Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Reprod Sci ; 29(10): 2921-2926, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35471549

RESUMO

The aims of this study were to assess the association between polymorphisms within genes involved in vitamin B12 transport and nonsyndromic cleft lip with or without cleft palate (NSCL/P) and global DNA methylation in Chile. From 247 cases and 453 controls, we obtained variant genotypes for CBLIF, CUBN, AMN, ABCC1, CD320, and TCN2 from a single nucleotide polymorphisms array. Global DNA methylation in 95 controls was obtained through LINE-1 methylation. After multiple comparison corrections, only rs780807 in CUBN remains associated with NSCL/P at dominant model (OR 0.564, p-value = 0.0006, q-value = 0.0450). Carriers of protective allele showed lower levels of DNA methylation than non-carriers (p = 0.0259). Further studies are necessary in order to explain relations with the phenotype and DNA methylation due to the absence of functional evidence for rs780807 in CUBN.


Assuntos
Fenda Labial , Fissura Palatina , Estudos de Casos e Controles , Chile , Fenda Labial/genética , Fissura Palatina/genética , Predisposição Genética para Doença , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Vitamina B 12
2.
Front Physiol ; 12: 656460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177612

RESUMO

This study aimed to investigate the antiproteinuric and hyperkalemic mechanisms activated by dual renin-angiotensin system (RAS) blockade in renovascular hypertensive rats (2-kidney 1-clip model [2K-1C]). Six weeks after clipping the left renal artery or sham operation (2K), rats were treated with losartan, enalapril, or both drugs for two weeks. We found that 2K-1C rats displayed higher tail-cuff blood pressure (BP), increased non-clipped kidney Ang II concentration, and more pronounced urinary albumin excretion than 2K. BP was decreased by the treatment with either enalapril or losartan, and the combination of both drugs promoted an additional antihypertensive effect in 2K-1C rats. Renal Ang II content and albuminuria were reduced by either enalapril or losartan in monotherapy and restored to control levels by dual RAS blockade. Albuminuria in 2K-1C rats was accompanied by downregulation of the glomerular slit protein podocin, reduction of the endocytic receptors megalin and cubilin, and a marked decrease in the expression of the ClC-5 chloride channel, compared to 2K animals. Treatment with losartan and enalapril in monotherapy or combination increased the expression of podocin, cubilin, and ClC-5. However, only the combined therapy normalized podocin, cubilin, and ClC-5 protein abundance in the non-clipped kidney of 2K-1C rats. Renovascular hypertensive 2K-1C rats had a lower concentration of plasma potassium compared to 2K rats. Single RAS blockade normalized potassium plasma concentration, whereas 2K-1C rats treated with dual RAS blockade exhibited hyperkalemia. Hypokalemia in 2K-1C rats was accompanied by an increase in the cleaved activated forms of α-ENaC and γ-ENaC and the expression of ß-ENaC. Combined RAS blockade but not monotherapy significantly reduced the expression of these ENaC subunits in 2K-1C rats. Indeed, double RAS blockade reduced the abundance of cleaved-α-ENaC to levels lower than those of 2K rats. Collectively, these results demonstrate that the antiproteinuric effect of dual RAS blockade in 2K-1C rats is associated with the restored abundance of podocin and cubilin, and ClC-5. Moreover, double RAS blockade-induced hyperkalemia may be due, at least partially, to an exaggerated downregulation of cleaved α-ENaC in the non-clipped kidney of renovascular hypertensive rats.

3.
J Nephrol ; 34(4): 1307-1314, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32840752

RESUMO

Fabry disease is an X-linked disorder due to mutations in α-galactosidase A, resulting in the accumulation of enzyme substrates and cell malfunction. Kidney involvement is frequent, affecting all native kidney cell types. Podocyte damage results in proteinuria and chronic kidney disease. End-stage kidney disease is the rule in middle-aged males and some females with the classic phenotype. In podocytes and kidney proximal tubular cells, megalin is one of the molecules involved in enzyme replacement therapy (ERT) cellular absorption. After podocyte damage, podocin concentration is decreased and contributes to progressive proteinuria. We report in a male and a female patient the decreased expression of megalin, cubilin, ClC-5 and podocin compared to controls and chronic kidney disease (CKD) biopsies. Moreover, the decrease in ClC-5, a molecule engaged in endosomal-lysosomal acidification, could also affect ERT. These findings may partially explain some of the dysfunctions described in Fabry nephropathy and could highlight possible alterations in the pharmacokinetics of the delivered enzyme.


Assuntos
Doença de Fabry , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Canais de Cloreto , Regulação para Baixo , Terapia de Reposição de Enzimas , Doença de Fabry/diagnóstico , Doença de Fabry/tratamento farmacológico , Doença de Fabry/genética , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Proteínas de Membrana , Pessoa de Meia-Idade , Receptores de Superfície Celular
4.
Salud(i)ciencia (Impresa) ; 22(8): 743-748, dic.-mar. 2018. ilus.
Artigo em Espanhol | BINACIS, LILACS | ID: biblio-1026038

RESUMO

El síndrome urémico hemolítico (SUH) está definido por la tríada de anemia hemolítica microangiopática, trombocitopenia e insuficiencia renal aguda. En Argentina constituye la primera causa de insuficiencia renal aguda en pediatría. Aproximadamente, del 2% al 4% de los pacientes mueren durante la fase aguda de la enfermedad, y solo un tercio del 96% restante que sobrevive lo hace con secuelas renales, como la persistencia de la proteinuria. Un individuo adulto sano filtra alrededor de 5000 mg/día de proteínas, si bien la excreción en orina es escasa (150 mg/día). La escasa cantidad de proteínas excretadas indica la presencia de un mecanismo de reabsorción a nivel del túbulo proximal. Por lo tanto, la reabsorción tubular renal desempeña un papel muy importante ya que, ante una función glomerular normal, es el principal mecanismo encargado de evitar la depleción proteica corporal. Desde hace aproximadamente 30 años se sabe que la albúmina es reabsorbida en el túbulo proximal. La reabsorción proteica se produce por un mecanismo de endocitosis mediada por el receptor dependiente de clatrina y por endocitosis de fase líquida. Clásicamente se ha descrito que el mecanismo básico del daño renal en el SUH típico y en el atípico es una microangiopatía trombótica, pero de diferentes causas. Sin embargo, debe tenerse en cuenta que la fisiopatología de esta enfermedad es más compleja de lo que se creía, ya que la alteración tubular que surge va a evolucionar en fallas en el mecanismo de endocitosis de proteínas que se suman a las eliminadas por las alteraciones a nivel de la barrera de filtración glomerular.


Hemolytic uremic syndrome (HUS) is defined by the triad of hemolytic anemia microangiopathic, thrombocytopenia and acute renal failure. In Argentina it constitutes the first cause of acute renal failure in Pediatrics. Approximately 2-4% of patients die during the acute phase of the disease, and only a third of the remaining 96% survive with renal sequelae, such as the persistence of proteinuria. A healthy adult filters around 5000 mg/day of proteins, with an excretion in urine of 150 mg/day. The little quantity of proteins excreted indicates the presence of a reabsorption mechanism at the level of the proximal tubule. Therefore, the tubular reabsorption plays a very important role since it is the main mechanism responsible for preventing the depletion of protein. For approximately 30 years, it has been known that albumin is reabsorbed in the proximal tubule. Protein reabsorption occurs by a clathrin-dependent receptor mediated endocytosis mechanism and by fluid phase endocytosis. The basic mechanism of renal damage in typical and atypical HUS has been described as a thrombotic microangiopathy, but of different causes. However, the pathophysiology of this disease is more complex than what was believed since the emerging tubular alteration will ewvolve into failures of the protein endocytosis mechanism that are added to the alterations at the level of the glomerular filtration barrier.


Assuntos
Humanos , Proteinúria , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Endocitose , Podócitos , Insuficiência Renal , Síndrome Hemolítico-Urêmica
5.
Physiol Rep ; 5(13)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28676554

RESUMO

Diabetic nephropathy (DN) occurs in around 40% of those with diabetes. Proteinuria is the main characteristic of DN and develops as a result of increased permeability of the glomerulus capillary wall and/or decreased proximal tubule endocytosis. The goal of this work was to evaluate renal function and the expression of megalin, cubilin, CFTR (cystic fibrosis transmembrane conductance regulator), and ClC-5 in the proximal tubule and renal cortex of rats with type 1 diabetes. Male Wistar rats were randomly assigned to control (CTRL) and diabetic (DM) groups for 4 weeks. Renal function was assessed in 24-h urine sample by calculating clearance and fractional excretion of solutes. The RNA and protein contents of ClC-5, CFTR, megalin, and cubilin were determined in the renal proximal tubule and cortex using real-time polymerase chain reaction and western blotting techniques, respectively. The results showed higher creatinine clearance and higher urinary excretion of proteins, albumin, and transferrin in the DM group than in the CTRL group. Furthermore, the renal cortex and proximal tubule of diabetic animals showed downregulation of megalin, cubilin, ClC-5, and CFTR, critical components of the endocytic apparatus. These data suggest dysfunction in proximal tubule low-molecular-weight endocytosis and protein glomerulus filtration in the kidney of diabetic rats.


Assuntos
Albuminúria/metabolismo , Nefropatias Diabéticas/metabolismo , Túbulos Renais Proximais/metabolismo , Albuminúria/fisiopatologia , Albuminúria/urina , Animais , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Creatinina/urina , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Nefropatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/urina , Taxa de Filtração Glomerular , Túbulos Renais Proximais/fisiopatologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transferrinas/urina
6.
Am J Physiol Renal Physiol ; 305(2): F216-26, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23637208

RESUMO

Cumulative epidemiological evidence indicates that the presence of microalbuminuria predicts a higher frequency of cardiovascular events, peripheral disease, and mortality in essential hypertension. Microalbuminuria may arise from increased glomerular permeability and/or reduced proximal tubular reabsorption of albumin by receptor-mediated endocytosis. This study aimed to evaluate the temporal pattern of urinary protein excretion and to test the hypothesis that progression of microalbuminuria is associated with decreased protein expression of critical components of the endocytic apparatus in the renal proximal tubule of spontaneously hypertensive rats (SHR). We found that urinary albumin excretion increased progressively with blood pressure in SHR from 6 to 21 wk of age. In addition, SDS-PAGE analysis of urinary proteins showed that microalbuminuric SHR virtually excreted proteins of the size of albumin or smaller (<70 kDa), typical of tubular proteinuria. Moreover, the protein abundance of the endocytic receptors megalin and cubilin as well as of the chloride channel ClC-5 progressively decreased in the renal cortex of SHR from 6 to 21 wk of age. Expression of the vacuolar H⁺-ATPase B2 subunit was also reduced in the renal cortex of 21-wk-old compared with both 6- and 14-wk-old SHR. Collectively, our study suggests that enhanced urinary protein excretion, especially of albumin, may be due, at least in part, to lower expression of key components of the apical endocytic apparatus in the renal proximal tubule. Finally, one may speculate that dysfunction of the apical endocytic pathway in the renal proximal tubule may contribute to the development of microalbuminuria in essential hypertension.


Assuntos
Albuminúria/metabolismo , Endocitose , Hipertensão/metabolismo , Túbulos Renais Proximais/metabolismo , Albuminúria/patologia , Albuminúria/fisiopatologia , Animais , Pressão Sanguínea , Progressão da Doença , Hipertensão/patologia , Hipertensão/fisiopatologia , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/fisiopatologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Receptores de Superfície Celular/metabolismo , Transferrina/metabolismo
7.
Biol. Res ; 44(1): 89-105, 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-591869

RESUMO

Since the discovery of the low-density lipoprotein receptor (LDLR) and its association with familial hypercholesterolemia in the early 1980s, a family of structurally related proteins has been discovered that has apolipoprotein E as a common ligand, and the broad functions of its members have been described. LRP2, or megalin, is a member of the LDLR family and was initially called gp330. Megalin is an endocytic receptor expressed on the apical surface of several epithelial cells that internalizes a variety of ligands including nutrients, hormones and their carrier proteins, signaling molecules, morphogens, and extracellular matrix proteins. Once internalized, these ligands are directed to the lysosomal degradation pathway or transported by transcytosis from one side of the cell to the opposite membrane. The availability of megalin at the cell surface is controlled by several regulatory mechanisms, including the phosphorylation of its cytoplasmic domain by GSK3, the proteolysis of the extracellular domain at the cell surface (shedding), the subsequent intramembrane proteolysis of the transmembrane domain by the gamma-secretase complex, and exosome secretion. Based on the important roles of its ligands and its tissue expression pattern, megalin has been recognized as an important component of many pathological conditions, including diabetic nephropathy, Lowe syndrome, Dent disease, Alzheimer's disease (AD) and gallstone disease. In addition, the expression of megalin and some of its ligands in the central and peripheral nervous system suggests a role for this receptor in neural regeneration processes. Despite its obvious importance, the regulation of megalin expression is poorly understood. In this review, we describe the functions of megalin and its association with certain pathological conditions as well as the current understanding of the mechanisms that underlie the control of megalin expression.


Assuntos
Humanos , Doença de Alzheimer/metabolismo , /fisiologia , Doença de Alzheimer/fisiopatologia , Transporte Biológico/fisiologia , Colesterol/fisiologia , Cálculos Biliares/metabolismo , Cálculos Biliares/fisiopatologia , Regulação da Expressão Gênica/fisiologia , Homeostase/fisiologia , Nefropatias/metabolismo , Nefropatias/fisiopatologia , /genética , /metabolismo , Distribuição Tecidual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA