Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39308450

RESUMO

How tissues develop distinct structures remains poorly understood. We propose herein the Lego hypothesis of tissue morphogenesis, which states that during tissue morphogenesis, the topographical properties of cell surface adhesion molecules can be dynamically altered and polarised by regulating the spatiotemporal expression and localization of orientational cell adhesion (OCA) molecules cell-autonomously and non-cell-autonomously, thus modulating cells into unique Lego pieces for self-assembling into distinct cytoarchitectures. This concept can be exemplified by epithelial morphogenesis, in which cells are coalesced into a sheet by many types of adhesions. Among them, parallel OCAs (pOCAs) at the lateral cell membranes are essential for configuring cells in parallel. Major pOCAs include Na+/K+-ATPase-mediated adhesions, Crumbs-mediated adhesions, tight junctions, adherens junctions, and desmosomes. These pOCAs align in stereotypical orders along the apical-to-basal axis, and their absolute positioning is also regulated. Such spatial organization of pOCAs underlies proper epithelial morphogenesis. Thus, a key open question about tissue morphogenesis is how to regulate OCAs to make compatible adhesive cellular Lego pieces for tissue construction.

2.
Genes (Basel) ; 15(5)2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38790254

RESUMO

Pathogenic variants in the Crumbs homolog 1 (CRB1) gene lead to severe, childhood-onset retinal degeneration leading to blindness in early adulthood. There are no approved therapies, and traditional adeno-associated viral vector-based gene therapy approaches are challenged by the existence of multiple CRB1 isoforms. Here, we describe three CRB1 variants, including a novel, previously unreported variant that led to retinal degeneration. We offer a CRISPR-Cas-mediated DNA base editing strategy as a potential future therapeutic approach. This study is a retrospective case series. Clinical and genetic assessments were performed, including deep phenotyping by retinal imaging. In silico analyses were used to predict the pathogenicity of the novel variant and to determine whether the variants are amenable to DNA base editing strategies. Case 1 was a 24-year-old male with cone-rod dystrophy and retinal thickening typical of CRB1 retinopathy. He had a relatively preserved central outer retinal structure and a best corrected visual acuity (BCVA) of 60 ETDRS letters in both eyes. Genetic testing revealed compound heterozygous variants in exon 9: c.2843G>A, p.(Cys948Tyr) and a novel variant, c.2833G>A, p.(Gly945Arg), which was predicted to likely be pathogenic by an in silico analysis. Cases 2 and 3 were two brothers, aged 20 and 24, who presented with severe cone-rod dystrophy and a significant disruption of the outer nuclear layers. The BCVA was reduced to hand movements in both eyes in Case 2 and to 42 ETDRS letters in both eyes in Case 3. Case 2 was also affected with marked cystoid macular lesions, which are common in CRB1 retinopathy, but responded well to treatment with oral acetazolamide. Genetic testing revealed two c.2234C>T, p.(Thr745Met) variants in both brothers. As G-to-A and C-to-T variants, all three variants are amenable to adenine base editors (ABEs) targeting the forward strand in the Case 1 variants and the reverse strand in Cases 2 and 3. Available PAM sites were detected for KKH-nSaCas9-ABE8e for the c.2843G>A variant, nSaCas9-ABE8e and KKH-nSaCas9-ABE8e for the c.2833G>A variant, and nSpCas9-ABE8e for the c.2234C>T variant. In this case series, we report three pathogenic CRB1 variants, including a novel c.2833G>A variant associated with early-onset cone-rod dystrophy. We highlight the severity and rapid progression of the disease and offer ABEs as a potential future therapeutic approach for this devastating blinding condition.


Assuntos
Sistemas CRISPR-Cas , Proteínas do Olho , Edição de Genes , Proteínas de Membrana , Proteínas do Tecido Nervoso , Humanos , Masculino , Edição de Genes/métodos , Proteínas de Membrana/genética , Adulto Jovem , Proteínas do Olho/genética , Proteínas do Tecido Nervoso/genética , Adulto , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/patologia , Feminino , Simulação por Computador , Terapia Genética/métodos , Estudos Retrospectivos
3.
Cell Commun Signal ; 22(1): 290, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802833

RESUMO

The Crumbs protein (CRB) family plays a crucial role in maintaining the apical-basal polarity and integrity of embryonic epithelia. The family comprises different isoforms in different animals and possesses diverse structural, localization, and functional characteristics. Mutations in the human CRB1 or CRB2 gene may lead to a broad spectrum of retinal dystrophies. Various CRB-associated experimental models have recently provided mechanistic insights into human CRB-associated retinopathies. The knowledge obtained from these models corroborates the importance of CRB in retinal development and maintenance. Therefore, complete elucidation of these models can provide excellent therapeutic prospects for human CRB-associated retinopathies. In this review, we summarize the current animal models and human-derived models of different CRB family members and describe the main characteristics of their retinal phenotypes.


Assuntos
Proteínas de Membrana , Doenças Retinianas , Humanos , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Doenças Retinianas/genética , Doenças Retinianas/patologia , Doenças Retinianas/metabolismo , Retina/metabolismo , Retina/patologia , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Modelos Animais de Doenças , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Mutação
4.
Sci Total Environ ; 932: 172927, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719057

RESUMO

Tire-derived rubber crumbs (RC), as a new type of microplastics (MPs), harms both the environment and human health. Excessive use of plastic, the decomposition of which generates microplastic particles, in current agricultural practices poses a significant threat to the sustainability of agricultural ecosystems, worldwide food security and human health. In this study, the application of biochar, a carbon-rich material, to soil was explored, especially in the evaluation of synthetic biochar-based community (SynCom) to alleviate RC-MP-induced stress on plant growth and soil physicochemical properties and soil microbial communities in peanuts. The results revealed that RC-MPs significantly reduced peanut shoot dry weight, root vigor, nodule quantity, plant enzyme activity, soil urease and dehydrogenase activity, as well as soil available potassium, and bacterial abundance. Moreover, the study led to the identification highly effective plant growth-promoting rhizobacteria (PGPR) from the peanut rhizosphere, which were then integrated into a SynCom and immobilized within biochar. Application of biochar-based SynCom in RC-MPs contaminated soil significantly increased peanut biomass, root vigor, nodule number, and antioxidant enzyme activity, alongside enhancing soil enzyme activity and rhizosphere bacterial abundance. Interestingly, under high-dose RC-MPs treatment, the relative abundance of rhizosphere bacteria decreased significantly, but their diversity increased significantly and exhibited distinct clustering phenomenon. In summary, the investigated biochar-based SynCom proved to be a potential soil amendment to mitigate the deleterious effects of RC-MPs on peanuts and preserve soil microbial functionality. This presents a promising solution to the challenges posed by contaminated soil, offering new avenues for remediation.


Assuntos
Arachis , Carvão Vegetal , Microplásticos , Microbiologia do Solo , Poluentes do Solo , Solo , Carvão Vegetal/química , Arachis/microbiologia , Poluentes do Solo/análise , Solo/química , Microbiota , Rizosfera , Recuperação e Remediação Ambiental/métodos
5.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339183

RESUMO

The main characteristic of polycystic kidney disease is the development of multiple fluid-filled renal cysts. The discovery of mislocalized sodium-potassium pump (Na,K-ATPase) in the apical membrane of cyst-lining epithelia alluded to reversal of polarity as a possible explanation for the fluid secretion. The topic of apical Na,K-ATPase in cysts remains controversial. We investigated the localization of the Na,K-ATPase and assessed the apical-basolateral polarization of cyst-lining epithelia by means of immunohistochemistry in kidney tissue from six polycystic kidney disease patients undergoing nephrectomy. The Na,K-ATPase α1 subunit was conventionally situated in the basolateral membrane of all immunoreactive cysts. Proteins of the Crumbs and partitioning defective (Par) complexes were localized to the apical membrane domain in cyst epithelial cells. The apical targeting protein Syntaxin-3 also immunolocalized to the apical domain of cyst-lining epithelial cells. Proteins of the basolateral Scribble complex immunolocalized to the basolateral domain of cysts. Thus, no deviations from the typical epithelial distribution of basic cell polarity proteins were observed in the cysts from the six patients. Furthermore, we confirmed that cysts can originate from virtually any tubular segment with preserved polarity. In conclusion, we find no evidence of a reversal in apical-basolateral polarity in cyst-lining epithelia in polycystic kidney disease.


Assuntos
Cistos , Doenças Renais Policísticas , Humanos , ATPase Trocadora de Sódio-Potássio/metabolismo , Polaridade Celular , Doenças Renais Policísticas/metabolismo , Epitélio/metabolismo , Membrana Celular/metabolismo , Proteínas Qa-SNARE/metabolismo , Cistos/metabolismo , Rim/metabolismo
6.
J Cell Sci ; 137(5)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37840525

RESUMO

Cell shape changes mainly rely on the remodeling of the actin cytoskeleton. Multiciliated cells (MCCs) of the mucociliary epidermis of Xenopus laevis embryos, as they mature, dramatically reshape their apical domain to grow cilia, in coordination with the underlying actin cytoskeleton. Crumbs (Crb) proteins are multifaceted transmembrane apical polarity proteins known to recruit actin linkers and promote apical membrane growth. Here, we identify the homeolog Crb3.L as an important player for the migration of centrioles or basal bodies (collectively centrioles/BBs) and apical domain morphogenesis in MCCs. Crb3.L is present in cytoplasmic vesicles close to the ascending centrioles/BBs, where it partially colocalizes with Rab11a. Crb3.L morpholino-mediated depletion in MCCs caused abnormal migration of centrioles/BBs, a reduction of their apical surface, disorganization of their apical actin meshwork and defective ciliogenesis. Rab11a morpholino-mediated depletion phenocopied Crb3.L loss-of-function in MCCs. Thus, the control of centrioles/BBs migration by Crb3.L might be mediated by Rab11a-dependent apical trafficking. Furthermore, we show that both phospho-activated ERM (pERM; Ezrin-Radixin-Moesin) and Crb3.L are recruited to the growing apical domain of MCCs, where Crb3.L likely anchors pERM, allowing actin-dependent expansion of the apical membrane.


Assuntos
Citoesqueleto de Actina , Actinas , Actinas/metabolismo , Morfolinos/metabolismo , Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Cílios/metabolismo
7.
Cell Mol Life Sci ; 80(11): 333, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878054

RESUMO

The conserved multiple PDZ-domain containing protein PATJ stabilizes the Crumbs-Pals1 complex to regulate apical-basal polarity and tight junction formation in epithelial cells. However, the molecular mechanism of PATJ's function in these processes is still unclear. In this study, we demonstrate that knockout of PATJ in epithelial cells results in tight junction defects as well as in a disturbed apical-basal polarity and impaired lumen formation in three-dimensional cyst assays. Mechanistically, we found PATJ to associate with and inhibit histone deacetylase 7 (HDAC7). Inhibition or downregulation of HDAC7 restores polarity and lumen formation. Gene expression analysis of PATJ-deficient cells revealed an impaired expression of genes involved in cell junction assembly and membrane organization, which is rescued by the downregulation of HDAC7. Notably, the function of PATJ regulating HDAC7-dependent cilia formation does not depend on its canonical interaction partner, Pals1, indicating a new role of PATJ, which is distinct from its function in the Crumbs complex. By contrast, polarity and lumen phenotypes observed in Pals1- and PATJ-deficient epithelial cells can be rescued by inhibition of HDAC7, suggesting that the main function of this polarity complex in this process is to modulate the transcriptional profile of epithelial cells by inhibiting HDAC7.


Assuntos
Polaridade Celular , Junções Íntimas , Bioensaio , Regulação para Baixo , Histona Desacetilases/genética
8.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37762234

RESUMO

The CRB1 gene plays a role in retinal development and its maintenance. When disrupted, it gives a range of phenotypes such as early-onset severe retinal dystrophy/Leber congenital amaurosis (EOSRD/LCA), retinitis pigmentosa (RP), cone-rod dystrophy (CORD) and macular dystrophy (MD). Studies in CRB1 retinopathies have shown thickening and coarse lamination of retinal layers resembling an immature retina. Its role in foveal development has not yet been described; however, this retrospective study is the first to report foveal hypoplasia (FH) presence in a CRB1-related retinopathy cohort. Patients with pathogenic biallelic CRB1 variants from Moorfields Eye Hospital, London, UK, were collected. Demographic, clinical data and SD-OCT analyses with FH structural grading were performed. A total of 15 (48%) patients had EOSRD/LCA, 11 (35%) MD, 3 (9%) CORD and 2 (6%) RP. FH was observed in 20 (65%; CI: 0.47-0.79) patients, all of whom were grade 1. A significant difference in BCVA between patients with FH and without was found (p = 0.014). BCVA continued to worsen over time in both groups (p < 0.001), irrespective of FH. This study reports FH in a CRB1 cohort, supporting the role of CRB1 in foveal development. FH was associated with poorer BCVA and abnormal retinal morphology. Nonetheless, its presence did not alter the disease progression.


Assuntos
Distrofias de Cones e Bastonetes , Anormalidades do Olho , Amaurose Congênita de Leber , Degeneração Macular , Distrofias Retinianas , Retinose Pigmentar , Humanos , Estudos Retrospectivos , Retina , Distrofias Retinianas/genética , Retinose Pigmentar/genética , Proteínas do Olho/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
9.
Traffic ; 24(12): 552-563, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37642208

RESUMO

Epithelial polarity is critical for proper functions of epithelial tissues, tumorigenesis, and metastasis. The evolutionarily conserved transmembrane protein Crumbs (Crb) is a key regulator of epithelial polarity. Both Crb protein and its transcripts are apically localized in epithelial cells. However, it remains not fully understood how they are targeted to the apical domain. Here, using Drosophila ovarian follicular epithelia as a model, we show that epithelial polarity is lost and Crb protein is absent in the apical domain in follicular cells (FCs) in the absence of Diamond (Dind). Interestingly, Dind is found to associate with different components of the dynactin-dynein complex through co-IP-MS analysis. Dind stabilizes dynactin and depletion of dynactin results in almost identical defects as those observed in dind-defective FCs. Finally, both Dind and dynactin are also required for the apical localization of crb transcripts in FCs. Thus our data illustrate that Dind functions through dynactin/dynein-mediated transport of both Crb protein and its transcripts to the apical domain to control epithelial apico-basal (A/B) polarity.


Assuntos
Proteínas de Drosophila , Animais , Polaridade Celular , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Complexo Dinactina/metabolismo , Dineínas/metabolismo , Células Epiteliais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
10.
Biol Rev Camb Philos Soc ; 98(6): 2271-2283, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37534608

RESUMO

Neurulation transforms the neuroectoderm into the neural tube. This transformation relies on reorganising the configurational relationships between the orientations of intrinsic polarities of neighbouring cells. These orientational intercellular relationships are established, maintained, and modulated by orientational cell adhesions (OCAs). Here, using zebrafish (Danio rerio) neurulation as a major model, we propose a new perspective on how OCAs contribute to the parallel, antiparallel, and opposing intercellular relationships that underlie the neural plate-keel-rod-tube transformation, a stepwise process of cell aggregation followed by cord hollowing. We also discuss how OCAs in neurulation may be regulated by various adhesion molecules, including cadherins, Eph/Ephrins, Claudins, Occludins, Crumbs, Na+ /K+ -ATPase, and integrins. By comparing neurulation among species, we reveal that antiparallel OCAs represent a conserved mechanism for the fusion of the neural tube. Throughout, we highlight some outstanding questions regarding OCAs in neurulation. Answers to these questions will help us understand better the mechanisms of tubulogenesis of many tissues.


Assuntos
Neurulação , Peixe-Zebra , Animais , Adesão Celular , Tubo Neural/metabolismo , Placa Neural/metabolismo
11.
Adv Exp Med Biol ; 1415: 103-107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440021

RESUMO

The mouse and human retina contain three major Crumbs homologue-1 (CRB1) isoforms. CRB1-A and CRB1-B have cell-type-specific expression patterns making the choice of gene augmentation strategy unclear. Gene editing may be a viable alternative for the amelioration of CRB1-associated retinal degenerations. To assess the prevalence and spectrum of CRB1-associated pathogenic variants amenable to base and prime editing, we carried out an analysis of the Leiden Open Variation Database. Editable variants accounted for 54.5% for base editing and 99.8% for prime editing of all CRB1 pathogenic variants in the Leiden Open Variation Database. The 10 most common editable pathogenic variants for CRB1 accounted for 34.95% of all pathogenic variants, with the c.2843G>A, p.(Cys948Tyr) being the most common editable CRB1 variant. These findings outline the next step toward developing base and prime editing therapeutics as an alternative to gene augmentation for the amelioration of CRB1-associated retinal degenerations.


Assuntos
Degeneração Retiniana , Humanos , Animais , Camundongos , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Degeneração Retiniana/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Mutação , Retina/metabolismo , Isoformas de Proteínas/genética , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
12.
Adv Exp Med Biol ; 1415: 571-576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440088

RESUMO

Mutations in the Crumbs-homologue-1 (CRB1) gene lead to a spectrum of severe inherited retinal diseases, including retinitis pigmentosa (RP). The establishment of a genotype-phenotype correlation in CRB1 patients has been difficult due to the substantial variability and phenotypic overlap between CRB1-associated diseases. This phenotypic modulation may be due to several factors, including genetic modifiers, deep intronic mutations, isoform diversity, and copy number variations. Induced pluripotent stem cell (iPSC)-derived patient retinal organoids are novel tools that can provide sensitive, quantitative, and scalable phenotypic assays. CRB1 RP patient iPSC-derived retinal organoids have shown reproducible phenotypes compared to healthy retinal organoids. However, having genetically defined iPSC isogenic controls that take into account potential phenotypic modulation is crucial. In this study, we generated iPSC from an early-onset CRB1 patient and developed a correction strategy for the c.2480G>T, p.(Gly827Val) CRB1 mutation using CRISPR/Cas9-mediated homology-directed repair.


Assuntos
Células-Tronco Pluripotentes Induzidas , Retinose Pigmentar , Humanos , Sistemas CRISPR-Cas/genética , Variações do Número de Cópias de DNA , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Mutação , Proteínas do Olho/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
13.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119536, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37437846

RESUMO

Cell polarity refers to the asymmetric distribution of biomacromolecules that enable the correct orientation of a cell in a particular direction. It is thus an essential component for appropriate tissue development and function. Viral infections can lead to dysregulation of polarity. This is associated with a poor prognosis due to viral interference with core cell polarity regulatory scaffolding proteins that often feature PDZ (PSD-95, DLG, and ZO-1) domains including Scrib, Dlg, Pals1, PatJ, Par3 and Par6. PDZ domains are also promiscuous, binding to several different partners through their C-terminal region which contain PDZ-binding motifs (PBM). Numerous viruses encode viral effector proteins that target cell polarity regulators for their benefit and include papillomaviruses, flaviviruses and coronaviruses. A better understanding of the mechanisms of action utilised by viral effector proteins to subvert host cell polarity sigalling will provide avenues for future therapeutic intervention, while at the same time enhance our understanding of cell polarity regulation and its role tissue homeostasis.


Assuntos
Polaridade Celular , Transdução de Sinais
14.
Cureus ; 15(4): e37933, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37267051

RESUMO

INTRODUCTION: 90% of visually impaired people live in developing countries. There are various types of vision impairment, but the focus of the current study is retinitis pigmentosa (RP). Up to now, 150 mutations have been reported that are linked with RP. METHODOLOGY: Healthy and affected members from two Pakistani families (RP01 and RP02) segregating autosomal recessive RP were selected for DNA extraction. PCR was conducted, and the amplified PCR products were analyzed using Polyacrylamide Gel Electrophoresis (PAGE) and visualized in the Gel Doc system for linkage analysis. The Gene Hunter 2.1r5 tool in the Simple Linkage v5.052 beta software suite was used to conduct multipoint parametric linkage analysis on the two consanguineous families examined on the 6K Illumina array. Exons and intron-exon borders of all known arRP genes found in homozygous areas were sequenced in the matching probands using a 3130 automated sequencer and the Big Dye Terminator Cycle Sequencing Kit v3.1. The mutation study was carried out using the AlaMut 1.5 program. RESULTS: In both families, linkage analysis was performed using microsatellite marker DIS422 for gene crumbs homolog 1 (CRB1) and microsatellite marker D8S2332 for gene Retinitis Pigmentosa 1 (RP1). Multipoint linkage analysis identifies genomic regions that could potentially contain the genetic defect. In family RP01, only a single peak with a maximal multipoint LOD score of 3.00 was identified on chromosome 1, whereas in family RP02, multiple peaks with multipoint LOD scores of 1.80 were identified on chromosome 8. Analysis of the CRB1 gene revealed a homozygous substitution of glycine for valine (c.1152T>G; p.V243G), whereas the RP1 gene demonstrated that leucine was substituted for proline as a result of cytosine to thymine transfer (c.3419C>T; p. P1035L).  Conclusion: Homozygosity mapping is a powerful method for finding genetic abnormalities that are both precise and comprehensive for identifying harmful variations in consanguineous families. This method is invaluable for providing accurate clinical diagnostic and genetic advice in remote regions of Pakistan while also increasing knowledge about autosomal recessive diseases and the dangers of mixing.

15.
Biomedicines ; 11(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36830922

RESUMO

Mutations in the Crumbs homolog 1 (CRB1) gene lead to severe inherited retinal dystrophies (IRDs), accounting for nearly 80,000 cases worldwide. To date, there is no therapeutic option for patients suffering from CRB1-IRDs. Therefore, it is of great interest to evaluate gene editing strategies capable of correcting CRB1 mutations. A retrospective chart review was conducted on ten patients demonstrating one or two of the top ten most prevalent CRB1 mutations and receiving care at Columbia University Irving Medical Center, New York, NY, USA. Patient phenotypes were consistent with previously published data for individual CRB1 mutations. To identify the optimal gene editing strategy for these ten mutations, base and prime editing designs were evaluated. For base editing, we adopted the use of a near-PAMless Cas9 (SpRY Cas9), whereas for prime editing, we evaluated the canonical NGG and NGA prime editors. We demonstrate that for the correction of c.2843G>A, p.(Cys948Tyr), the most prevalent CRB1 mutation, base editing has the potential to generate harmful bystanders. Prime editing, however, avoids these bystanders, highlighting its future potential to halt CRB1-mediated disease progression. Additional studies investigating prime editing for CRB1-IRDs are needed, as well as a thorough analysis of prime editing's application, efficiency, and safety in the retina.

16.
J Clin Med ; 12(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36769743

RESUMO

AIM OF THE STUDY: To report optical coherence tomography angiography (OCTA) findings in patients affected by CRB1-associated retinal dystrophies. METHOD: Patients affected by a genetically confirmed CRB1-associated retinal dystrophy were prospectively enrolled in an observational study, along with age- and sex-matched healthy volunteers as control subjects. All study and control subjects received a complete ophthalmic examination and multimodal retinal imaging, including OCTA. RESULT: A total of 12 eyes from 6 patients were included in the study. The mean BCVA of patients was 0.42 ± 0.25 logMAR. Two patients showed large central atrophy, with corresponding definite hypo-autofluorescence on fundus autofluorescence (FAF). Another four patients disclosed different degrees of RPE mottling, with uneven FAF. On OCTA, the macular deep capillary plexus and choriocapillaris had a lower vessel density in eyes affected by CRB1-associated retinopathy when compared to healthy controls. On the other hand, vessel density at the peripapillary radial capillary plexus, superficial capillary plexus, and deep capillary plexus was significantly altered with respect to control eyes. Statistical analyses disclosed a negative correlation between the deep capillary plexus and both LogMAR best corrected visual acuity and central retinal thickness. CONCLUSION: Our study reveals that CRB1-associated retinal dystrophies are characterized by vascular alterations both in the macular and peripapillary region, as assessed by OCTA.

17.
Placenta ; 141: 26-34, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36443107

RESUMO

Maintenance of cell polarity and the structure of the apical surface of epithelial cells is a tightly regulated process necessary for tissue homeostasis. The syncytiotrophoblast of the human placenta is an entirely unique epithelial layer. It is a single giant multinucleate syncytial layer that comprises the maternal-facing surface of the human placenta. Like other epithelia, the syncytiotrophoblast is highly polarized with the apical surface dominated by microvillar membrane protrusions. Syncytiotrophoblast dysfunction is a key feature of pregnancy complications like preeclampsia. Preeclampsia is commonly associated with a heightened maternal immune response and pro-inflammatory environment. Importantly, reports have observed disruption of syncytiotrophoblast apical microvilli in placentas from preeclamptic pregnancies, indicating a loss of apical polarity, but little is known about how the syncytiotrophoblast regulates polarity. Here, we review the evolutionarily conserved mechanisms that regulate apical-basal polarization in epithelial cells, and the emerging evidence that PAR polarity complex components are critical regulators of syncytiotrophoblast homeostasis and apical membrane structure. Pro-inflammatory cytokines have been shown to disrupt the expression of polarity regulating proteins. We also discuss initial data showing that syncytiotrophoblast apical polarity can be disrupted by the addition of the pro-inflammatory cytokine tumor necrosis factor-α, revealing that physiologically relevant signals can modulate syncytiotrophoblast polarization. Since disrupted polarity is a feature of preeclampsia, further elucidation of the syncytiotrophoblast-specific polarity signaling network and testing whether the disruption of polarity-factor signaling networks may contribute to the development of preeclampsia is warranted.


Assuntos
Pré-Eclâmpsia , Trofoblastos , Feminino , Humanos , Gravidez , Polaridade Celular/fisiologia , Homeostase , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Trofoblastos/metabolismo
18.
BMC Med Genomics ; 15(1): 197, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115989

RESUMO

BACKGROUND: Leber's congenital amaurosis (LCA) is a severe hereditary retinopathy disease that is characterized by early and severe reduction of vision, nystagmus, and sluggish or absent pupillary responses. To date, the pathogenesis of LCA remains unclear, and the majority of cases are caused by autosomal recessive inheritance. In this study, we explored the variant in the Crumbs homologue 1 (CRB1) gene in a Chinese family with LCA. METHODS: We conducted comprehensive ocular examinations and collected 5 ml of blood samples from members of a Chinese family with LCA. A pathogenic variant was identified by capturing (the panel in NGS) and Sanger sequencing validation. RESULTS: A nonsense variant (c.1499C>G) in the 6th exon of CRB1 gene in a Chinese family with LCA was identified, which predicted a change in the protein p. S500*, may lead to loss of gene function. We summarized the 76 variants reported thus far in CRB1 that caused LCA8. CONCLUSIONS: This study reported a novel variant c.1499C>G (p. S500*) of the CRB1 gene occurred in a Chinese family with LCA, thus expanding the spectrum of CRB1 variants causing LCA.


Assuntos
Proteínas do Olho , Amaurose Congênita de Leber , Proteínas de Membrana , Proteínas do Tecido Nervoso , Povo Asiático/genética , China , Códon sem Sentido/genética , Proteínas do Olho/genética , Humanos , Amaurose Congênita de Leber/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Linhagem
19.
Antioxidants (Basel) ; 11(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892640

RESUMO

The most interesting activities associated with bread components such as phenolic compounds, fibre, tocols, or newly formed compounds in the Maillard reaction, are their reducing properties responsible for the formation of the overall reducing capacity of bread. Among the electrochemical methods, the cyclic voltammetry (CV) technique has been recently adapted for this purpose. In this study, the application of the CV assay for the determination of the total reducing capacity of flours, doughs, and breads as well as their crumbs and crusts, originated from wheat, spelt, and rye formulated on white flours (extraction rate of 70%) and dark flours (extraction rate of 100%) and baked at 200 °C for 35 min and at 240 °C for 30 min was addressed. The reducing capacity of hydrophilic extracts from white flours and breads as well as their crumbs and crusts showed double values when compared to that of lipophilic ones whilst hydrophilic and lipophilic extracts from dark breads and their parts revealed comparable levels. The dark wheat, spelt, and rye breads showed an approximately threefold higher total reducing capacity than white breads. Baking at higher temperature slightly increased the total reducing capacity of breads and the highest value was found for dark rye bread as well as its crust baked at 240 °C for 30 min. The cyclic voltammetry methodology showed to be especially suitable for screening the bread technology and allows for obtaining rapid electrochemical profiles of bread samples.

20.
Oncol Lett ; 23(6): 173, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35497937

RESUMO

Despite the recent progression of treatments, the 5-year survival rate of patients with oral squamous cell carcinoma (OSCC) is still poor. One of the most critical factors affecting prognosis is tumor metastasis. Developing novel molecular targeted therapies by analyzing the molecular pathway of OSCC metastasis is an urgent issue. The present study aimed to characterize the expression and function of crumbs3 (Crb3) in OSCC cell migration. Immunohistochemistry and immunoblotting revealed that Crb3 was expressed in tissues from patients with OSCC and OSCC cell lines. The motility of OSCC cell lines was decreased by knockdown of Crb3 without affecting proliferation. However, Crb3-knockout (KO) clones exhibited decreases in both cell migration and proliferation. The expression of epithelial-mesenchymal transition markers was not altered in Crb3-KO clones compared with parent cells. A xenograft mouse model of lung metastasis revealed that the metastatic potential of Crb3-KO clones was reduced. As seen with Crb3-KO clones, the motility of OSCC cells was decreased by treatment with inhibitors of RhoA activation. Serum-induced activation of RhoA in OSCC cells was evaluated by comparing the amount of GTP-bound RhoA using affinity matrices, revealing that RhoA activation was decreased in Crb3-KO clones. To the best of our knowledge, the present study was the first to demonstrate that Crb3 was expressed in squamous cell carcinoma tissues and promoted cell migration and proliferation, which was associated with RhoA activation in OSCC cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA