush (MBB) refer to a synthetic macromolecule, in which a mass of polymeric side chains (SCs) are covalently connected to a macromolecular backbone densely, representing an important type of unimolecular nanomaterial. The chemical composition, size, shape, and surface property of MBB can be precisely tailored by varying the backbones and SCs as well as the grafting density (Gdst ). Meanwhile, the topological structure of backbones and SCs can also significantly affect the chemical and physical properties of MBBs. For the past few years, by combining the structure features of MBB, the polymers with diverse architectures using MBB as building block are synthesized, including linear, branched, and cyclic MBB etc. These promising architectural features will bring MBBs with diverse architectures and lots of applications in advanced materials. For this reason, this work is interested in giving a briefly summary of the recent progress on tailor of well-defined MBBs with diverse architectures using grafting-onto strategy combined with controlled polymerization technique.


Assuntos
Nanoestruturas , Polímeros , Polímeros/química , Substâncias Macromoleculares , Nanoestruturas/química , Polimerização , Propriedades de Superfície
7.
Macromol Rapid Commun ; 44(14): e2300094, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37191104

RESUMO

ortho-Phenylenes are one of the simplest classes of aromatic foldamers, adopting helical geometries because of aromatic stacking interactions. The folding and misfolding of ortho-phenylenes are slow on the NMR timescale at or below room temperature, allowing detection of folding states using 1 H NMR spectroscopy. Herein, an ortho-phenylene hexamer is coupled with a RAFT chain transfer agent (CTA) on each repeat unit. A variety of acrylic monomers are polymerized onto the CTA-functionalized ortho-phenylene using PET-RAFT to yield functionalized star polymers with ortho-phenylene cores. The steric bulk of the acrylate monomer units as well as the chain length of each arm of the star polymer is varied. 1 H NMR spectroscopy shows that the folding of the ortho-phenylenes do not vary, providing a robust helical core for star polymer systems.


Assuntos
Polímeros , Tomografia por Emissão de Pósitrons , Polimerização , Polímeros/química , Espectroscopia de Ressonância Magnética
8.
Molecules ; 28(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36903579

RESUMO

The visualization of organs and tissues using 31P magnetic resonance (MR) imaging represents an immense challenge. This is largely due to the lack of sensitive biocompatible probes required to deliver a high-intensity MR signal that can be distinguished from the natural biological background. Synthetic water-soluble phosphorus-containing polymers appear to be suitable materials for this purpose due to their adjustable chain architecture, low toxicity, and favorable pharmacokinetics. In this work, we carried out a controlled synthesis, and compared the MR properties, of several probes consisting of highly hydrophilic phosphopolymers differing in composition, structure, and molecular weight. Based on our phantom experiments, all probes with a molecular weight of ~3-400 kg·mol-1, including linear polymers based on poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), poly(ethyl ethylenephosphate) (PEEP), and poly[bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)]phosphazene (PMEEEP) as well as star-shaped copolymers composed of PMPC arms grafted onto poly(amidoamine) dendrimer (PAMAM-g-PMPC) or cyclotriphosphazene-derived cores (CTP-g-PMPC), were readily detected using a 4.7 T MR scanner. The highest signal-to-noise ratio was achieved by the linear polymers PMPC (210) and PMEEEP (62) followed by the star polymers CTP-g-PMPC (56) and PAMAM-g-PMPC (44). The 31P T1 and T2 relaxation times for these phosphopolymers were also favorable, ranging between 1078 and 2368 and 30 and 171 ms, respectively. We contend that select phosphopolymers are suitable for use as sensitive 31P MR probes for biomedical applications.


Assuntos
Fósforo , Polímeros , Polímeros/química , Metacrilatos/química , Micelas , Fosforilcolina/química , Espectroscopia de Ressonância Magnética , Materiais Biocompatíveis/química , Ácidos Polimetacrílicos/química , Propriedades de Superfície
9.
Front Bioeng Biotechnol ; 11: 1123477, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860884

RESUMO

We report on the ring-opening polymerization of ɛ-caprolactone incorporated with a magnetic susceptible catalyst, FeCl3, via the use of microwave magnetic heating (HH) which primarily heats the bulk with a magnetic field (H-field) from an electromagnetic field (EMF). Such a process was compared to more commonly used heating methods, such as conventional heating (CH), i.e., oil bath, and microwave electric heating (EH), which is also referred to as microwave heating that primarily heats the bulk with an electric field (E-field). We identified that the catalyst is susceptible to both the E-field and H-field heating, and promoted the heating of the bulk. Which, we noticed such promotion was a lot more significant in the HH heating experiment. Further investigating the impact of such observed effects in the ROP of ɛ-caprolactone, we found that the HH experiments showed a more significant improvement in both the product Mwt and yield as the input power increased. However, when the catalyst concentration was reduced from 400:1 to 1600:1 (Monomer:Catalyst molar ratio), the observed differentiation in the Mwt and yield between the EH and the HH heating methods diminished, which we hypothesized to be due to the limited species available that were susceptible to microwave magnetic heating. But comparable product results between the HH and EH heating methods suggest that the HH heating method along with a magnetic susceptible catalyst could be an alternative solution to overcome the penetration depth problem associated with the EH heating methods. The cytotoxicity of the produced polymer was investigated to identify its potential application as biomaterials.

10.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982576

RESUMO

Polyethylene-b-polypeptide copolymers are biologically interesting, but studies of their synthesis and properties are very few. This paper reports synthesis and characterization of well-defined amphiphilic polyethylene-block-poly(L-lysine) (PE-b-PLL) block copolymers by combining nickel-catalyzed living ethylene polymerization with controlled ring-opening polymerization (ROP) of ε-benzyloxycarbonyl-L-lysine-N-carboxyanhydride (Z-Lys-NCA) and sequential post-functionalization. Amphiphilic PE-b-PLL block copolymers self-assembled into spherical micelles with a hydrophobic PE core in aqueous solution. The pH and ionic responsivities of PE-b-PLL polymeric micelles were investigated by means of fluorescence spectroscopy, dynamic light scattering, UV-circular dichroism, and transmission electron microscopy. The variation of pH values led to the conformational alteration of PLL from α-helix to coil, thereby changing the micelle dimensions.


Assuntos
Micelas , Polilisina , Polilisina/química , Polietileno , Polímeros/química , Peptídeos/química , Polietilenoglicóis/química
11.
Chem Asian J ; 18(4): e202201147, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36571563

RESUMO

Transforming renewable resources into functional and degradable polymers is driven by the ever-increasing demand to replace unsustainable polyolefins. However, the utility of many degradable homopolymers remains limited due to their inferior properties compared to commodity polyolefins. Therefore, the synthesis of sequence-defined copolymers from one-pot monomer mixtures is not only conceptually appealing in chemistry, but also economically attractive by maximizing materials usage and improving polymers' performances. Among many polymerization strategies, ring-opening (co)polymerization of cyclic monomers enables efficient access to degradable polymers with high control on molecular weights and molecular weight distributions. Herein, we highlight recent advances in achieving one-pot, sequence-controlled polymerizations of cyclic monomer mixtures using a single catalytic system that combines multiple catalytic cycles. The scopes of cyclic monomers, catalysts, and polymerization mechanisms are presented for this type of sequence-controlled ring-opening copolymerization.

12.
Angew Chem Int Ed Engl ; 62(8): e202216464, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36541599

RESUMO

The highly controlled and efficient polymerization of ethylene is a very attractive but challenging target. Herein we report on a Coordinative Chain Transfer Polymerization catalyst, which combines a high degree of control and very high activity in ethylene oligo- or polymerization with extremely high chain transfer agent (triethylaluminum) to catalyst ratios (catalyst economy). Our Zr catalyst is long living and temperature stable. The chain length of the polyethylene products increases over time under constant ethylene feed or until a certain volume of ethylene is completely consumed to reach the expected molecular weight. Very high activities are observed if the catalyst elongates 60 000 or more alkyl chains and the polydispersity of the strictly linear polyethylene materials obtained are very low. The key for the combination of high control and efficiency seems to be a catalyst stabilized by only one strongly bound monoanionic N-ligand.

13.
Polymers (Basel) ; 14(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956680

RESUMO

Ionic liquid (IL) as a green solvent is entirely composed of ions; thus, it may be more than a simple solvent for ionic polymerization. Here, the cationic polymerization of p-methylstyrene (p-MeSt) initiated by 1-chloro-1-(4-methylphenyl)-ethane (p-MeStCl)/tin tetrachloride (SnCl4) was systematically studied in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Bmim][NTf2]) IL at -25 °C. The results show that IL did not participate in cationic polymerization, but its ionic environment and high polarity were favorable for the polarization of initiator and monomer and facilitate the controllability. The gel permeation chromatography (GPC) trace of the poly(p-methylstyrene) (poly(p-MeSt)) changes from bimodal in dichloromethane (CH2Cl2) to unimodal in IL, and polydispersities Mw/Mn of the polymer in IL showed narrower (1.40-1.59). The reaction rate and heat release rate were milder in IL. The effects of the initiating system, Lewis acid concentration, and 2,6-di-tert-butylpyridine (DTBP) concentration on the polymerization were investigated. The controlled cationic polymerization initiated by p-MeStCl/SnCl4 was obtained. The polymerization mechanism of p-MeSt in [Bmim][NTf2] was also proposed.

14.
Polymers (Basel) ; 14(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35335458

RESUMO

Inspired by the cooperative multi-metallic activation in metalloenzyme catalysis, artificial enzymes as multi-metallic catalysts have been developed for improved kinetics and higher selectivity. Previous models about multi-metallic catalysts, such as cross-linked polymer-supported catalysts, failed to precisely control the number and location of their active sites, leading to low activity and selectivity. In recent years, metallopolymers with metals in the sidechain, also named as sidechain metallopolymers (SMPs), have attracted much attention because of their combination of the catalytic, magnetic, and electronic properties of metals with desirable mechanical and processing properties of polymeric backbones. Living and controlled polymerization techniques provide access to SMPs with precisely controlled structures, for example, controlled degree of polymerization (DP) and molecular weight dispersity (D), which may have excellent performance as multi-metallic catalysts in a variety of catalytic reactions. This review will cover the recent advances about SMPs, especially on their synthesis and application in catalysis. These tailor-made SMPs with metallic catalytic centers can precisely control the number and location of their active sites, exhibiting high catalytic efficiency.

15.
Angew Chem Int Ed Engl ; 61(2): e202112526, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34693603

RESUMO

Ring-opening metathesis polymerization (ROMP) has been regarded as a powerful tool for sequence-controlled polymerization. However, the traditional entropy-driven ROMP of macrocyclic olefins suffers from the lack of ring strain and poor regioselectivity, whereas the relay-ring-closing metathesis polymerization inevitably brings some unnecessary auxiliary structure into each monomeric unit. We developed a macrobicyclic olefin system bearing a sacrificial silyloxide bridge on the α,ß'-positions of the double bond as a new class of sequence-defined monomer for regioselective ROMP. The monomeric sequence information is implanted in the macro-ring, while the small ring, a 3-substituted cyclooctene structure with substantial ring tension, can provide not only narrow polydispersity, but also high regio-/stereospecificity. Besides, the silyloxide bridge can be sacrificially cleaved by desilylation and deoxygenation reactions to provide clean-structured, non-auxiliaried polymers.

16.
Int J Biol Macromol ; 193(Pt A): 425-432, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34715201

RESUMO

Antioxidant and antimicrobial activities are important characteristics of active film packaging designed to extend food preservation. In this study, functional bio-based films were produced using different concentrations of antioxidant poly(ß-pinene) bio-oligomer synthesized via organocatalyzed atom transfer radical polymerization (O-ATRP) and blended with chitosan of different molecular weights. The structural, mechanical, thermal, solubility, antioxidant, and antimicrobial properties of the films were investigated. The poly(ß-pinene)-chitosan blends presented significant pores and irregularities with the increase of poly(ß-pinene) concentration over 30%. Chitosan molecular weight did not show any important influence in the physical properties of the blends. Poly(ß-pinene) load decreased the materials' tensile strength and melting temperature, exhibiting a plasticizing effect on chitosan chains. The antioxidant and antimicrobial activities of the films were improved by poly(ß-pinene) incorporation and mainly depended on its concentration. Therefore, the incorporation of poly(ß-pinene) in chitosan films can be an alternative for active packaging production.


Assuntos
Anti-Infecciosos/química , Antioxidantes/química , Monoterpenos Bicíclicos/química , Quitosana/química , Embalagem de Alimentos/métodos , Polimerização , Resistência à Tração
17.
Polymers (Basel) ; 13(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34685264

RESUMO

Functional polymers have been an important field of research in recent years. With the development of the controlled polymerization methods, block-copolymers of defined structures and properties could be obtained. In this paper, the possibility of the synthesis of the functional block-copolymer polystyrene-b-poly(2-(methoxyethoxy)ethyl methacrylate) was tested. The target was to prepare the polymer of the number average molecular weight (Mn) of approximately 120 that would contain 20-40% of poly(2-(methoxyethoxy)ethyl methacrylate) by mass and in which the polymer phases would be separated. The polymerization reactions were performed by three different mechanisms for the controlled polymerization-sequential anionic polymerization, atomic transfer radical polymerization and the combination of those two methods. In sequential anionic polymerization and in atomic transfer radical polymerization block-copolymers of the desired composition were obtained but with the Mn significantly lower than desired (up to 30). The polymerization of the block-copolymers of the higher Mn was unsuccessful, and the possible mechanisms for the unwanted side reactions are discussed. It is also concluded that combination of sequential anionic polymerization and atomic transfer radical polymerization is not suitable for this system as polystyrene macroinitiator cannot initiate the polymerization of poly(2-(methoxyethoxy)ethyl methacrylate).

18.
Molecules ; 26(18)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34577157

RESUMO

The development of organic polymer materials for disinfection and sterilization is thought of as one of the most promising avenues to solve the growth and spread of harmful microorganisms. Here, a series of linear polyisocyanide quaternary ammonium salts (L-PQASs) with different structures and chain lengths were designed and synthesized by polymerization of phenyl isocyanide monomer containing a 4-chloro-1-butyl side chain followed by quaternary amination salinization. The resultant compounds were characterized by 1H NMR and FT-IR. The antibacterial activity of L-PQASs with different structures and chain lengths against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was evaluated by determining the minimum inhibitory concentrations (MICs). The L-POcQAS-M50 has the strongest antimicrobial activity with MICs of 27 µg/mL against E. coli and 32 µg/mL against S. aureus. When the L-PQASs had the same polymerization degree, the order of the antibacterial activity of the L-PQASs was L-POcQAS-Mn > L-PBuQAS-Mn > L-PBnQAS-Mn > L-PDBQAS-Mn (linear, polyisocyanide quaternary ammonium salt, monomer, n = 50,100). However, when L-PQASs had the same side chain, the antibacterial activity reduced with the increase of the molecular weight of the main chain. These results demonstrated that the antibacterial activity of L-PQASs was dependent on the structure of the main chain and the length of the side chain. In addition, we also found that the L-POcQAS-M50 had a significant killing effect on MK-28 gastric cancer cells.


Assuntos
Antibacterianos/química , Antineoplásicos/química , Poliuretanos/química , Compostos de Amônio Quaternário/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Escherichia coli/efeitos dos fármacos , Humanos , Isocianatos/química , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Polimerização , Poliuretanos/síntese química , Poliuretanos/farmacologia , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/farmacologia , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Relação Estrutura-Atividade
19.
Polymers (Basel) ; 13(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208240

RESUMO

In this work, copper-mediated reversible deactivation radical polymerization (RDRP) of homo-polyacrylamides was conducted in aqueous solutions at 0.0 °C. Various degrees of polymerization (DP = 20, 40, 60, and 80) of well-defined water-soluble homopolymers were targeted. In the absence of any significant undesirable side reactions, the dispersity of polydiethylacrylamide (PDEA) and polydimethylacrylamide (PDMA) was narrow under controlled polymerization conditions. To accelerate the polymerization rate, disproportionation of copper bromide in the presence of a suitable ligand was performed prior to polymerization. Full conversion of the monomer was confirmed by nuclear magnetic resonance (NMR) analysis. Additionally, the linear evolution of the polymeric chains was established by narrow molecular weight distributions (MWDs). The values of theoretical and experimental number average molecular weights (Mn) were calculated, revealing a good matching and robustness of the system. The effect of decreasing the reaction temperature on the rate of polymerization was also investigated. At temperatures lower than 0.0 °C, the controlled polymerization and the rate of the process were not affected.

20.
Macromol Rapid Commun ; 42(15): e2100221, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34223686

RESUMO

Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well-defined structure, properties, and functionalities. Among the available RDRPs, ATRP is the most investigated. However, the necessity of a metal catalyst represents a drawback and limits its use for some applications. O-ATRP emerged as an alternative to traditional ATRP that uses organic compounds that catalyze polymerization under light irradiation instead of metal. The friendly nature and the robustness of O-ATRP allow its use in the synthesis of tailorable advanced materials with unique properties. In this review, the fundamental aspects of the reductive and oxidative quenching mechanism of O-ATRP are provided, as well as insights into each component and its role in the reaction. Besides, the breakthrough recent studies that applied O-ATRP for the synthesis of functional materials are presented, which illustrate the significant potential and impact of this technique across diverse fields.


Assuntos
Polímeros , Catálise , Radicais Livres , Oxirredução , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA