Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 703
Filtrar
1.
Plant Dis ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38932448

RESUMO

Tomato interveinal chlorosis virus (ToICV; Begomovirus solanumintervenae, genus Begomovirus, family Geminiviridae) has been described infecting tomato (Solanum lycopersicum) and Macroptilium lathyroides in Northeastern (NE) Brazil for more than a decade (Albuquerque et al., 2012; Silva et al., 2012). During a survey in 2020, plants of the leguminous weed Rhynchosia minima exhibiting virus-like symptoms such as mosaic and interveinal chlorosis were observed in the state of Alagoas, NE Brazil. Symptomatic leaf samples of R. minima were randomly collected (n=15; supplementary figure 1). Total DNA from each sample was used as a template for PCR amplification of partial begomoviral DNA-A sequences using the degenerate primer pair PAL1v1978 and PAR1c496, universal for geminiviruses (Rojas et al., 1993). Amplicons of ~1.2 kbp were observed from 12 samples, although this should not be considered as incidence since only symptomatic plants were collected. To identify the begomovirus associated with R. minima, viral genomes were amplified from PCR-positive samples using rolling circle amplification (RCA) (Inoue-Nagata et al., 2004). The RCA products were digested with HindIII, cloned into the pBluescript II KS+ plasmid vector and bidirectionally Sanger-sequenced (Macrogen Inc., Seoul). BLASTn searches indicated that the clones (n=4) reported here corresponded to a begomovirus DNA-A component, and pairwise comparisons showed that they shared the highest identity with ToICV, at 92.4-94.7% nucleotide sequence identity. Based on the species demarcation criteria of ≥91% nucleotide identity for the genus Begomovirus (Brown et al., 2015), the begomoviruses obtained from R. minima are new isolates of ToICV. The new DNA-A sequences of 2,619-2,623 nt in length were deposited in GenBank under accession numbers PP639092 to PP639095. Multiple nucleotide sequence alignments were prepared using the MUSCLE algorithm implemented in MEGA v.11 (Kumar et al., 2018), and a maximum likelihood (ML) tree was reconstructed in RaxML-NG (Kozlov et al., 2019), assuming a general time reversible (GTR) nucleotide substitution model with a gamma (G) model of rate heterogeneity and 1,000 bootstrap replicates. The DNA-A-based tree showed that the ToICV sequences clustered into a monophyletic group, additionally supporting these isolates as members of the species Begomovirus solanumintervenae. At least two independent interspecies recombination events were predicted among the ToICV isolates, with breakpoints located in the Rep-encoding region and ToICV (GenBank Accession JF803253), tomato mottle leaf curl virus (JF803248) and soybean blistering mosaic virus (MN486865) detected as putative parents. To the best of our knowledge, this is the first report of ToICV infecting R. minima worldwide, expanding the host range of this begomovirus. Non-cultivated plants such as R. minima play a crucial role as reservoirs and sources of inoculum for begomoviruses (Paz-Carrasco et al., 2014), reinforcing their relevance to socioeconomically important crops.

2.
Huan Jing Ke Xue ; 45(6): 3595-3604, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897779

RESUMO

This study aimed to investigate the impact of different nitrogen forms on soil physicochemical properties and microbial community structure in perennial alpine cultivated grasslands, in order to provide scientific basis for developing nitrogen addition strategies for perennial alpine cultivated grasslands. In June 2022, a 4-year-old Qinghai grassland mixed with Poa pratensis Qinghai and Festuca sinensis Qinghai was established at the Bakatai Farm in Gonghe County, Hainan Tibetan Autonomous Prefecture, Qinghai Province. The study was conducted without fertilization as a control (CK), and three different forms of nitrogen treatments were set up, namely, U:urea (amide nitrogen), A:ammonium sulfate (ammonium nitrogen), and N:calcium nitrate (nitrate nitrogen); the nitrogen application rate for each treatment was 67.5 kg·(hm2·a)-1, and the composition and diversity of soil nutrients and microbial communities under different treatments were analyzed. The results showed that the input of exogenous ammonium nitrogen significantly increased NH4+-N content, AP content, and EC; amide nitrogen input significantly increased SOC content and TN content; and nitrate nitrogen input significantly increased NO3--N content, AN content, and TC content. Exogenous nitrogen input changed the structure of soil bacterial and fungal communities, as well as the relative abundance of dominant phyla and genera, but it did not significantly affect the alpha diversity of bacterial and fungal communities. Principal coordinate analysis (PCoA) showed that different forms of nitrogen addition had a significant impact on the Beta diversity of bacterial communities, whereas the impact on fungal communities was not significant. Redundancy analysis (RDA) indicated that nitrogen addition mainly changed the composition and structure of microbial communities through soil ammonium nitrogen. Overall, ammonium nitrogen fertilizer should be given priority in the soil remediation process of perennial cultivated grasslands in the Qinghai Tibet Plateau.


Assuntos
Fertilizantes , Pradaria , Microbiota , Nitrogênio , Microbiologia do Solo , Solo , Solo/química , China , Poaceae/crescimento & desenvolvimento
3.
Environ Res ; 259: 119458, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38925466

RESUMO

Methane is a short-lived greenhouse gas but has a far greater warming effect than carbon dioxide. At the same time, the livestock sector serves as a large contributor to global emissions of anthropogenic methane. Herein, this work aimed to use cultivated seaweed supplementation to reduce methane emissions and investigate the potential influencing mechanism. To evaluate the feasibility, two cultivated seaweeds, Laminaria japonica Aresch, and Porphyra tenera, along with the enzymatic hydrolysates derived from L. japonica, underwent in vitro trials, and they were both added into corn silage feed (CSF) with different concentrations (1%, 5%, and 10% of CSF) for methane reduction evaluation. The results indicated that >75% and 50% reductions in methane production were observed for the seaweeds and seaweed enzymatic hydrolysates in 9- and 30-day, respectively. Combined high-throughput sequencing and multivariate analysis revealed that supplementation with seaweed and seaweed enzymatic hydrolysates had a notable impact on the prokaryotic community structure. Mantel tests further revealed that significant correlations between the prokaryotic community and methane accumulation (P < 0.05), implying the prokaryotic community plays a role in reducing methane emissions within the rumen. Correspondingly, the networks within the prokaryotic community unveiled the crucial role of propionate/butyrate-producing bacteria in regulating methane emissions through microbial interactions. The predicted function of the prokaryotic community exhibited a significant reduction in the presence of the narB gene in seaweed-supplemented treatments. This reduction may facilitate an increased rate of electron flow toward the nitrate reduction pathway while decreasing the conversion of H2 to methane. These results indicated the supplementation of cultivated seaweeds and the enzymatic hydrolysates has the potential to reshape the community structure of rumen microbial communities, and this alteration appears to be a key factor contributing to their methane production-reduction capability.

4.
BMC Genomics ; 25(1): 636, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926665

RESUMO

BACKGROUND: Jasmonate ZIM-domain (JAZ) proteins, which act as negative regulators in the jasmonic acid (JA) signalling pathway, have significant implications for plant development and response to abiotic stress. RESULTS: Through a comprehensive genome-wide analysis, a total of 20 members of the JAZ gene family specific to alfalfa were identified in its genome. Phylogenetic analysis divided these 20 MsJAZ genes into five subgroups. Gene structure analysis, protein motif analysis, and 3D protein structure analysis revealed that alfalfa JAZ genes in the same evolutionary branch share similar exon‒intron, motif, and 3D structure compositions. Eight segmental duplication events were identified among these 20 MsJAZ genes through collinearity analysis. Among the 32 chromosomes of the autotetraploid cultivated alfalfa, there were 20 MsJAZ genes distributed on 17 chromosomes. Extensive stress-related cis-acting elements were detected in the upstream sequences of MsJAZ genes, suggesting that their response to stress has an underlying function. Furthermore, the expression levels of MsJAZ genes were examined across various tissues and under the influence of salt stress conditions, revealing tissue-specific expression and regulation by salt stress. Through RT‒qPCR experiments, it was discovered that the relative expression levels of these six MsJAZ genes increased under salt stress. CONCLUSIONS: In summary, our study represents the first comprehensive identification and analysis of the JAZ gene family in alfalfa. These results provide important information for exploring the mechanism of JAZ genes in alfalfa salt tolerance and identifying candidate genes for improving the salt tolerance of autotetraploid cultivated alfalfa via genetic engineering in the future.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago sativa , Família Multigênica , Filogenia , Proteínas de Plantas , Tetraploidia , Medicago sativa/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Ciclopentanos/metabolismo , Genoma de Planta , Oxilipinas/farmacologia , Perfilação da Expressão Gênica
5.
Plants (Basel) ; 13(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891374

RESUMO

The Republic of Croatia is spread in geographical and climatic conditions that support a great diversity of habitats and associated plant taxa, many of which can be used for food or medicine. However, urbanization, loss of natural habitats, as well as changes in people's dependence on the natural resources from the surrounding environment may lead to the loss of valuable knowledge about the use of plants and mushrooms. With the aim of studying and preserving this knowledge in the continental north-western part of Croatia, an ethnobotanical survey was undertaken at the two study areas-Valpovo and Durdevac, which included a total of 17 settlements. A total of 103 informants, 65% female and 35% male, aged between 22 and 83 years, participated in an interview using pre-planned questionnaires. The informants reported 131 plants belonging to 55 families and 17 mushroom taxa. The largest number of plants belonged to the families of Rosaceae, Lamiaceae, Asteraceae, and Apiaceae. In both areas, the informants cultivate and also gather wild plants, but these practices are better preserved in the area of Durdevac where 109 taxa from 47 families were recorded. In addition to cultivated and gathered plants, informants from the Valpovo area also reported the use of purchased plants. Plants and mushrooms are mostly used as food (21 plant taxa and 17 mushrooms), but plants also serve as medicine (68 taxa), as both food and medicine (35 taxa), feed for cattle (11 taxa), repellent (four taxa), and/or space freshener (two taxa). The most frequently used wild plants are Chamomilla recutita, Mentha x piperita, and Urtica dioica, while Boletus edulis, Agaricus campestris, and Macrolepiota procera are the most often used mushrooms. The results indicate that the local people in the studied north-western part of Croatia still nurture the practice of cultivating and gathering plants and that herbal remedies are considerably important among the informants. The study should be further extended to broaden and preserve valuable ethnobotanical knowledge and encourage the protection of culturally important plants of the studied area.

6.
BMC Plant Biol ; 24(1): 504, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38840239

RESUMO

The domestication process in grapevines has facilitated the fixation of desired traits. Nowadays, vegetative propagation through cuttings enables easier preservation of these genotypes compared to sexual reproduction. Nonetheless, even with vegetative propagation, various phenotypes are often present within the same vineyard due to the accumulation of somatic mutations. These mutations are not the sole factors influencing phenotype. Alongside somatic variations, epigenetic variation has been proposed as a pivotal player in regulating phenotypic variability acquired during domestication. The emergence of these epialleles might have significantly influenced grapevine domestication over time. This study aims to investigate the impact of domestication on methylation patterns in cultivated grapevines. Reduced-representation bisulfite sequencing was conducted on 18 cultivated and wild accessions. Results revealed that cultivated grapevines exhibited higher methylation levels than their wild counterparts. Differential Methylation Analysis between wild and cultivated grapevines identified a total of 9955 differentially methylated cytosines, of which 78% were hypermethylated in cultivated grapevines. Functional analysis shows that core methylated genes (consistently methylated in both wild and cultivated accessions) are associated with stress response and terpenoid/isoprenoid metabolic processes. Meanwhile, genes with differential methylation are linked to protein targeting to the peroxisome, ethylene regulation, histone modifications, and defense response. Collectively, our results highlight the significant roles that epialleles may have played throughout the domestication history of grapevines.


Assuntos
Produtos Agrícolas , Metilação de DNA , Domesticação , Epigênese Genética , Vitis , Vitis/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Fenótipo
7.
J Environ Manage ; 365: 121531, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909582

RESUMO

Exploring the ecological utility of cultivated land's carbon metabolism offers policy insights for ensuring its healthy operation and promote the dual carbon goals (carbon peak and carbon neutrality). We employed ecological network analysis (ENA) and kernel density estimation to conduct an empirical study, taking Hubei Province from 2000 to 2020 as an example. The results revealed apparent negative effects of carbon metabolic flow on regional carbon balance. Specifically, cultivated land conversion into transportation and industrial land contributed significantly to the harmful carbon flow. Ecological relationships showed fierce competition for carbon storage, leading to overall adverse ecological effects. The ecological utility indicated detrimental impacts on the orderly functioning of land-use carbon metabolism. Cultivated land's carbon metabolism will be essential in achieving land-use carbon neutrality. Therefore, territorial spatial low-carbon optimization should be implemented to realize its green and sustainable development.


Assuntos
Carbono , China , Carbono/metabolismo , Ecossistema , Ecologia , Conservação dos Recursos Naturais , Agricultura
8.
New Phytol ; 243(4): 1554-1570, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38853449

RESUMO

Modern cultivated rice (Oryza sativa) typically experiences limited growth benefits from arbuscular mycorrhizal (AM) symbiosis. This could be due to the long-term domestication of rice under favorable phosphorus conditions. However, there is limited understanding of whether and how the rice domestication has modified AM properties. This study compared AM properties between a collection of wild (Oryza rufipogon) and domesticated rice genotypes and investigated the mechanisms underlying their differences by analyzing physiological, genomic, transcriptomic, and metabolomic traits critical for AM symbiosis. The results revealed significantly lower mycorrhizal growth responses and colonization intensity in domesticated rice compared to wild rice, and this change of AM properties may be associated with the domestication modifications of plant phosphorus utilization efficiency at physiological and genomic levels. Domestication also resulted in a decrease in the activity of the mycorrhizal phosphorus acquisition pathway, which may be attributed to reduced mycorrhizal compatibility of rice roots by enhancing defense responses like root lignification and reducing carbon supply to AM fungi. In conclusion, rice domestication may have changed its AM properties by modifying P nutrition-related traits and reducing symbiotic compatibility. This study offers new insights for improving AM properties in future rice breeding programs to enhance sustainable agricultural production.


Assuntos
Domesticação , Micorrizas , Oryza , Fósforo , Simbiose , Micorrizas/fisiologia , Oryza/microbiologia , Oryza/genética , Oryza/fisiologia , Fósforo/metabolismo , Raízes de Plantas/microbiologia , Regulação da Expressão Gênica de Plantas , Característica Quantitativa Herdável , Genótipo
9.
ISME J ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896025

RESUMO

The SeqCode is a new code of prokaryotic nomenclature that was developed to validate taxon names using genome sequences as type material. The present article provides an independent view about the SeqCode, highlighting its history, current status, basic features, pros and cons, and use to date. We also discuss important topics to consider for validation of novel prokaryotic taxon names using genomes as type material. Owing to significant advances in metagenomics and cultivation methods, hundreds of novel prokaryotic species are expected to be discovered in the coming years. This manuscript aims to stimulate and enrich the debate around the use of the SeqCode in the upcoming golden age of prokaryotic taxon discovery and systematics.

10.
Fungal Biol ; 128(4): 1859-1867, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876538

RESUMO

Volatile organic compounds (VOCs) produced by yeasts can positively affect crops, acting as antifungals or biostimulants. In this study, Aureobasidium pullulans and Metschnikowia pulcherrima were evaluated as potential antagonists of Trichoderma spp., common fungal pathogen in mushroom cultivation. To assess the biocontrol ability and biostimulant properties of the selected yeast species, in vitro co-culture and VOCs exposure assays were conducted. In both assays, VOCs produced by Aureobasidium spp. showed the stronger antifungal activity with a growth inhibition up to 30 %. This result was further confirmed by the higher volatilome alcohol content revealed by solid phase microextraction-gas chromatography mass spectrometry (SPME/GC-MS). Overall, Aureobasidium strains can be potentially used as biocontrol agent in Pleorotus ostreatus and Cyclocybe cylindracea mycelial growth, without affecting their development as demonstrated by VOCs exposure assay and Fourier-transform infrared spectroscopy (FT-IR). Conversely, M. pulcherrima was characterized by a lower or absent antifungal properties and by a volatilome composition rich in isobutyl acetate, an ester often recognized as plant growth promoter. As confirmed by FT-IR, Lentinula mycelia exposed to M. pulcherrima VOCs showed a higher content of proteins and lipids, suggesting an improvement of some biochemical properties. Our study emphasizes that VOCs produced by specific yeast strains are potentially powerful alternative to synthetic fungicide in the vegetative growth of mushroom-forming fungi and also able to modify their biochemical composition.


Assuntos
Agaricales , Cromatografia Gasosa-Espectrometria de Massas , Micélio , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Micélio/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micélio/química , Agaricales/química , Agaricales/crescimento & desenvolvimento , Agaricales/efeitos dos fármacos , Agaricales/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Agentes de Controle Biológico/farmacologia , Agentes de Controle Biológico/química , Metschnikowia/crescimento & desenvolvimento , Metschnikowia/efeitos dos fármacos , Metschnikowia/metabolismo , Antibiose , Aureobasidium , Trichoderma/crescimento & desenvolvimento , Trichoderma/química , Trichoderma/metabolismo , Microextração em Fase Sólida
11.
J Agric Food Chem ; 72(25): 14448-14465, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38864675

RESUMO

Alfalfa (Medicago sativa subsp. sativa), the "queen of forage," is the most important perennial legume, with high productivity and an excellent nutritional profile. Medicago sativa subsp. falcata is a subspecies of the alfalfa complex and exhibits better drought tolerance. However, drought stress significantly hampers their development and yield. The molecular mechanisms underlying the aboveground and underground tissues of sativa and falcata responding to drought stress remain obscure. Here, we performed a comprehensive comparative analysis of the physiological and transcriptomic responses of sativa and falcata under drought stress. The results showed that photosynthesis was inhibited, and antioxidant enzymes were activated under drought stress. MsC3H29, a CCCH-type zinc finger protein, was identified as a hub gene through weighted gene coexpression network analysis (WGCNA) and was significantly induced by drought in underground tissue. The MsC3H29 protein was localized in the nucleus. Overexpression (OE) of MsC3H29 can increase the primary root length and fresh weight of transgenic alfalfa hairy roots, while RNA interference (RNAi) decreases them under drought stress. The 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) staining revealed that MsC3H29 promoted drought tolerance of alfalfa hairy roots through decreasing ROS accumulation. The targeted metabolome analysis showed that the overexpression of MsC3H29 resulted in higher levels of accumulation for flavonoid monomers, including vicenin, daidzein, apigenin, isorhamnetin, quercetin, and tricin, in transgenic alfalfa hairy roots before and after drought stress, while RNAi led to a reduction. Our study provided a key candidate gene for molecular breeding to improve drought resistance in alfalfa.


Assuntos
Secas , Flavonoides , Regulação da Expressão Gênica de Plantas , Medicago sativa , Proteínas de Plantas , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago sativa/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flavonoides/metabolismo , Resistência à Seca , Multiômica
12.
Front Microbiol ; 15: 1377782, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873161

RESUMO

Fragaria nilgerrensis is a wild strawberry species widely distributed in southwest China and has strong ecological adaptability. Akihime (F. × ananassa Duch. cv. Akihime) is one of the main cultivated strawberry varieties in China and is prone to infection with a variety of diseases. In this study, high-throughput sequencing was used to analyze and compare the soil and root microbiomes of F. nilgerrensis and Akihime. Results indicate that the wild species F. nilgerrensis showed higher microbial diversity in nonrhizosphere soil and rhizosphere soil and possessed a more complex microbial network structure compared with the cultivated variety Akihime. Genera such as Bradyrhizobium and Anaeromyxobacter, which are associated with nitrogen fixation and ammonification, and Conexibacter, which is associated with ecological toxicity resistance, exhibited higher relative abundances in the rhizosphere and nonrhizosphere soil samples of F. nilgerrensis compared with those of Akihime. Meanwhile, the ammonia-oxidizing archaea Candidatus Nitrososphaera and Candidatus Nitrocosmicus showed the opposite tendencies. We also found that the relative abundances of potential pathogenic genera and biocontrol bacteria in the Akihime samples were higher than those in the F. nilgerrensis samples. The relative abundances of Blastococcus, Nocardioides, Solirubrobacter, and Gemmatimonas, which are related to pesticide degradation, and genus Variovorax, which is associated with root growth regulation, were also significantly higher in the Akihime samples than in the F. nilgerrensis samples. Moreover, the root endophytic microbiomes of both strawberry species, especially the wild F. nilgerrensis, were mainly composed of potential biocontrol and beneficial bacteria, making them important sources for the isolation of these bacteria. This study is the first to compare the differences in nonrhizosphere and rhizosphere soils and root endogenous microorganisms between wild and cultivated strawberries. The findings have great value for the research of microbiomes, disease control, and germplasm innovation of strawberry.

13.
Cell ; 187(12): 2969-2989.e24, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38776919

RESUMO

The gut fungal community represents an essential element of human health, yet its functional and metabolic potential remains insufficiently elucidated, largely due to the limited availability of reference genomes. To address this gap, we presented the cultivated gut fungi (CGF) catalog, encompassing 760 fungal genomes derived from the feces of healthy individuals. This catalog comprises 206 species spanning 48 families, including 69 species previously unidentified. We explored the functional and metabolic attributes of the CGF species and utilized this catalog to construct a phylogenetic representation of the gut mycobiome by analyzing over 11,000 fecal metagenomes from Chinese and non-Chinese populations. Moreover, we identified significant common disease-related variations in gut mycobiome composition and corroborated the associations between fungal signatures and inflammatory bowel disease (IBD) through animal experimentation. These resources and findings substantially enrich our understanding of the biological diversity and disease relevance of the human gut mycobiome.


Assuntos
Fungos , Microbioma Gastrointestinal , Micobioma , Animais , Humanos , Masculino , Camundongos , Fezes/microbiologia , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Genoma Fúngico/genética , Genômica , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/genética , Metagenoma , Filogenia , Feminino , Adulto , Pessoa de Meia-Idade
14.
Biomater Adv ; 162: 213897, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38810509

RESUMO

The emergence of cultivated meat provides a sustainable and ethical alternative to traditional animal agriculture, highlighting its increasing importance in the food industry. Biomaterial scaffolds are critical components in cultivated meat production for enabling cell adhesion, proliferation, differentiation, and orientation. While there's extensive research on scaffolding biomaterials, applying them to cultivated meat production poses distinct challenges, with each material offering its own set of advantages and disadvantages. This review summarizes the most recent scaffolding biomaterials used in the last five years for cell-cultured meat, detailing their respective advantages and disadvantages. We suggest future research directions and provide recommendations for scaffolds that support scalable, cost-effective, and safe high-quality meat production. Additionally, we highlight commercial challenges cultivated meat faces, encompassing bioreactor design, cell culture mediums, and regulatory and food safety issues. In summary, this review provides a comprehensive guide and valuable insights for researchers and companies in the field of cultivated meat production.


Assuntos
Materiais Biocompatíveis , Carne , Alicerces Teciduais , Animais , Humanos , Engenharia Tecidual/métodos , Reatores Biológicos , Carne in vitro
15.
Heliyon ; 10(9): e30453, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38720726

RESUMO

Climate change results in continuous warming of the planet, threatening sustainable crop production around the world. Amaranth is an abiotic stress-tolerant, climate-resilient, C4 leafy orphan vegetable that has grown rapidly with great divergence and potential usage. The C4 photosynthesis allows amaranth to be grown as a sustainable future food crop across the world. Most amaranth species grow as weeds in many parts of the world, however, a few amaranth species can be also found in cultivated form. Weed species can be used as a folk medicine to relieve pain or reduce fever thanks to their antipyretic and analgesic properties. In this study, nutritional value, bioactive pigments, bioactive compounds content, and radical scavenging potential (RSP) of four weedy and cultivated (WC) amaranth species were evaluated. The highest dry matter, carbohydrate content, ash, content of iron, copper, sodium, boron, molybdenum, zinc, ß-carotene and carotenoids, vitamin C, total polyphenols (TP), RSP (DPPH), and RSP (ABTS+) was determined in Amaranthus viridis (AV). On the other hand, A. spinosus (AS) was found to have the highest content of protein, fat, dietary fiber, manganese, molybdenum, and total flavonoids (TF). In A. tricolor (AT) species the highest total chlorophyll, chlorophyll a and b, betaxanthin, betacyanin, and betalain content was determined. A. lividus (AL) was evaluated as the highest source of energy. AV and AT accessions are underutilized but promising vegetables due to their bioactive phytochemicals and antioxidants.

16.
Crit Rev Food Sci Nutr ; : 1-25, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733287

RESUMO

Cultivated crustacean meat (CCM) is a means to create highly valued shrimp, lobster, and crab products directly from stem cells, thus removing the need to farm or fish live animals. Conventional crustacean enterprises face increasing pressures in managing overfishing, pollution, and the warming climate, so CCM may provide a way to ensure sufficient supply as global demand for these products grows. To support the development of CCM, this review briefly details crustacean cell culture work to date, before addressing what is presently known about crustacean muscle development, particularly the molecular mechanisms involved, and how this might relate to recent work on cultivated meat production in vertebrate species. Recognizing the current lack of cell lines available to establish CCM cultures, we also consider primary stem cell sources that can be obtained non-lethally including tissues from limbs which are readily released and regrown, and putative stem cells in circulating hemolymph. Molecular approaches to inducing myogenic differentiation and immortalization of putative stem cells are also reviewed. Finally, we assess the current status of tools available to CCM researchers, particularly antibodies, and propose avenues to address existing shortfalls in order to see the field progress.

18.
Plants (Basel) ; 13(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38794440

RESUMO

There is no practical and at the same time objective colour system available for describing cultivated roses (Rosa L. cultivars). For this reason, a new colour classification system was developed which is colorimetrically balanced and appropriate for algorithmic colour identification; however, it is also suitable for field-work. The system is based on the following colorimetric criteria: (A) Each colour category is characterised by a measured petal colour in the CIE L*a*b* standard as the centroid of the category. (B) The CIEDE2000 colour differences between the adjacent centroid colours are limited (5 < ΔE00 < 7). (C) The maximal colour difference between the measured colours in a category is also limited (to 12.12 ΔE00). (D) A measured petal colour can only be classified into an existing category if the colour difference from the centroid colour of the given category is less than 5.81 ΔE00, otherwise a new category is required. (E) A category is only considered non-redundant if it has at least one measured petal colour that cannot be classified elsewhere. (F) The classification of the petal colours is based on the least colour difference from the centroid colours. As a result, 133 colour categories were required for describing all the 8139 petal colours of the rose cultivars of the Budatétény Rose Garden (Hungary). Each colour category has the following parameters: standardised colour name, the colorimetric parameters of the centroid, grouping, RHS colour chart coding, and reference cultivars, which are described in the article.

19.
Antioxidants (Basel) ; 13(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38790717

RESUMO

The current research was the first to prove the existence of fluctuations in the metabolite constituents and antioxidant properties in different organs (leaves, stems, and roots) of the mountain-cultivated ginseng (MCG) plant during a two-month maturation period. Four metabolites, including fatty acids, amino acids, ginsenosides, and phenolic phytochemicals, exhibited considerable differences in organs and maturation times with the following order: leaves > stems > roots. The predominant metabolite contents were found in leaves, with fatty acid (1057.9 mg/100 g) on 31 May, amino acid (1989.2 mg/100 g) on 13 July, ginsenosides (88.7 mg/g) on 31 May, and phenolic phytochemical (638.3 µg/g) on 31 May. Interestingly, ginsenoside content in leaves were highest, with 84.8 → 88.7 → 82.2 → 78.3 mg/g. Specifically, ginsenosides Re, Rd, and F2 showed abundant content ranging from 19.1 to 16.9 mg/g, 8.5 to 14.8 mg/g, and 9.5 to 13.1 mg/g, respectively. Phenolic phytochemicals exhibited remarkable differences in organs compared to maturation periods, with the highest total phenolic content and total flavonoid content recorded at 9.48 GAE and 1.30 RE mg/g in leaves on 31 May. The antioxidant capacities on radical, FRAP, and DNA protection differed significantly, with leaves on 31 May exhibiting the highest values: 88.4% (DPPH), 89.5% (ABTS), 0.84 OD593 nm (FRAP) at 500 µg/mL, and 100% DNA protection at 50 µg/mL. Furthermore, principal cluster analysis revealed metabolite variability as follows: ginsenoside (83.3%) > amino acid (71.8%) > phenolic phytochemical (61.1%) > fatty acid (58.8%). A clustering heatmap highlighted significant changes in metabolite components under the maturation times for each organ. Our findings suggest that MCG leaves on 31 May may be a potential source for developing nutraceuticals, offering highly beneficial components and strong antioxidants.

20.
Compr Rev Food Sci Food Saf ; 23(3): e13350, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38725377

RESUMO

Growth factors are commonly added to cell culture media in cellular agriculture to mimic the endogenous process of proliferation and differentiation of cells. Many of these growth factors are endogenous to humans and known to be present in the edible tissues and milk of food animals. However, there is little or no information on the use of growth factors intentionally added in food production before the advent of cultivated meat. Ten commonly used growth factors have been reviewed to include information on their mode of action, bioavailability, occurrence in food and food animals, endogenous levels in humans, as well as exposure and toxicological information drawn from relevant animal studies and human clinical trials with a focus on oral exposure. In addition, a comparison of homology of growth factors was done to compare the sequence homology of growth factors from humans and domestic animal species commonly consumed as food, such as bovine, porcine, and poultry. This information has been gathered as the starting point to determine the safety of use of growth factors in cultivated meat meant for human consumption. The change in levels of growth factors measured in human milk and bovine milk after pasteurization and high-temperature treatment is discussed to give an indication of how commercial food processing can affect the levels of growth factors in food. The concept of substantial equivalence is also discussed together with a conservative exposure estimation. More work on how to integrate in silico assessments into the routine safety assessment of growth factors is needed.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Carne , Animais , Carne/análise , Humanos , Inocuidade dos Alimentos , Leite/química , Bovinos , Carne in vitro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...