Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microorganisms ; 12(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38930441

RESUMO

The lack of efficient ways to dispose of lignocellulosic agricultural residues is a serious environmental issue. Low temperatures greatly impact the ability of organisms to degrade these wastes and convert them into nutrients. Here, we report the isolation and genomic characterization of a microbial consortium capable of degrading corn straw at low temperatures. The microorganisms isolated showed fast cellulose-degrading capabilities, as confirmed by scanning electron microscopy and the weight loss in corn straw. Bacteria in the consortium behaved as three diverse and functionally distinct populations, while fungi behaved as a single population in both diversity and functions overtime. The bacterial genus Pseudomonas and the fungal genus Thermoascus had prominent roles in the microbial consortium, showing significant lignocellulose waste-degrading functions. Bacteria and fungi present in the consortium contained high relative abundance of genes for membrane components, with amino acid breakdown and carbohydrate degradation being the most important metabolic pathways for bacteria, while fungi contained more genes involved in energy use, carbohydrate degradation, lipid and fatty acid decomposition, and biosynthesis.

2.
Chemistry ; : e202400800, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856089

RESUMO

Depolymerization of the cellulose part in lignocellulose to glucose is a significant step for lignocellulose valorization. As one of the main by-products of agricultural biomass in crop-producing filed, valorization of corn straw has attracted considerable attention. In this study, a two-step depolymerizing strategy of high-pressure CO2-H2O pretreatment and oxidation-hydrolysis was applied for selective depolymerization of the cellulose component of corn straw to glucose production. Most part of the hemicellulose component could be removed through high-pressure CO2-H2O pretreatment in the presence of low concentration of acetic acid, and then as high as 32.2% yield of glucose was achieved in water at 170 oC for 6 h without additional catalyst. The active acid sites generated during the partial oxidation of hydroxymethyl groups to carboxyl groups on glucose units of cellulose was shown to be crucial for the efficient valorization of corn straw for glucose production.

3.
Plants (Basel) ; 13(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38794386

RESUMO

Straw covering is a protective tillage measure in agricultural production, but there is relatively little research on the allelopathic effects of corn straw on weeds and foxtail millet. This experiment studied the allelopathic effects of corn straw on four weeds (Chenopodium album, Setaria viridis, Echinochloa crus-galli and Amaranthus retroflexus) in foxtail millet fields, and also measured the growth indicators of foxtail millet. The study consisted of Petri dish and field experiments. Five treatments were used in the Petri dish experiment: clear water as control (0 g/L, TCK) and four types of corn straw water extracts. They were, respectively, the stock solution (100 g/L, T1), 10 X dilution (10 g/L, T2), 50 X dilution (2 g/L, T3), and 100 X dilution (1 g/L, T4) of corn straw water extracts. Additionally, seven treatments were set up in the field experiment, consisting of three corn straw covering treatments, with covering amounts of 3000 (Z1), 6000 (Z2) and 12,000 kg/ha (Z3), and four control treatments-one treatment with no corn straw cover (CK) and three treatments involving the use of a black film to create the same shading area as the corn straw covered area, with black film coverage areas of 50% (PZ1), 70% (PZ2), and 100% (PZ3), respectively. The results showed that the corn straw water extract reduced the germination rate of the seeds of the four weeds. The T1 treatment resulted in the allelopathic promotion of C. album growth but the inhibition of S. viridis, E. crus-galli, and A. retroflexus growth. Treatments T2, T3, and T4 all induced the allelopathic promotion of the growth of the four weeds. The order of the effects of the corn straw water extracts on the comprehensive allelopathy index of the four weed seeds was as follows: C. album > S. viridis > A. retroflexus > E. crus-galli. With an increase in the corn straw mulching amount, the density and total coverage of the four weeds showed a gradual downward trend, whereas the plant control effect and fresh weight control effect showed a gradual upward trend. All indices showed the best results under 12,000 kg/ha of mulching and returning to the field. Overall, corn straw coverage significantly impacted the net photosynthetic rate and transpiration rate of foxtail millet and increased the yield of foxtail millet. Under coverages of 6000 and 12,000 kg/ha, the growth of foxtail millet is better. Based on our findings, we recommend a corn straw coverage of 12,000 kg/ha for the allelopathic control of weeds in foxtail millet fields.

4.
Int J Biol Macromol ; 268(Pt 2): 131984, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692552

RESUMO

Biomass materials substituting for petroleum-based polymers occupy an important position in achieving sustainable development. Cellulose, a typical biomass material, stands out as the primary choice for producing eco-friendly packaging materials. However, it is still a challenge to efficiently utilize cellulose from waste biomass materials in practice. Herein, cellulose-based films were prepared by pretreating waste corn straw, separating straw husk, straw pith and straw leaf, and extracting cellulose through alkali and sodium chlorite treatment to improve its mechanical properties using the cross-linked polyvinyl alcohol (PVA) method in this work. The prepared composite films were characterized by Fourier transform infrared spectrometer (FTIR), X-ray diffraction instrument (XRD), Scanning electron microscopy (SEM), Thermogravimetric (TG) and mechanical properties. The results indicated that corn straw husk exhibited the highest cellulose content of 31.67 wt%, and obtained husk cellulose had the highest crystallinity of 52.5 %. Compared to corn straw, the crystallinity of husk cellulose, pith cellulose and leaf cellulose increased by 19.5 %, 16.4 % and 44.1 %, respectively. Husk cellulose/PVA composite films were the most thermally stable, with a maximum weight loss temperature of 346.8 °C. In addition, the husk cellulose/PVA composite film had the best tensile strength of 37 MPa. Meanwhile, the composite films had good UV shielding, low water vapor transmission rate and biodegradability. Therefore, this work provides a fine utilization route of waste corn straw, and as-prepared cellulose based films have potential application in eco-friendly packaging materials.


Assuntos
Celulose , Álcool de Polivinil , Zea mays , Zea mays/química , Álcool de Polivinil/química , Celulose/química , Resistência à Tração , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Termogravimetria
5.
Int J Biol Macromol ; 271(Pt 1): 132195, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816294

RESUMO

XPS, GPC, FT-IR, and GC-MS analyses were conducted on corn straw tar and 70# petroleum asphalt. The results indicate that the sulfur content in corn straw tar is lower than that in petroleum asphalt, potentially mitigating the volatilization of harmful substances upon substituting petroleum asphalt. This finding serves as evidence for the substantial presence of phenolic substances in corn straw tar. Upon employing the BOX-Behnken response surface analysis and utilizing resin yield as the evaluation index, the significance of three factors was established as follows: reaction time > phenol molar ratio > straw tar content. Based on the secondary multiple regression model, the optimal conditions for synthetic resin production are a phenolic mole ratio of 0.8, a reaction time of 125 min, and a straw tar dosage of 10 %. An assessment of resin viscosity at different VI temperatures reveals that corn stover tar can partially replace phenol and formaldehyde in the condensation reaction. Additionally, viscosity improvement is observed at elevated temperatures. Thermal gravimetric(TG) spectroscopy indicates lower mass loss in B-PF resin at high temperatures compared to PF resin or corn stover tar. In the evaluation of biological bitumen performance, it is discerned that the mixing amount of the prepared biological bitumen should be controlled at approximately 10 % of its performance. This ensures optimal efficacy without adversely affecting the performance of petroleum bitumen.


Assuntos
Hidrocarbonetos , Fenóis , Zea mays , Zea mays/química , Hidrocarbonetos/química , Fenóis/química , Fenóis/análise , Viscosidade , Resinas Sintéticas/química
6.
Environ Res ; 256: 119171, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38763281

RESUMO

The global climate change mainly caused by fossil fuels combustion promotes that zero-carbon hydrogen production through eco-friendly methods has attracted attention in recent years. This investigation explored the biohydrogen production by co-fermentation of corn straw (CS) and excess sludge (ES), as well as comprehensively analyzed the internal mechanism. The results showed that the optimal ratio of CS to ES was 9:1 (TS) with the biohydrogen yield of 101.8 mL/g VS, which was higher than that from the mono-fermentation of CS by 1.0-fold. The pattern of volatile fatty acids (VFAs) indicated that the acetate was the most preponderant by-product in all fermentation systems during the biohydrogen production process, and its yield was improved by adding appropriate dosage of ES. In addition, the content of soluble COD (SCOD) was reduced as increasing ES, while concentration of NH4+-N showed an opposite tendency. Microbial community analysis revealed that the microbial composition in different samples showed a significant divergence. Trichococcus was the most dominant bacterial genus in the optimal ratio of 9:1 (CS/ES) fermentation system and its abundance was as high as 41.8%. The functional genes prediction found that the dominant metabolic genes and hydrogen-producing related genes had not been significantly increased in co-fermentation system (CS/ES = 9:1) compared to that in the mono-fermentation of CS, implying that enhancement of biohydrogen production by adding ES mainly relied on balancing nutrients and adjusting microbial community in this study. Further redundancy analysis (RDA) confirmed that biohydrogen yield was closely correlated with the enrichment of Trichococcus.


Assuntos
Fermentação , Hidrogênio , Esgotos , Zea mays , Hidrogênio/metabolismo , Zea mays/metabolismo , Esgotos/microbiologia , Microbiota , Biocombustíveis , Bactérias/metabolismo , Bactérias/genética , Ácidos Graxos Voláteis/metabolismo
7.
Environ Technol ; : 1-10, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820584

RESUMO

The conventional aeration method is compulsorily continuous ventilation or aeration at equal intervals, and a uniform aeration rate does not vary during composting. A dynamic on-demand aeration approach based on the diverse oxygen consumption of microorganisms at different composting stages could solve the problems of insufficient oxygen supply or excessive aeration. This study aims to design an aerobic composting system with dynamic aeration, investigate the effects of dynamic aeration on the temperature rise and physicochemical characteristics during the aerobic composting of corn straw and pig manure, and optimise the control parameters of oxygen concentration. Higher temperatures and longer high-temperature durations were achieved under dynamic aeration, thereby accelerating the decomposition of organic compounds. Dynamic aeration effectively reduced the aeration frequency, the convective latent heat and moisture losses, and the power consumption in the middle and later stages of composting. The dynamic aeration regulated according to the oxygen concentration of 14%-17% in the exhaust was optimum. Under the optimal conditions, the period above 50 ℃ lasted 8.5 days, and the highest temperature, organic matter removal, and seed germination index reached 65.82 ℃, 37.59%, and 74.59%, respectively. The power consumption was decreased by 33.58% compared to the traditional intermittent aeration. Dynamic aeration would be a competitive approach for improving aerobic composting characteristics and reducing the power consumption and the hot exhaust gas emissions, especially in the cooling maturation stage, which was of great significance for realising the low-cost production of composting at scale and promoting the blossom of the organic fertiliser industry.

8.
Front Nutr ; 11: 1370975, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606017

RESUMO

With the development of animal husbandry, the shortage of animal feedstuffs has become serious. Dietary fiber plays a crucial role in regulating animal health and production performance. The aim of this study was to investigate the effects of three kinds of corn straw-saccharification fibers (CSSF) such as high-fiber and low-saccharification (HFLS), medium-fiber and medium-saccharification (MFMS), low-fiber and high-saccharification (LFHS) CSSF on the reproductive performance of sows. Thirty-two primiparous Yorkshire sows were randomly assigned to 4 groups, 8 sows for each group. Group A was the basal diet as the control group; groups B - D were added with 6% HFLSCSSF, 6% MFMSCSSF and 6% LFHSCSSF to replace some parts of corn meal and wheat bran in the basal diet, respectively. The experimental period was from day 85 of gestation to the end of lactation (day 25 post-farrowing). The results showed that 6% LFHSCSSF addition significantly increased number of total born (alive) piglets, litter weight at birth (p < 0.05), whereas three kinds of CSSF significantly decreased backfat thickness of sows during gestation (p < 0.001), compared with the control group. Furthermore, CSSF improved the digestibility of crude protein, ether extract and fiber for sows. In addition, the levels of total cholesterol, total triglycerides, and high-density lipoprotein cholesterol in serum of sows were decreased by different kinds of CSSF. Further analysis revealed that CSSF regulated lipid metabolism through adjusting the serum metabolites such as 4-pyridoxic acid, phosphatidyl cholines and L-tyrosine. In summary, CSSF addition to the diets of sows during late gestation and lactation regulated lipid metabolism and improved reproductive performance of sows. This study provided a theoretical basis for the application of corn straw in sow diets.

9.
Appl Microbiol Biotechnol ; 108(1): 278, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558151

RESUMO

The production of succinic acid from corn stover is a promising and sustainable route; however, during the pretreatment stage, byproducts such as organic acids, furan-based compounds, and phenolic compounds generated from corn stover inhibit the microbial fermentation process. Selecting strains that are resistant to stress and utilizing nondetoxified corn stover hydrolysate as a feedstock for succinic acid production could be effective. In this study, A. succinogenes CICC11014 was selected as the original strain, and the stress-resistant strain A. succinogenes M4 was obtained by atmospheric and room temperature plasma (ARTP) mutagenesis and further screening. Compared to the original strain, A. succinogenes M4 exhibited a twofold increase in stress resistance and a 113% increase in succinic acid production when hydrolysate was used as the substrate. By conducting whole-genome resequencing of A. succinogenes M4 and comparing it with the original strain, four nonsynonymous gene mutations and two upstream regions with base losses were identified. KEY POINTS: • A high-stress-resistant strain A. succinogenes M4 was obtained by ARTP mutation •  The production of succinic acid increased by 113% • The mutated genes of A. succinogenes M4 were detected and analyzed.


Assuntos
Actinobacillus , Zea mays , Zea mays/química , Ácido Succínico , Melhoramento Vegetal , Fermentação , Mutação
10.
J Chromatogr A ; 1720: 464781, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38471297

RESUMO

Taking the thiazide cationic dye methylene blue (MB), triphenylmethane cationic dye crystal violet (CV), monoazo cationic dye cationic red 46 (R-46), and polycarboxycyanine cationic dye cationic rosé FG (P-FG) as the research objects, the adsorption behaviors of a self-made corn straw modified adsorbent HQ-DTPA-I for the dyes were investigated in depth. Under optimized conditions, HQ-DTPA-I can quickly adsorb most dyes within 3 min and reach equilibrium adsorption in 15-20 min. The removal rates of HQ-DTPA-I to MB, CV, R-46 and AP-FG can reach 95.28 %, 99.78 %, 99.28 % and 98.53 %, respectively. It also has good anti-interference ability for common ions present in most actual dye wastewater. For six consecutive adsorption-desorption cycles, the adsorption performance of HQ-DTPA-I can still reach 80.17 %, 81.61 %, 90.77 % and 83.48 % of the initial adsorption capacity, indicating good recovery performance. Based on Gaussian density functional theory to calculate its surface potential energy, it is found that the adsorption mechanism of HQ-DTPA-I for the cationic dyes is mainly due to the electrostatic interaction between the carboxyl groups in ligand DTPA and amino groups in dye molecules.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Corantes/química , Zea mays , Adsorção , Ligantes , Cátions , Azul de Metileno/química , Violeta Genciana/química , Ácido Pentético , Poluentes Químicos da Água/química , Cinética
11.
Bioresour Technol ; 395: 130414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310978

RESUMO

Effects of sewage sludge (SS) and fresh leachate (FL) addition on corn straw (CS) digestion and underlying mechanisms were investigated. Co-digestion of CS, SS and FL significantly increased cumulative methane production by 7.2-61.1%. Further analysis revealed that co-digestion acted mainly on slowly degradable substrates and exerted dual effects on methane production potential, which was closely related to the volatile solids (VS) content. Antagonistic effects of co-digestion resulted from the dominance of norank_c_Bathyarchaeia, a mixotrophic methanogen that may generate methane inefficiently and consume existing methane. The synergistic enhancement of methane production (0.7-12.7%) was achieved in co-digestion with 33.5-45.5% of total VS added as SS and FL. Co-digestion with more balanced nutrients and higher buffering capacity enriched Actinobacteriota, Firmicutes, and Synergistota, thereby facilitating the substrate degradation. Furthermore, the predominant acetoclastic methanogens, increased hydrogenotrophic methanogens, and decreased methylotrophic methanogens in the digester combined to prompt the synergy.


Assuntos
Euryarchaeota , Esgotos , Esgotos/química , Anaerobiose , Zea mays , Reatores Biológicos , Bactérias , Metano , Digestão
12.
Sci Total Environ ; 921: 171159, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387580

RESUMO

The effects of individual biochar constituents and natural environmental media on the immobilization behaviors and chemical activities of toxic heavy metals are still poorly understood. In this work, the physicochemical properties of raw corn straw (CS) and CS-derived biochar materials as well as their sorption abilities and retention mechanisms for lead (Pb) and cadmium (Cd) were evaluated by combining batch experiments and spectral approaches. According to the spectral analysis results and single variable principle, the setting of biochars after soaking in solution as the control group was suggested when evaluating their retention mechanisms for Pb and Cd. The rising of ionic strength did not apparently affect the immobilization of Pb by biochar prepared at 500 °C (i.e., CB500) and Pb/Cd by water-soluble organic matter (WSOM)-free CB500 (i.e., DCB500), while slightly inhibited the sorption of Cd by CB500. Pb and Cd exhibited a mutual inhibition effect on their sorption trends with a higher sorption preference of Pb. The dominant fixation mechanism of Pb by CB500 and DCB500 was identified to be mineral precipitation. In contrast, the main sorption mechanism of Cd changed from mineral precipitation in the single-metal system to surface complexation in the binary-metal system. The sorption ratios of Pb and Cd on CB500 were comparable to those on DCB500 with the coexistence of mixed natural organic matters (NOM) and ferrihydrite. The current experimental findings suggested that DCB500 was a suitable remediation agent for regulating the migration behaviors of toxic Pb and Cd in acidic and NOM-rich soil and water systems.

13.
Sci Total Environ ; 920: 171034, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38369147

RESUMO

Straw is a typical biomass resource which can be converted into high nutritional value feed via microbial fermentation. The degradation and conversion of straw using a synthetic microbial community (SMC-8) was functionally investigated to characterise its nitrogen conversion and carbon metabolism. Four species of bacteria were found to utilise >20 % of the inorganic nitrogen within 15 h, and the ratio of the diameter of fungal transparent circles (D) to the diameter of the colony (d) of the four fungal species was >1. Solid-state fermentation of corn straw increased the total amino acid (AA) content by 41.69 %. The absolute digestibility of fermented corn straw dry weight (DW) and true protein was 34.34 % and 45.29 %, respectively. Comprehensive analysis of functional proteins revealed that Aspergillus niger, Trichoderma viride, Cladosporium cladosporioides, Bacillus subtilis and Acinetobacter johnsonii produce a complex enzyme system during corn straw fermentation, which plays a key role in the degradation of lignocellulose. This study provided a new insight in utilizing corn straw.


Assuntos
Bacillus subtilis , Zea mays , Fermentação , Nitrogênio , Ração Animal/análise
14.
Biotechnol J ; 19(2): e2300602, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403406

RESUMO

This paper presents the study concerning the impact of the basic operational parameters on the performance of an innovative microfiltration membrane reactor applied for enzymatic hydrolysis of lignocellulosic biomass. The concept and basic hydrodynamics of the reactor with tubular ceramic membranes and a propeller agitator were shown. Besides, the efficiency of enzymatic hydrolysis of corn straw was studied to check reactor functionality. It has been proven that the proposed reactor construction can improve the microfiltration of lignocellulosic suspension by reducing the cake layer on the membrane surface. Increasing the rotational speed of the propeller agitator also improved the filtration efficiency. The permeate flux during the microfiltration experiments was lower for smaller lignocellulose biomass fraction (D < 425 µm) when compared to the less fragmented corn straw (425 < D < 900 µm). For larger solid fractions, a stirring speed increase enhanced the separation efficiency regardless of the differences in biomass concentration. In contrast, this trend for the finer biomass fraction was only noticeable for the highest used biomass concentration (C = 2.0%). Considering the enzymatic hydrolysis of corn straw, membrane separation of reaction products positively influenced the process yield, and the results depended on the applied operational parameters.


Assuntos
Hidrodinâmica , Lignina , Hidrólise , Filtração , Biomassa , Zea mays
15.
Huan Jing Ke Xue ; 45(1): 594-605, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216508

RESUMO

The pollution control of tetracycline antibiotics in the environment has become a hot topic, and biochar adsorption has become an important technology to remove organic pollutants. Pyrolytic biochars (BC400, BC500, and BC600) were prepared from corn straw and then were modified by KOH to obtain KBC400, KBC500, and KBC600. Among them, KBC400 was selected for secondary pyrolysis activation at 400-600℃ to obtain AKBC400, AKBC500, and AKBC600. The structure characteristics and surface properties of AKBC were also characterized. The adsorption kinetics and thermodynamic characteristics of oxytetracycline hydrochloride (OTC) in the solution by AKBC were investigated using batch experiments. Compared to that of BC400, the specific surface area and pore structure of AKBC were significantly improved, and the aromaticity was also enhanced, resulting in the notable enhancement of the adsorption capacities for OTC. The pseudo-second-order kinetics model could better fit the adsorption process, and AKBC500 had the largest adsorption rate constant and capacity. Both the intraparticle diffusion and film diffusion were the rate-limiting steps. The Langmuir, Freundlich, and Temkin models could fit the adsorption isotherms perfectly. The adsorption of OTC on AKBC was a spontaneous, endothermic, and entropy-increasing process by both physisorption and chemisorption. The pH values in the range of 3.0-7.0 were favorable for the adsorption of OTC by AKBC. The adsorption capacity decreased with the humic acid concentration over 10 mg·L-1. The adsorption mechanism of OTC by AKBC involved pore filling, hydrogen bonding, π-π conjugation, cation-π bond, and strong electrostatic effect. AKBC still had good reusability for OTC removal after five times of regeneration. The obtained AKBC is a potential adsorbent for OTC removal from water due to the good pore structure, high adsorption capacity, and stable adsorption effect.


Assuntos
Oxitetraciclina , Poluentes Químicos da Água , Zea mays , Água , Adsorção , Antibacterianos , Carvão Vegetal/química , Cinética , Poluentes Químicos da Água/análise
16.
Membranes (Basel) ; 14(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38248706

RESUMO

In this study, all-cellulose nanocomposite (ACNC) was successfully prepared through a green and sustainable approach by using corn stalk as raw material, water as regeneration solvent, and recyclable two-component ionic liquid/DMSO as the solvent to dissolve cellulose. The morphology and structural properties of ACNC were determined by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analysis, indicating homogeneity and good crystallinity. In addition, a comprehensive characterization of ACNC showed that CNF not only improved the thermal stability and mechanical characteristics of ACNC, but also significantly improved the oxygen barrier performance. The ACNC prepared in this work has a good appearance, smooth surface, and good optical transparency, which provides a potential application prospect for converting cellulose wastes such as corn straws into biodegradable packaging materials and electronic device encapsulation materials.

17.
Int J Biol Macromol ; 254(Pt 2): 127630, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939776

RESUMO

Current environmental and energy issues have attracted considerable attention from industries, governments, and academia. Developing alternative diverse petrochemical-based plastics with biodegradable packaging materials from renewable resources is critical for ensuring both sustainability and safety. In this study, biodegradable films are fabricated from corn straw via a facile sol-gel process. Furthermore, these films are imbued with antimicrobial properties by coupling with silver@lignin nanotube hybrid antibacterial agents, formed via the in situ reduction of silver ions into elemental silver by lignin (mild reducing agent), followed by the self-assembly of lignin molecules into nanotubes assisted by an aqueous silver nitrate electrolyte solution. The developed antibacterial corn straw film exhibits strong mechanical and antibacterial properties, with a tensile strength and elongation at break of 68.7 MPa and 11.3 %, respectively, under optimum conditions and antibacterial activity against Escherichia coli and Staphylococcus aureus of 99.9 % and 97.2 %, respectively. The as-prepared corn straw films exhibit high hydrophobicity and ultraviolet resistance. The morphology, structure, and thermal properties of the corn straw films were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and thermogravimetric analysis. This study provides a straw-based biodegradable packaging film with antimicrobial properties.


Assuntos
Anti-Infecciosos , Lignina , Lignina/farmacologia , Zea mays/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Água/química
18.
Bioresour Technol ; 389: 129804, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37805086

RESUMO

In China, the problem of low biogas yield of traditional biogas projects has become increasingly prominent. This study investigated the effects of different hydraulic retention times (HRTs) on the biogas production efficiency and microbial community under pilot conditions. The results show that the "Gradient anaerobic digestion reactor" can stably carry out semi-continuous dry anaerobic digestion and improve biogas yield. The highest volatile solids (VS) biogas yield (413.73 L/kg VS and 221.61 L CH4/kg VS) and VS degradation rate (48.41%) were observed at an HRT of 25 days. When the HRT was 15 days, the volumetric biogas yield was the highest (2.73 L/L/d, 1.43 L CH4/L/d), but the VS biogas yield and degradation rate were significantly decreased. Microbial analysis showed that HRT significantly affected microbial community. It provides basic data support for the development of a new anaerobic digestion process and the practical application of the straw biogas project in China.


Assuntos
Biocombustíveis , Reatores Biológicos , Anaerobiose , Zea mays/metabolismo , Metano/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-37858019

RESUMO

The amount of biomass production each year is huge, and microwave-assisted pyrolysis of biomass to obtain biogas, bio-oil, and biochar is a promising method. In this study, silicon carbide (SiC) was selected as the microwave absorber, and the effects of microwave power (400, 450, 500, 550 and 600 W), reactor chamber volume (100, 150, 200, 250, and 300 W), and the mass ratio of SiC and corn straw (0, 0.25, 0.5, 0.75, and 1) on the heating performances of corn straw particles were investigated and presented in this study. When the microwave power increased from 400 to 600 W, the average heating rate of corn straw particles increased from 23.06 ℃ /min to 101.46 ℃ /min, and that of mixture particles of corn straw and SiC increased from 87.00 ℃ /min to 236.88 ℃/min. When the reactor chamber volume increased from 100 to 300 mL, the average heating rate of corn straw particles decreased from 38.21 ℃/min to 22.54 ℃/min, and that of mixture particles of corn straw and SiC decreased from 98.84 ℃/min to 76.01 ℃/min. When the mass ratio of SiC and corn straw increased from 0 to 1, the average heating rate of mixture particles of corn straw and SiC increased from 101.46 ℃/min to 236.88 ℃/min. Some formulae with R2 values ranged from 0.971 to 0.998 were proposed to determine the transient temperatures of corn straw particles and mixture particles of corn straw and SiC.

20.
Microb Cell Fact ; 22(1): 162, 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37635215

RESUMO

BACKGROUND: Poly-ß-hydroxybutyrate (PHB), produced by a variety of microbial organisms, is a good substitute for petrochemically derived plastics due to its excellent properties such as biocompatibility and biodegradability. The high cost of PHB production is a huge barrier for application and popularization of such bioplastics. Thus, the reduction of the cost is of great interest. Using low-cost substrates for PHB production is an efficient and feasible means to reduce manufacturing costs, and the construction of microbial cell factories is also a potential way to reduce the cost. RESULTS: In this study, an engineered Sphingomonas sanxanigenens strain to produce PHB by blocking the biosynthetic pathway of exopolysaccharide was constructed, and the resulting strain was named NXdE. NXdE could produce 9.24 ± 0.11 g/L PHB with a content of 84.0% cell dry weight (CDW) using glucose as a sole carbon source, which was significantly increased by 76.3% compared with the original strain NX02. Subsequently, the PHB yield of NXdE under the co-substrate with different proportions of glucose and xylose was also investigated, and results showed that the addition of xylose would reduce the PHB production. Hence, the Dahms pathway, which directly converted D-xylose into pyruvate in four sequential enzymatic steps, was enhanced by overexpressing the genes xylB, xylC, and kdpgA encoding xylose dehydrogenase, gluconolactonase, and aldolase in different combinations. The final strain NX02 (ΔssB, pBTxylBxylCkdpgA) (named NXdE II) could successfully co-utilize glucose and xylose from corn straw total hydrolysate (CSTH) to produce 21.49 ± 0.67 g/L PHB with a content of 91.2% CDW, representing a 4.10-fold increase compared to the original strain NX02. CONCLUSION: The engineered strain NXdE II could co-utilize glucose and xylose from corn straw hydrolysate, and had a significant increase not only in cell growth but also in PHB yield and content. This work provided a new host strain and strategy for utilization of lignocellulosic biomass such as corn straw to produce intracellular products like PHB.


Assuntos
Glucose , Xilose , Poliésteres , Hidroxibutiratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...