Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Virology ; 597: 110156, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38981316

RESUMO

This study aims to elucidate the role of TIP30 (30 KDa HIV-1 TAT-Interacting Protein) in the progression of coxsackievirus B3 (CVB3)-induced viral myocarditis. TIP30 knockout and wildtype mice were intraperitoneally infected with CVB3 and evaluated at day 7 post-infection. HeLa cells were transfected with TIP30 lentiviral particles and subsequently infected with CVB3 to evaluate viral replication, cellular pathogenesis, and mechanistic target of rapamycin complex 1 (mTORC1) signaling. Deletion of the TIP30 gene heightened heart virus titers and mortality rates in mice with CVB3-induced myocarditis, exacerbating cardiac damage and fibrosis, and elevating pro-inflammatory factors level. In vitro experiments demonstrated the modulation of mTORC1 signaling by TIP30 during CVB3 infection in HeLa cells. TIP30 overexpression mitigated CVB3-induced cellular pathogenesis and VP1 expression, with rapamycin, an mTOR1 inhibitor, reversing these effects. These findings suggest TIP30 plays a critical protective role against CVB3-induced myocarditis by regulating mTORC1 signaling.

2.
J Asian Nat Prod Res ; : 1-13, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885306

RESUMO

Three new prenylated C6-C3 compounds (1-3), together with two known prenylated C6-C3 compounds (4-5) and one known C6-C3 derivative (6), were isolated from the roots of Illicium brevistylum A. C. Smith. The structures of 1-3 were elucidated by spectroscopic methods including 1D and 2D NMR, HRESIMS, CD experiments and ECD calculations. The structure of illibrefunone A (1) was confirmed by single-crystal X-ray diffraction analysis. All compounds were evaluated in terms of their anti-inflammatory potential on nitric oxide (NO) generation in lipopolysaccharide-stimulated murine RAW264.7 macrophages and murine BV2 microglial cells, antiviral activity against Coxsackievirus B3 (CVB3) and influenza virus A/Hanfang/359/95 (H3N2). Compounds 3 and 4 exhibited potent inhibitory effects on the production of NO in RAW 264.7 cells with IC50 values of 20.57 and 12.87 µM respectively, which were greater than those of dexamethasone (positive control). Compounds 1 and 4-6 exhibited weak activity against Coxsackievirus B3, with IC50 values ranging from 25.87 to 33.33 µM.

3.
J Zhejiang Univ Sci B ; 25(5): 422-437, 2024 May 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38725341

RESUMO

Viral myocarditis (VMC) is one of the most common acquired heart diseases in children and teenagers. However, its pathogenesis is still unclear, and effective treatments are lacking. This study aimed to investigate the regulatory pathway by which exosomes alleviate ferroptosis in cardiomyocytes (CMCs) induced by coxsackievirus B3 (CVB3). CVB3 was utilized for inducing the VMC mouse model and cellular model. Cardiac echocardiography, left ventricular ejection fraction (LVEF), and left ventricular fractional shortening (LVFS) were implemented to assess the cardiac function. In CVB3-induced VMC mice, cardiac insufficiency was observed, as well as the altered levels of ferroptosis-related indicators (glutathione peroxidase 4 (GPX4), glutathione (GSH), and malondialdehyde (MDA)). However, exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs-exo) could restore the changes caused by CVB3 stimulation. Let-7a-5p was enriched in hucMSCs-exo, and the inhibitory effect of hucMSCs-exolet-7a-5p mimic on CVB3-induced ferroptosis was higher than that of hucMSCs-exomimic NC (NC: negative control). Mothers against decapentaplegic homolog 2 (SMAD2) increased in the VMC group, while the expression of zinc-finger protein 36 (ZFP36) decreased. Let-7a-5p was confirmed to interact with SMAD2 messenger RNA (mRNA), and the SMAD2 protein interacted directly with the ZFP36 protein. Silencing SMAD2 and overexpressing ZFP36 inhibited the expression of ferroptosis-related indicators. Meanwhile, the levels of GPX4, solute carrier family 7, member 11 (SLC7A11), and GSH were lower in the SMAD2 overexpression plasmid (oe-SMAD2)+let-7a-5p mimic group than in the oe-NC+let-7a-5p mimic group, while those of MDA, reactive oxygen species (ROS), and Fe2+ increased. In conclusion, these data showed that ferroptosis could be regulated by mediating SMAD2 expression. Exo-let-7a-5p derived from hucMSCs could mediate SMAD2 to promote the expression of ZFP36, which further inhibited the ferroptosis of CMCs to alleviate CVB3-induced VMC.


Assuntos
Exossomos , Ferroptose , Células-Tronco Mesenquimais , MicroRNAs , Miócitos Cardíacos , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Infecções por Coxsackievirus/patologia , Enterovirus Humano B/fisiologia , Exossomos/metabolismo , Ferroptose/efeitos dos fármacos , Células-Tronco Mesenquimais/química , MicroRNAs/farmacologia , Miocardite/tratamento farmacológico , Miócitos Cardíacos/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Proteína Smad2/metabolismo , Cordão Umbilical/citologia
4.
Microbiol Resour Announc ; 13(6): e0116023, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38780263

RESUMO

Whole-genome sequencing of a Coxsackievirus B3 strain isolated from the stool of a febrile patient with aseptic meningoencephalitis, South Korea, in 2002 was performed. This strain exhibits a high nucleotide sequence identity with various strains circulating in China from 2001 to 2019.

5.
Viruses ; 16(5)2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38793559

RESUMO

Coxsackievirus B3 (CVB3) is a positive single-strand RNA genome virus which belongs to the enterovirus genus in the picornavirus family, like poliovirus. It is one of the most prevalent pathogens that cause myocarditis and pancreatitis in humans. However, a suitable therapeutic medication and vaccination have yet to be discovered. Caboxamycin, a benzoxazole antibiotic isolated from the culture broth of the marine strain Streptomyces sp., SC0774, showed an antiviral effect in CVB3-infected HeLa cells and a CVB3-induced myocarditis mouse model. Caboxamycin substantially decreased CVB3 VP1 production and cleavage of translation factor eIF4G1 from CVB3 infection. Virus-positive and -negative strand RNA was dramatically reduced by caboxamycin treatment. In addition, the cleavage of the pro-apoptotic molecules BAD, BAX, and caspase3 was significantly inhibited by caboxamycin treatment. In animal experiments, the survival rate of mice was improved following caboxamycin treatment. Moreover, caboxamycin treatment significantly decreased myocardial damage and inflammatory cell infiltration. Our study showed that caboxamycin dramatically suppressed cardiac inflammation and mouse death. This result suggests that caboxamycin may be suitable as a potential antiviral drug for CVB3.


Assuntos
Antivirais , Infecções por Coxsackievirus , Modelos Animais de Doenças , Enterovirus Humano B , Miocardite , Animais , Miocardite/tratamento farmacológico , Miocardite/virologia , Camundongos , Infecções por Coxsackievirus/tratamento farmacológico , Infecções por Coxsackievirus/virologia , Humanos , Enterovirus Humano B/efeitos dos fármacos , Células HeLa , Antivirais/farmacologia , Antivirais/uso terapêutico , Masculino , Camundongos Endogâmicos BALB C , Inflamação/tratamento farmacológico , Inflamação/virologia , Replicação Viral/efeitos dos fármacos
6.
Cardiovasc Pathol ; 72: 107652, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38750778

RESUMO

BACKGROUND AND AIMS: Viral infections are the leading cause of myocarditis. Besides acute cardiac complications, late-stage sequelae such as myocardial fibrosis may develop, importantly impacting the prognosis. Coxsackievirus B3 (CVB)-induced myocarditis in mice is the most commonly used translational model to study viral myocarditis and has provided the majority of our current understanding of the disease pathophysiology. Nevertheless, the late stages of disease, encompassing fibrogenesis and arrhythmogenesis, have been underappreciated in viral myocarditis research to date. The present study investigated the natural history of CVB-induced myocarditis in C57BL/6J mice, expanding the focus beyond the acute phase of disease. In addition, we studied the impact of sex and inoculation dose on the disease course. METHODS AND RESULTS: C57BL/6J mice (12 weeks old; n=154) received a single intraperitoneal injection with CVB to induce viral myocarditis, or vehicle (PBS) as control. Male mice (n=92) were injected with 5 × 105 (regular dose) (RD) or 5 × 106 (high dose) (HD) plaque-forming units of CVB, whereas female mice received the RD only. Animals were sacrificed 1, 2, 4, 8, and 11 weeks after CVB or PBS injection. Virally inoculated mice developed viral disease with a temporary decline in general condition and weight loss, which was less pronounced in female animals (P<.001). In male CVB mice, premature mortality occurred between days 8 and 23 after inoculation (RD: 21%, HD: 20%), whereas all female animals survived. Over the course of disease, cardiac inflammation progressively subsided, with faster resolution in female mice. There were no substantial group differences in the composition of the inflammatory cell infiltrates: predominance of cytotoxic T cells at day 7 and 14, and a switch from arginase1-reactive macrophages to iNOS-reactive macrophages from day 7 to 14 were the main findings. There was concomitant development and maturation of different patterns of myocardial fibrosis, with enhanced fibrogenesis in male mice. Virus was almost completely cleared from the heart by day 14. Serum biomarkers of cardiac damage and cardiac expression of remodeling genes were temporarily elevated during the acute phase of disease. Cardiac CTGF gene upregulation was less prolonged in female CVB animals. In vivo electrophysiology studies at weeks 8 and 11 demonstrated that under baseline conditions (i.e. in the absence of proarrhythmogenic drugs), ventricular arrhythmias could only be induced in CVB animals. The cumulative arrhythmia burden throughout the entire stimulation protocol was not significantly different between CVB and control groups. CONCLUSION: CVB inoculation in C57BL/6J mice represents a model of acute self-limiting viral myocarditis, with progression to different patterns of myocardial fibrosis. Sex, but not inoculation dose, seems to modulate the course of disease.

7.
Biol Proced Online ; 26(1): 11, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664647

RESUMO

BACKGROUND: The efficacy of oncolytic viruses (OV) in cancer treatment depends on their ability to successfully infect and destroy tumor cells. However, patients' tumors vary, and in the case of individual insensitivity to an OV, therapeutic efficacy is limited. Here, we present a protocol for rapid generation of tumor cell-specific adapted oncolytic coxsackievirus B3 (CVB3) with enhanced oncolytic potential and a satisfactory safety profile. This is achieved by combining directed viral evolution (DVE) with genetic modification of the viral genome and the use of a microRNA-dependent regulatory tool. METHODS: The oncolytic CVB3 variant PD-H was adapted to the refractory colorectal carcinoma cell line Colo320 through serial passaging. XTT assays and virus plaque assays were used to determine virus cytotoxicity and virus replication in vitro. Recombinant PD-H variants were generated through virus mutagenesis. Apoptosis was detected by Western blots, Caspase 3/7 assays, and DAPI staining. The therapeutic efficacy and safety of the adapted recombinant OV PD-SK-375TS were assessed in vivo using a subcutaneous Colo320 xenograft mouse model. RESULTS: PD-H was adapted to the colorectal cancer cell line Colo320 within 10 passages. Sequencing of passage 10 virus P-10 revealed a heterogenous virus population with five nucleotide mutations resulting in amino acid substitutions. The genotypically homogeneous OV PD-SK was generated by inserting the five detected mutations of P-10 into the genome of PD-H. PD-SK showed significantly stronger replication and cytotoxicity than PD-H in Colo320 cells, but not in other colorectal carcinoma cell lines. Increase of apoptosis induction was detected as key mechanisms of Colo320 cell-specific adaptation of PD-SK. For in vivo safety PD-SK was engineered with target sites of the miR-375 (miR-375TS) to exclude virus replication in normal tissues. PD-SK-375TS, unlike the PD-H-375TS not adapted homolog suppressed the growth of subcutaneous Colo320 tumors in nude mice without causing any side effects. CONCLUSION: Taken together, here we present an optimized protocol for the rapid generation of tumor cell-specific adapted oncolytic CVB3 based on the oncolytic CVB3 strain PD-H. The protocol is promising for the generation of personalized OV for tumor therapy and has the potential to be applied to other OV.

8.
Vaccines (Basel) ; 12(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38543901

RESUMO

Group B coxsackieviruses (CVBs) cause a wide range of diseases in humans, but no vaccines are currently available to prevent these infections. Previously, we had demonstrated that a live attenuated CVB3 vaccine virus, Mutant 10 (Mt10), offers protection against multiple CVB serotypes as evaluated in various inbred mouse strains; however, the applicability of these findings to the outbred human population remains uncertain. To address this issue, we used Diversity Outbred (DO) mice, whose genome is derived from eight inbred mouse strains that may capture the level of genetic diversity of the outbred human population. To determine the efficacy of the Mt10 vaccine, we established the CVB3 infection model in the DO mice. We noted that CVB3 infection resulted mainly in pancreatitis, although viral RNA was detected in both the pancreas and heart. Histologically, the pancreatic lesions comprised of necrosis, post-necrotic atrophy, and lymphocyte infiltration. In evaluating the efficacy of the Mt10 vaccine, both male and female DO mice were completely protected in challenge studies with CVB3, and viral RNA was not detected in the heart or pancreas. Likewise, vaccine recipients of both sexes showed significant levels of virus-neutralizing antibodies. Furthermore, by using the CVB3 viral protein 1, virus-reactive antibodies were found to be diverse in the order of IgG2c, followed by IgG2a, IgG2b/IgG3, and IgG1. Together, the data suggest that the Mt10 vaccine virus can offer protection against CVB infections that may have translational significance.

9.
Biochem Pharmacol ; 223: 116173, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552849

RESUMO

Pyroptosis, a novel programmed cell death mediated by NOD-like receptor protein 3 (NLRP3) inflammasome, is a critical pathogenic process in acute viral myocarditis (AVMC). Mitsugumin 53 (MG53) is predominantly expressed in myocardial tissues and has been reported to exert cardioprotective effects through multiple pathways. Herein, we aimed to investigate the biological function of MG53 in AVMC and its underlying regulatory mechanism in pyroptosis. BALB/c mice and HL-1 cells were infected with Coxsackievirus B3 (CVB3) to establish animal and cellular models of AVMC. As inflammation progressed in the myocardium, we found a progressive decrease in myocardial MG53 expression, accompanied by a significant enhancement of cardiomyocyte pyroptosis. MG53 overexpression significantly alleviated myocardial inflammation, apoptosis, fibrosis, and mitochondrial damage, thereby improving cardiac dysfunction in AVMC mice. Moreover, MG53 overexpression inhibited NLRP3 inflammasome-mediated pyroptosis, reduced pro-inflammatory cytokines (IL-1ß/18) release, and suppressed NF-κB signaling pathway activation both in vivo and in vitro. Conversely, MG53 knockdown reduced cell viability, facilitated cell pyroptosis, and increased pro-inflammatory cytokines release in CVB3-infected HL-1 cells by promoting NF-κB activation. These effects were partially reversed by applying the NF-κB inhibitor BAY 11-7082. In conclusion, our results suggest that MG53 acts as a negative regulator of NLRP3 inflammasome-mediated pyroptosis in CVB3-induced AVMC, partially by inhibiting the NF-κB signaling pathway. MG53 is a promising candidate for clinical applications in AVMC treatment.


Assuntos
Miocardite , Animais , Camundongos , Citocinas/metabolismo , Inflamassomos/metabolismo , Inflamação , Proteínas de Membrana , Miocardite/prevenção & controle , Miocardite/metabolismo , Miocardite/patologia , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Piroptose , Transdução de Sinais
10.
Virol Sin ; 39(2): 290-300, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331038

RESUMO

Coxsackievirus B3 (CVB3) is the pathogen causing hand, foot and mouth disease (HFMD), which manifests across a spectrum of clinical severity from mild to severe. However, CVB3-infected mouse models mainly demonstrate viral myocarditis and pancreatitis, failing to replicate human HFMD symptoms. Although several enteroviruses have been evaluated in Syrian hamsters and rhesus monkeys, there is no comprehensive data on CVB3. In this study, we have first tested the susceptibility of Syrian hamsters to CVB3 infection via different routes. The results showed that Syrian hamsters were successfully infected with CVB3 by intraperitoneal injection or nasal drip, leading to nasopharyngeal colonization, acute severe pathological injury, and typical HFMD symptoms. Notably, the nasal drip group exhibited a longer viral excretion cycle and more severe pathological damage. In the subsequent study, rhesus monkeys infected with CVB3 through nasal drips also presented signs of HFMD symptoms, viral excretion, serum antibody conversion, viral nucleic acids and antigens, and the specific organ damages, particularly in the heart. Surprisingly, there were no significant differences in myocardial enzyme levels, and the clinical symptoms resembled those often associated with common, mild infections. In summary, the study successfully developed severe Syrian hamsters and mild rhesus monkey models for CVB3-induced HFMD. These models could serve as a basis for understanding the disease pathogenesis, conducting pre-trial prevention and evaluation, and implementing post-exposure intervention.


Assuntos
Modelos Animais de Doenças , Enterovirus Humano B , Doença de Mão, Pé e Boca , Macaca mulatta , Mesocricetus , Animais , Doença de Mão, Pé e Boca/virologia , Doença de Mão, Pé e Boca/patologia , Enterovirus Humano B/patogenicidade , Anticorpos Antivirais/sangue , Cricetinae , Feminino , Eliminação de Partículas Virais , Nasofaringe/virologia , Masculino
11.
Antiviral Res ; 223: 105824, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309307

RESUMO

Coxsackievirus B3 (CVB3), one serotype of enteroviruses, can induce fatal myocarditis and hepatitis in neonates, but both treatment and vaccine are unavailable. Few reports tested antivirals to reduce CVB3. Several antivirals were developed against other enterovirus serotypes, but these antivirals failed in clinical trials due to side effects and drug resistance. Repurposing of clinical drugs targeting cellular factors, which enhance viral replication, may be another option. Parasite and cancer studies showed that the cellular protein kinase B (Akt) decreases interferon (IFN), apoptosis, and interleukin (IL)-6-induced STAT3 responses, which suppress CVB3 replication. Furthermore, miltefosine, the Akt inhibitor used in the clinic for parasite infections, enhances IL-6, IFN, and apoptosis responses in treated patients, suggesting that miltefosine could be the potential antiviral for CVB3. This study was therefore designated to test the antiviral effects of miltefosine against CVB3 in vitro and especially, in mice, as few studies test miltefosine in vitro, but not in vivo. In vitro results showed that miltefosine inhibited viral replication with enhanced activation of the cellular transcription factor, STAT3, which is reported to reduce CVB3 both in vitro and in mice. Notably, STAT3 knockdown abolished the anti-CVB3 activity of miltefosine in vitro. Mouse studies demonstrated that miltefosine pretreatment reduced CVB3 lethality of mice with decreased virus loads, organ damage, and apoptosis, but enhanced STAT3 activation. Miltefosine could be prophylaxis for CVB3 by targeting Akt to enhance STAT3 activation in the mechanism, which is independent of IFN responses and hardly reported in pathogen infections.


Assuntos
Infecções por Enterovirus , Fosforilcolina/análogos & derivados , Fator de Transcrição STAT3 , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt , Apoptose , Antígenos Virais , Infecções por Enterovirus/tratamento farmacológico , Interleucina-6 , Antivirais/farmacologia
12.
J Virol ; 98(2): e0150423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289119

RESUMO

Coxsackievirus B3 (CVB3) is known to cause acute myocarditis and pancreatitis in humans. We investigated the microRNAs (miRNAs) that can potentially govern the viral life cycle by binding to the untranslated regions (UTRs) of CVB3 RNA. MicroRNA-22-3p was short-listed, as its potential binding site overlapped with the region crucial for recruiting internal ribosome entry site trans-acting factors (ITAFs) and ribosomes. We demonstrate that miR-22-3p binds CVB3 5' UTR, hinders recruitment of key ITAFs on viral mRNA, disrupts the spatial structure required for ribosome recruitment, and ultimately blocks translation. Likewise, cells lacking miR-22-3p exhibited heightened CVB3 infection compared to wild type, confirming its role in controlling infection. Interestingly, miR-22-3p level was found to be increased at 4 hours post-infection, potentially due to the accumulation of viral 2A protease in the early phase of infection. 2Apro enhances the miR-22-3p level to dislodge the ITAFs from the SD-like sequence, rendering the viral RNA accessible for binding of replication factors to switch to replication. Furthermore, one of the cellular targets of miR-22-3p, protocadherin-1 (PCDH1), was significantly downregulated during CVB3 infection. Partial silencing of PCDH1 reduced viral replication, demonstrating its proviral role. Interestingly, upon CVB3 infection in mice, miR-22-3p level was found to be downregulated only in the small intestine, the primary target organ, indicating its possible role in influencing tissue tropism. It appears miR-22-3p plays a dual role during infection by binding viral RNA to aid its life cycle as a viral strategy and by targeting a proviral protein to restrict viral replication as a host response.IMPORTANCECVB3 infection is associated with the development of end-stage heart diseases. Lack of effective anti-viral treatments and vaccines for CVB3 necessitates comprehensive understanding of the molecular players during CVB3 infection. miRNAs have emerged as promising targets for anti-viral strategies. Here, we demonstrate that miR-22-3p binds to 5' UTR and inhibits viral RNA translation at the later stage of infection to promote viral RNA replication. Conversely, as host response, it targets PCDH1, a proviral factor, to discourage viral propagation. miR-22-3p also influences CVB3 tissue tropism. Deciphering the multifaced role of miR-22-3p during CVB3 infection unravels the necessary molecular insights, which can be exploited for novel intervening strategies to curb infection and restrict viral pathogenesis.


Assuntos
Regiões 5' não Traduzidas , Infecções por Coxsackievirus , Enterovirus Humano B , Interações entre Hospedeiro e Microrganismos , MicroRNAs , Biossíntese de Proteínas , RNA Viral , Animais , Humanos , Camundongos , Regiões 5' não Traduzidas/genética , Antivirais/metabolismo , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/genética , Enterovirus Humano B/patogenicidade , Enterovirus Humano B/fisiologia , Células HeLa , Intestino Delgado/metabolismo , Intestino Delgado/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Tropismo Viral/genética , Replicação Viral/genética , Cisteína Endopeptidases/metabolismo , Protocaderinas/deficiência , Protocaderinas/genética , Miocardite , Interações entre Hospedeiro e Microrganismos/genética
13.
Apoptosis ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127284

RESUMO

Viral myocarditis (VMC) is the major reason for sudden cardiac death among both children and young adults. Of these, coxsackievirus B3 (CVB3) is the most common causative agent of myocarditis. Recently, the role of signaling pathways in the pathogenesis of VMC has been evaluated in several studies, which has provided a new perspective on identifying potential therapeutic targets for this hitherto incurable disease. In the present study, in vivo and in vitro experiments showed that CVB3 infection leads to increased Bim expression and triggers apoptosis. In addition, by knocking down Bim using RNAi, we further confirmed the biological function of Bim in apoptosis induced by CVB3 infection. We additionally found that Bim and forkhead box O1 class (FOXO1) inhibition significantly increased the viability of CVB3-infected cells while blocking viral replication and viral release. Moreover, CVB3-induced Bim expression was directly dependent on FOXO1 acetylation, which is catalyzed by the co-regulation of CBP and SirTs. Furthermore, the acetylation of FOXO1 was an important step in Bim activation and apoptosis induced by CVB3 infection. The findings of this study suggest that CVB3 infection induces apoptosis through the FOXO1 acetylation-Bim pathway, thus providing new insights for developing potential therapeutic targets for enteroviral myocarditis.

14.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37765055

RESUMO

Herein, a series of new isatin derivatives was designed and synthesized (1-9) as broad-spectrum antiviral agents. Consequently, the antiviral activities of the synthesized compounds (1-9) were pursued against three viruses, namely influenza virus (H1N1), herpes simplex virus 1 (HSV-1), and coxsackievirus B3 (COX-B3). In particular, compounds 9, 5, and 4 displayed the highest antiviral activity against H1N1, HSV-1, and COX-B3 with IC50 values of 0.0027, 0.0022, and 0.0092 µM, respectively. Compound 7 was the safest, with a CC50 value of 315,578.68 µM. Moreover, a quantitative PCR (real-time PCR) assay was carried out for the most relevant compounds. The selected compounds exhibited a decrease in viral gene expression. Additionally, the conducted in silico studies emphasized the binding affinities of the synthesized compounds and their reliable pharmacokinetic properties as well. Finally, a structure-antiviral activity relationship study was conducted to anticipate the antiviral activity change upon future structural modification.

15.
Nano Lett ; 23(19): 8881-8890, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37751402

RESUMO

Viral myocarditis (VMC), commonly caused by coxsackievirus B3 (CVB3) infection, lacks specific treatments and leads to serious heart conditions. Current treatments, such as IFNα and ribavirin, show limited effectiveness. Herein, rather than inhibiting virus replication, this study introduces a novel cardiomyocyte sponge, intracellular gelated cardiomyocytes (GCs), to trap and neutralize CVB3 via a receptor-ligand interaction, such as CAR and CD55. By maintaining cellular morphology, GCs serve as sponges for CVB3, inhibiting infection. In vitro results revealed that GCs could inhibit CVB3 infection on HeLa cells. In vivo, GCs exhibited a strong immune escape ability and effectively inhibited CVB3-induced viral myocarditis with a high safety profile. The most significant implication of this study is to develop a universal antivirus infection strategy via intracellular gelation of the host cell, which can be employed not only for treating defined pathogenic viruses but also for a rapid response to infection outbreaks caused by mutable and unknown viruses.

16.
Int Immunopharmacol ; 124(Pt A): 110797, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37634445

RESUMO

BACKGROUND: Accumulating evidences have demonstrated that overwhelming inflammation occurs in the process of Coxsackievirus B3 (CVB3)-induced acute viral myocarditis (AVM). No specific therapy is available. More than an effective Janus-associated kinase (JAK) inhibiter, ruxolitinib exerts a critical role in the inflammatory diseases. In this study, we investigated the potential effect of ruxolitinib on CVB3-induced acute viral myocarditis. METHOD: In vivo, BALB/c mice were intraperitoneally injected of CVB3, treated of a successive gavage of ruxolitinib for seven days, and subjected to a series of analysis. In vitro, primary bone marrow-derived macrophages (BMDMs) and cardiac fibroblasts were isolated, cultured, treated, harvested and finally detected. RESULTS: In vivo, acute viral myocarditis was successfully induced by the injection of CVB3 characterized by impaired cardiac function, predominant infiltration of inflammatory cells, necroptosis of myocardium, great increase of cardiac troponin I (cTnI) and cytokine levels, replication of CVB3, and excessive activation of JAK-STAT pathways. Oral administration of ruxolitinib suppressed the activation of JAK-STAT pathway in a dosage-dependent way, lessened the infiltration of inflammatory cells and necroptosis of myocardium, reduced the levels of cTnI and cytokines, and finally alleviated CVB3-induced cardiac dysfunction, with the reduced production of type I interferon and no promising effect on the replication of CVB3. In vitro, the treatment of ruxolitinib inhibited the activation of JAK-STAT pathway and increase of multiple cytokines mRNA levels in BMDMs and had no protective effect against CVB3 replication in cardiac fibroblasts. CONCLUSIONS: Our study suggested that ruxolitinib ameliorated CVB3-induced AVM by inhibiting the activation of JAK-STAT pathway, infiltration of inflammatory cells and necroptosis of myocardium, which may provide a novel strategy for AVM therapy.

17.
Antiviral Res ; 217: 105702, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37604350

RESUMO

Coxsackievirus B3 (CVB3) is one of the major pathogens of viral myocarditis, lacking specific anti-virus therapeutic options. Increasing evidence has shown an important involvement of the miR-17-92 cluster both in virus infection and cardiovascular development and diseases, while its role in CVB3-induced viral myocarditis remains unclear. In this study, we found that miR-19a and miR-19b were significantly up-regulated in heart tissues of CVB3-infected mice and exerted a significant facilitatory impact on CVB3 biosynthesis and replication, with a more pronounced effect observed in miR-19b, by targeting the encoding region of viral RNA-dependent RNA polymerase 3D (RdRp, 3Dpol) to increase viral genomic RNA stability. The virus-promoting effects were nullified by the synonymous mutations in the viral 3Dpol-encoding region, which corresponded to the seed sequence shared by miR-19a and miR-19b. In parallel, treatment with miR-19b antagomir not only resulted in a noteworthy suppression of CVB3 replication and infection in infected cells, but also demonstrated a significant reduction in the cardiac viral load of CVB3-infected mice, resulting in a considerable alleviation of myocarditis. Collectively, our study showed that CVB3-induced cardiac miR-19a/19b contributed to viral myocarditis via facilitating virus biosynthesis and replication, and targeting miR-19a/19b might represent a novel therapeutic target for CVB3-induced viral myocarditis.


Assuntos
Enterovirus Humano B , MicroRNAs , Miocardite , Miocárdio , Replicação Viral , Enterovirus Humano B/genética , Enterovirus Humano B/fisiologia , Miocardite/metabolismo , Miocardite/virologia , Miocárdio/metabolismo , Miocárdio/patologia , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Humanos , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Genoma Viral , RNA Polimerase Dependente de RNA/genética , Antagomirs/farmacologia , Camundongos Endogâmicos BALB C , Células HEK293 , Células HeLa , Camundongos , Animais
18.
Fitoterapia ; 169: 105615, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37454778

RESUMO

Fifteen unreported prenylated C6-C3 derivatives (1-15) were isolated from the stems and branches of Illicium ternstroemioides A. C. Smith, including one bis-prenylated C6-C3 derivative (1), three prenylated C6-C3 derivative-shikimic acid ester hybrids (2-4) and 11 prenylated C6-C3 monomers (5-15). The structures of compounds 1-15 were elucidated by spectroscopic analysis (UV, IR, 1D and 2D NMR, and HRESIMS). The absolute configurations of the compounds were determined using electronic circular dichroism (ECD), induced circular dichroism (ICD), and the modified Mosher's method. Among the isolates, compounds 11, 12, and 15 exhibited significant anti-inflammatory activities by inhibiting the nitric oxide with IC50 values ranging from 1.89 to 24.83 µM in lipopolysaccharide-stimulated murine RAW 264.7 macrophages and murine BV2 microglial cells; compounds 2, 3, and 7 exhibited antiviral activitives against Coxsackievirus B3 with an IC50 value of 33.3, 25.9, and 27.8 µM, respectively.


Assuntos
Illicium , Camundongos , Animais , Illicium/química , Estrutura Molecular , Anti-Inflamatórios , Macrófagos , Dicroísmo Circular
19.
J Microbiol Immunol Infect ; 56(4): 766-771, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37330377

RESUMO

BACKGROUND: Maternal transplacental antibody is an important origins of passive immunity against neonatal enterovirus infection. Echovirus 11 (E11) and coxsackievirus B3 (CVB3) are important types causing neonatal infections. There were few investigations of enterovirus D68 (EVD68) infection in neonates. We aimed to investigate the serostatus of cord blood for these three enteroviruses and evaluate the factors associated with seropositivity. METHODS: We enrolled 222 parturient (gestational age 34-42 weeks) women aged 20-46 years old between January and October 2021. All participants underwent questionnaire investigation and we collected the cord blood to measure the neutralization antibodies against E11, CVB3 and EVD68. RESULTS: The cord blood seropositive rates were 18% (41/222), 60% (134/232) and 95% (211/222) for E11, CVB3 and EVD68, respectively (p < 0.001). Geometric mean titers were 3.3 (95% CI 2.9-3.8) for E11, 15.9 (95% CI 12.5-20.3) for CVB3 and 109.9 (95% CI 92.4-131.6) for EVD68. Younger parturient age (33.8 ± 3.6 versus 35.2 ± 4.4, p = 0.04) was related to E11 seropositivity. Neonatal sex, gestational age and birth body weight were not significantly different between the seropositive group and the seronegative group. CONCLUSION: Cord blood seropositive rate and geometric mean titer of E11 were very low, so a large proportion of newborns are susceptible to E11. The circulation of E11 was low after 2019 in Taiwan. A large cohort of immune naïve newborns existed currently due to lack of protective maternal antibodies. It is imminent to monitor the epidemiology of neonates with enterovirus infections and strengthen the relevant preventive policies.


Assuntos
Doenças Transmissíveis , Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Humanos , Recém-Nascido , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Lactente , Sangue Fetal , Enterovirus Humano B , Anticorpos
20.
Viruses ; 15(5)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37243164

RESUMO

Inflammasomes are cytosolic sensors of pathogens. Their activation can lead to the induction of caspase-1-mediated inflammatory responses and the release of several proinflammatory cytokines, including IL-1ß. There is a complex relationship between viral infection and the nucleotide-binding oligomerization domain-like receptors family pyrin domain-containing 3 (NLRP3) inflammasome. The activation of the NLRP3 inflammasome is essential for antiviral immunity, while excessive NLRP3 inflammasome activation may lead to excessive inflammation and pathological damage. Meanwhile, viruses have evolved strategies to suppress the activation of inflammasome signaling pathways, thus escaping immune responses. In this study, we investigated the inhibitory effect of coxsackievirus B3 (CVB3), a positive single-strand RNA virus, on the activation of the NLRP3 inflammasome in macrophages. CVB3-infected mice had significantly lower production of IL-1ß and a lower level of NLRP3 in the small intestine after LPS stimulation. Furthermore, we found that CVB3 infection inhibited NLRP3 inflammasome activation and IL-1ß production in macrophages by suppressing the NF-κB signaling pathway and ROS production. Additionally, CVB3 infection increased the susceptibility of mice to Escherichia coli infection by decreasing IL-1ß production. Collectively, our study revealed a novel mechanism of NLRP3 inflammasome activation by suppressing the NF-κB pathway and ROS production in LPS-induced macrophages. Our findings may provide new ideas for antiviral treatment and drug development for CVB3 infection.


Assuntos
Inflamassomos , NF-kappa B , Animais , Camundongos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Antivirais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...