RESUMO
Orofacial clefts are facial malformations caused by the improper development of the lips and palate. Many genetic and epigenetic molecules have been involved in the mechanisms of orofacial clefts, one of which are miRNAs. This systematic review aimed to identify miRNAs associated to non-syndromic orofacial clefts in humans. After applying a series of criteria, four studies were selected for analysis. In total, one hundred miRNAs were observed in the literature, of which 57 were reported as upregulated and 43 as downregulated in all orofacial cleft classifications. Moreover, nine miRNAs were differentially expressed only in cleft palate patients, which might suggest distinct regulatory mechanisms for the etiology of cleft lips and palates. We suggest broader population sampling in order to include diverse ethnic groups in the future, as well as analyses toward identifying miRNA target genes and pathways. We highlight the need for experimental validation and of these results to allow further translational approaches and clinical applications.
Assuntos
Fenda Labial/genética , Fissura Palatina/genética , MicroRNAs/genética , Biomarcadores , HumanosRESUMO
Mutations and common polymorphisms in interferon regulatory factor 6 ( IRF6) are associated with both syndromic and nonsyndromic forms of cleft lip/palate (CLP). To date, much of the focus on this transcription factor has been on identifying its direct targets and the gene regulatory network in which it operates. Notably, however, IRF6 is found predominantly in the cytoplasm, with its import into the nucleus tightly regulated like other members of the IRF family. To provide further insight into the role of IRF6 in the pathogenesis of CLP, we sought to identify direct IRF6 protein interactors using a combination of yeast 2-hybrid screens and co-immunoprecipitation assays. Using this approach, we identified NME1 and NME2, well-known regulators of Rho-type GTPases, E-cadherin endocytosis, and epithelial junctional remodeling, as bona fide IRF6 partner proteins. The NME proteins co-localize with IRF6 in the cytoplasm of primary palatal epithelial cells in vivo, and their interaction with IRF6 is significantly enhanced by phosphorylation of key serine residues in the IRF6 C-terminus. Furthermore, CLP associated IRF6 missense mutations disrupt the ability of IRF6 to bind the NME proteins and result in elevated activation of Rac1 and RhoA, compared to wild-type IRF6, when ectopically expressed in 293T epithelial cells. Significantly, we also report the identification of 2 unique missense mutations in the NME proteins in patients with CLP (NME1 R18Q in an IRF6 and GRHL3 mutation-negative patient with van der Woude syndrome and NME2 G71V in a patient with nonsyndromic CLP). Both variants disrupted the ability of the respective proteins to interact with IRF6. The data presented suggest an important role for cytoplasmic IRF6 in regulating the availability or localization of the NME1/2 complex and thus the dynamic behavior of epithelia during lip/palate development.
Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Fatores Reguladores de Interferon/genética , Nucleosídeo NM23 Difosfato Quinases/genética , Animais , Embrião de Galinha , Variação Genética , Humanos , Imunoprecipitação , Mutação , Fosforilação , Reação em Cadeia da Polimerase , Aderências Teciduais/genética , Fatores de Transcrição/genéticaRESUMO
Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is a common craniofacial birth defect that has a complex etiology. Genome-wide association studies have recently identified new loci associated with NSCL/P, but these loci have not been analyzed in a Mexican Mestizo population. A complex etiology implies the presence of genetic interactions, but there is little available information regarding this in NSCL/P, and no signaling pathway has been clearly implicated in humans. Here, we analyzed the associations of 24 single nucleotide polymorphisms (SNPs) with NSCL/P in a Mexican Mestizo population (133 cases, 263 controls). The multifactorial dimensionality reduction method was used to examine gene-gene and gene-folic acid consumption interactions for the 24 SNPs analyzed in this study and for 2 additional SNPs that had previously been genotyped in the same study population. Six SNPs located in paired box 7, ventral anterior homeobox 1, sprouty RTK signaling antagonist 2, bone morphogenetic protein 4, and tropomyosin 1 genes were associated with higher risks of NSCL/P (P = 0.0001 to 0.04); 2 SNPs, 1 each in netrin 1 and V-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B, were associated with a lower risk of NSCL/P (P = 0.013 to 0.03); and 2 SNPs, 1 each in ATP binding cassette subfamily A member 4 (ABCA4) and noggin, showed associations with NSCL/P that approached the threshold of significance (P = 0.056 to 0.07). In addition, 6 gene-gene interactions (P = 0.0001 to 0.001) and an ABCA4-folic acid consumption interaction (P < 0.0001) were identified. On the basis of these results, combined with those of previous association studies in the literature and biological characterizations of murine models, we propose an interaction network in which interferon regulatory factor 6 plays a central role in the etiology of NSCL/P.