Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.630
Filtrar
1.
Sci Total Environ ; : 174462, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992374

RESUMO

This comprehensive study unveils the vast global potential of microalgae as a sustainable bioenergy source, focusing on the utilization of marginal lands and employing advanced machine learning techniques to predict biomass productivity. By identifying approximately 7.37 million square kilometers of marginal lands suitable for microalgae cultivation, this research uncovers the extensive potential of these underutilized areas, particularly within equatorial and low-latitude regions, for microalgae bioenergy development. This approach mitigates the competition for food resources and conserves freshwater supplies. Utilizing cutting-edge machine learning algorithms based on robust datasets from global microalgae cultivation experiments spanning 1994 to 2017, this study integrates essential environmental variables to map out a detailed projection of potential yields across a variety of landscapes. The analysis further delineates the bioenergy and carbon sequestration potential across two effective cultivation methods: Photobioreactors (PBRs), and Open Ponds, with PBRs showcasing exceptional productivity, with a global average daily biomass productivity of 142.81mgL-1d-1, followed by Open Ponds at 122.57mgL-1d-1. Projections based on optimal PBR conditions suggest an annual yield of 99.54 gigatons of microalgae biomass. This yield can be transformed into 64.70 gigatons of biodiesel, equivalent to 58.68 gigatons of traditional diesel, while sequestering 182.16 gigatons of CO2, equating to approximately 4.5 times the global CO2 emissions projected for 2023. Notably, Australia leads in microalgae biomass production, with an annual output of 16.19 gigatons, followed by significant contributions from Kazakhstan, Sudan, Brazil, the United States, and China, showcasing the diverse global potential for microalgae bioenergy across varying ecological and geographical landscapes. Through this rigorous investigation, the study emphasizes the strategic importance of microalgae cultivation in achieving sustainable energy solutions and mitigating climate change, while also acknowledging the scalability challenges and the necessity for significant economic and energy investments.

2.
PeerJ ; 12: e17458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948231

RESUMO

In a jujube orchard, cropping withgrass may influence bacterial diversity and ecological networks due to changes of physicochemical properties in soil, which has a serious effect on the stability of soil ecosystems. The aim of this study was to analyze the effects of different cultivation methods (CK: cleaning tillage; NG: cropping with native grass; VV: cropping with Vicia villosa) on the soil's bacterial structure and its co-occurrence network in a jujube orchard. The results showed that the highest moisture content, total nitrogen, and organic matter in the rhizosphere soil of a jujube orchard was found in the VV group. The soil's moisture content, total nitrogen, and organic matter in the VV group were 2.66%, 0.87 g kg-1, and 5.55 mg kg-1 higher than that found in the CK group. Compared to the CK group, the number of unique species in the rhizosphere soil in the NG and the VV groups increased by 7.33% and 21.44%. The PICRUSt and FAPROTAX analysis showed that sown grass had a greater influence on the ecological function of the soil's bacteria. Cropping with Vicia villosa and native grass significantly increased aerobic chemoheterotrophy, nitrogen respiration, nitrate reduction related to biochemical cycles, and the relative abundance of genes related to carbohydrate metabolism and the biodegradation of xenobiotics. The bacterial network complexity in the NG group was higher than that in the CK and VV groups and was greatest in the hub nodes (OTU42, Bacteroidota; OTU541, Nitrospiraceae). In this study, the ecological benefit seen in the soil's microbial function provides support to the theory that cropping with grass (Vicia villosa) increases the sustainable development of a jujube orchard.


Assuntos
Rizosfera , Microbiologia do Solo , Vicia , Ziziphus , Vicia/microbiologia , Solo/química , Poaceae/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação
3.
Artigo em Inglês | MEDLINE | ID: mdl-38951399

RESUMO

The growing demand for agricultural products, driven by the Green Revolution, has led to a significant increase in food production. However, the demand is surpassing production, making food security a major concern, especially under climatic variation. The Indian agriculture sector is highly vulnerable to extreme rainfall, drought, pests, and diseases in the present climate change scenario. Nonetheless, the key agriculture sub-sectors such as livestock, rice cultivation, and biomass burning also significantly contribute to greenhouse gas (GHG) emissions, a driver of global climate change. Agriculture activities alone account for 10-12% of global GHG emissions. India is an agrarian economy and a hub for global food production, which is met by intensive agricultural inputs leading to the deterioration of natural resources. It further contributes to 14% of the country's total GHG emissions. Identifying the drivers and best mitigation strategies in the sector is thus crucial for rigorous GHG mitigation. Therefore, this review aims to identify and expound the key drivers of GHG emissions in Indian agriculture and present the best strategies available in the existing literature. This will help the scientific community, policymakers, and stakeholders to evaluate the current agricultural practices and uphold the best approach available. We also discussed the socio-economic, and environmental implications to understand the impacts that may arise from intensive agriculture. Finally, we examined the current national climate policies, areas for further research, and policy amendments to help bridge the knowledge gap among researchers, policymakers, and the public in the national interest toward GHG reduction goals.

4.
J Fluoresc ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949754

RESUMO

One of the exciting developments in contemporary luminescence research is the development of rare earth triggered luminescent glasses, which are a type of lanthanide activated luminous material. For the first time, Ce3+, Eu3+ activated/co-activated Mg21Ca4Na4(PO4)18 orthophosphate glasses have been synthesized using the proposed work's melt quenching technique. The proposed glass sample's XRD pattern has an amorphous character, although its most prominent peak matches data from the Mg21Ca4Na4(PO4)18 standard ICSD database. FT-IR analysis was used to analyze the proposed glass sample's vibrational characteristics. Co-activated Mg21Ca4Na4(PO4)18 glass exhibits large emission peaks under UV excitations that cover the far red area during a photoluminescence examination. These outcomes demonstrate the proposed sample's value in applications such as WLEDs and plant cultivation.

5.
Saudi J Biol Sci ; 31(8): 104031, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38946847

RESUMO

Human Rotavirus (HRV) is the causative pathogen of severe acute enteric infections that cause mortality among children worldwide. This study focuses on developing a new and effective treatment for rotavirus infection using an extract from Saccharomyces cerevisiae, aiming to make this treatment easily accessible to everyone. 15 antigens and 26 antibodies were detected in serum and stool using ELISA. The titers of HRVq1, HRVq2, HRVC1, and HRVC2 on Vero cells were determined to be 1.2x106, 3.0x106, 4.2x106, and 7.5x105 (Plaque forming unit, PFU/ml) four days after infection, respectively. The HRVq1 isolate induced cytopathic effects, i.e., forming multinucleated, rounded, enlarged, and expanding gigantic cells. RT-PCR identified this isolate, and the accession number 2691714 was assigned to GeneBank. The molecular docking analysis revealed that nonstructural proteins (NSPs) NSP1, NSP2, NSP3, NSP4, NSP5, and NSP6 exhibited significant binding with RNA. NSP2 demonstrated the highest binding affinity and the lowest binding energy (-8.9 kcal/mol). This affinity was maintained via hydrophobic interactions and hydrogen bonds spanning in length from 1.12 Å to 3.11 Å. The ADMET and bioactivity predictions indicated that the yeast extract possessed ideal solubility, was nontoxic, and did not cause cancer. The inhibitory constant values predicted for the S. cerevisiae extract in the presence of HRV vital proteins varied from 5.32 to 7.45 mM, indicating its potential as a viable drug candidate. Saccharomyces cerevisiae extract could be utilized as a dietary supplement to combat HRV as an alternative dietary supplement.

6.
Methods Mol Biol ; 2827: 179-187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985270

RESUMO

An efficient procedure for in vitro propagation of Herreria salsaparrilha Martius was established from single-node explants (fourth and fifth nodes from apex to the base) derived from donor plants maintained under shading-house conditions. After surface sterilization, explants are inoculated in test tubes containing 15 mL of Murashige and Skoog (MS) medium without growth regulators. Cultures are maintained under 35 µmol m-2 s-1 irradiance, a 16/8-h light/dark light regime, at 26 ± 2 °C. The subcultures are carried out under the same conditions, adding 6-benzyladenine 1.0 mg/L and Phytagel® 2.8 g/L. Shoots are elongated and rooted by transferring individual shoots to half-strength MS medium without growth regulators. After 25-30 days, elongated rooted shoots are transferred to plastic pots containing 25-30 mL of sterile distilled water, covered with a transparent plastic bag, and kept under the same growth room conditions for 2 days. Plants are transferred to cups containing autoclaved and washed sand and kept in a shading house (50% light interception) for acclimatization. True-to-type adult plants were successfully recovered under ex vitro conditions.


Assuntos
Aclimatação , Brotos de Planta , Brotos de Planta/crescimento & desenvolvimento , Plantas Medicinais/química , Meios de Cultura/química , Raízes de Plantas/crescimento & desenvolvimento
7.
Methods Mol Biol ; 2827: 99-107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985265

RESUMO

Marine macro-algae, commonly known as "seaweed," are used in everyday commodity products worldwide for food, feed, and biostimulant for plants and animals and continue to be one of the conspicuous components of world aquaculture production. However, the application of ANN in seaweeds remains limited. Here, we described how to perform ANN-based machine learning modeling and GA-based optimization to enhance seedling production for implications on commercial farming. The critical steps from seaweed seedling explant preparation, selection of independent variables for laboratory culture, formulating experimental design, executing ANN Modelling, and implementing optimization algorithm are described.


Assuntos
Algoritmos , Redes Neurais de Computação , Alga Marinha , Plântula , Alga Marinha/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Regeneração , Aquicultura/métodos , Aprendizado de Máquina , Modelos Genéticos
8.
Methods Mol Biol ; 2827: 303-322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985279

RESUMO

For centuries plants have been intensively utilized as reliable sources of food, flavoring, and pharmaceutical ingredients. However, plant natural habitats are being rapidly lost due to the climate change and agriculture. Plant biotechnology offers a sustainable approach for the bioproduction of specialized plant metabolites. The unique structural features of plant-derived specialized metabolites, such as their safety profile and multi-target spectrum, have led to the establishment of many plant-derived drugs. However, there are still many challenges to overcome regarding the production of these metabolites from plant in vitro systems and establish a sustainable large-scale biotechnological process. These challenges are due to the peculiarities of plant cell metabolism, the complexity of plant specialized metabolite pathways, and the correct selection of bioreactor systems and bioprocess optimization. In this book chapter, we attempted to focus on the advantages of plant in vitro systems and in particular plant cell suspensions for their cultivation as a source of plant-derived specialized metabolites. A state-of-the-art technological platform for plant cell suspension cultivation from callus induction to lab-scale cultivation, extraction, and purification is presented. Possibilities for bioreactor cultivation of plant cell suspensions in benchtop and large-scale volumes are highlighted, including several examples and patents for industrial production of specialized metabolites.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Células Vegetais , Técnicas de Cultura de Células/métodos , Células Vegetais/metabolismo , Plantas/metabolismo , Biotecnologia/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-38985422

RESUMO

Microalgae cultivation in wastewater has been widely researched under laboratory conditions as per its potential to couple treatment with biomass production. Currently, only a limited number of published articles consider outdoor and long-term microalgae-bacteria cultivations in real wastewater environmental systems. The scope of this work is to describe microalgal cultivation steps towards high-rate algal pond (HRAP) scalability and identify key parameters that play a major role for biomass productivity under outdoor conditions and long-term cultivations. Reviewed pilot-scale HRAP literature is analysed using multivariate analysis to highlight key productivity parameters within environmental and operational factors. Wastewater treatment analysis indicated that HRAP can effectively remove 90% of NH4+, 70% of COD, and 50% of PO43-. Mean reference values of 210 W m-2 for irradiation, 18 °C for temperature, pH of 8.2, and HRT of 7.7 are derived from pilot-scale cultivations. Microalgae biomass productivity at a large scale is governed by solar radiation and NH4+ concentration, which are more important than retention time variations within investigated studies. Hence, selecting the correct type of location and a minimum of 70 mg L-1 of NH4+ in wastewater will have the greatest effect in microalgae productivity. A high nutrient wastewater content increases final biomass concentrations but not necessarily biomass productivity. Pilot-scale growth rates (~ 0.54 day-1) are half those observed in lab experiments, indicating a scaling-up bottleneck. Microalgae cultivation in wastewater enables a circular bioeconomy framework by unlocking microalgal biomass for the delivery of an array of products.

10.
Plants (Basel) ; 13(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38999695

RESUMO

Plants of the Asteraceae family have been cultivated worldwide for economic, medicinal, and ornamental purposes, including genera such as Aster, Helianthus, and Cosmos. Numerous studies examined their secondary metabolites; however, those of Aster × chusanensis, which is a natural hybrid species in South Korea, are unclear, and optimized propagation methods should be identified. We analyzed phenolic acid concentrations in each part of Aster × chusanensis through HPLC. Further, we investigated the growth characteristics and secondary metabolite concentrations under various growth temperatures using division propagation, followed by growing at 20, 25, and 30 °C in a growth chamber. Chlorogenic acid was the primary compound, which was particularly high in the leaves. The growth characteristics did not differ significantly between temperatures, and 30 °C was most efficient for phenolic acid biosynthesis. Our results provide valuable information on optimized propagation and secondary metabolite concentrations under different temperatures of Aster × chusanensis.

11.
Bioresour Bioprocess ; 11(1): 66, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980516

RESUMO

Earthworm cultivation can effectively promote the resource utilization of agricultural waste. The efficient utilization of agricultural waste by earthworms mainly depends on the microbial communities in the guts. This study used silkworm excrement and cow manure as substrates for earthworm cultivation and investigated the associated bacterial communities during earthworms' growth. The survival rate of earthworms remained above 89% after 21 days of feeding with the two substrates. Proteobacteria, Actinobacteria, and Firmicutes constituted the predominant bacterial communities in earthworm growth, accounting for over 81% of the relative abundance in both guts and vermicompost. The bacteria richness and diversity in the foregut and midgut of earthworm were lower than those in the hindgut. The prediction function of intestinal bacterial communities of earthworms cultured with two substrates mainly involved biosynthesis, decomposition and energy production.

12.
PeerJ ; 12: e17616, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952966

RESUMO

Background: Mesenchymal stem cells (MSCs) are increasingly recognized for their regenerative potential. However, their clinical application is hindered by their inherent variability, which is influenced by various factors, such as the tissue source, culture conditions, and passage number. Methods: MSCs were sourced from clinically relevant tissues, including adipose tissue-derived MSCs (ADMSCs, n = 2), chorionic villi-derived MSCs (CMMSCs, n = 2), amniotic membrane-derived MSCs (AMMSCs, n = 3), and umbilical cord-derived MSCs (UCMSCs, n = 3). Passages included the umbilical cord at P0 (UCMSCP0, n = 2), P3 (UCMSCP3, n = 2), and P5 (UCMSCP5, n = 2) as well as the umbilical cord at P5 cultured under low-oxygen conditions (UCMSCP5L, n = 2). Results: We observed that MSCs from different tissue origins clustered into six distinct functional subpopulations, each with varying proportions. Notably, ADMSCs exhibited a higher proportion of subpopulations associated with vascular regeneration, suggesting that they are beneficial for applications in vascular regeneration. Additionally, CMMSCs had a high proportion of subpopulations associated with reproductive processes. UCMSCP5 and UCMSCP5L had higher proportions of subpopulations related to female reproductive function than those for earlier passages. Furthermore, UCMSCP5L, cultured under low-oxygen (hypoxic) conditions, had a high proportion of subpopulations associated with pro-angiogenic characteristics, with implications for optimizing vascular regeneration. Conclusions: This study revealed variation in the distribution of MSC subpopulations among different tissue sources, passages, and culture conditions, including differences in functions related to vascular and reproductive system regeneration. These findings hold promise for personalized regenerative medicine and may lead to more effective clinical treatments across a spectrum of medical conditions.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Cordão Umbilical , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Humanos , Cordão Umbilical/citologia , Feminino , Tecido Adiposo/citologia , Células Cultivadas , Vilosidades Coriônicas/fisiologia , Âmnio/citologia , Diferenciação Celular
13.
Eng Life Sci ; 24(7): e2300243, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38975019

RESUMO

Shake flask cultivation, a cornerstone in bioprocess research encounters limitations in supplying sufficient oxygen and exchanging gases, restricting its accuracy in assessing microbial growth and metabolic activity. In this communication, we introduce an innovative gas supply apparatus that harnesses the rotational motion of a shaking incubator to facilitate continuous air delivery, effectively overcoming these limitations. We measured the mass transfer coefficient (kLa) and conducted batch cultures of Corynebacterium glutamicum H36LsGAD using various working volumes to assess its performance. Results demonstrated that the gas supply apparatus significantly outperforms conventional silicone stoppers regarding oxygen delivery, with kLa values of 2531.7 h-1 compared to 20.25 h-1 at 230 rpm. Moreover, in batch cultures, the gas supply apparatus enabled substantial improvements in microbial growth, maintaining exponential growth even at larger working volumes. Compared to the existing system, an increase in final cell mass by a factor of 3.4-fold was observed when utilizing 20% of the flask's volume, and a remarkable 9-fold increase was achieved when using 60%. Furthermore, the gas supply apparatus ensured consistent oxygen supply and efficient gas exchange within the flask, overcoming challenges associated with low working volumes. This approach offers a simple yet effective solution to enhance gas transfer in shake flask cultivation, bridging the gap between laboratory-scale experiments and industrial fermenters. Its broad applicability holds promise for advancing research in bioprocess optimization and scale-up endeavors.

14.
J Environ Manage ; 366: 121711, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981261

RESUMO

Monoculture-based microalgae cultivation systems to treat wastewater are well-reported. Despite that, this method has some limitations in terms of nutrient removal potential, environment adaptation, and low biomass productivity. Conversely, microalgae co-cultivation and a two-stage sequential cultivation system (TSSCS) recently emerged as a promising approach to improve the treatment process and biomass productivity through better adaptation to the environment. However, no outdoor large-scale experiments were reported using this approach which hinders the viability of the process. Thus, in the present study, a sequential two-stage large-scale outdoor novel microalgae consortia experiment was developed. In first stage consortia-assisted sequential cultivation, two ratios of Tetraselmis indica (TS) and one ratio of Picochlorum sp. (PC) (2 TS:1 PC) were cultivated in a 1000-L pond containing 75%-municipal wastewater (MWW) + 25%-ASN-III, while in the second stage, 2 PC:1 TS was cultivated in two different ponds, and each containing 375-L 2 TS:1 PC-treated water + 375-L ASN-III. Outdoor parameters and nutrient removal efficiency (NRE), biomass, and biomolecule productivity such as lipid, photosynthetic pigments, astaxanthin, and ß-carotene were quantified, and cost analysis was performed. At the end of the first and second stages, 2 TS:1 PC and 2 PC:1 TS showed maximum NRE of COD (68.71 and 86.40%), TN (66.98 and 94.73%), and TP (82.70 and 94.36%), respectively. Moreover, 2 TS:1 PC and 2 PC:1 TS Pond 1 and 2 produced maximum dry biomass production; 2.41 and ∼2.54 g/L contained lipid content; 36.89 and 34.90% that have 86.50 and 55.79% FAME content respectively. Similarly, 2 TS:1 PC and 2 PC:1 TS biomass exhibited valuable pigments production of astaxanthin i.e., 0.56 and 0.35 mg/g, and ß-carotene; 4.65 and 2.82 mg/g, respectively. The cost analysis suggested that only microalgal-based MWW treatment was unfeasible, while valorization of produced biomass into co-products could offset the operation costs and could allow the option for the microalgal-based sustainable approach for the treatment of MWW and recovery of valuable resources.

15.
Data Brief ; 55: 110599, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38974005

RESUMO

Papaya, renowned for its nutritional benefits, represents a highly profitable crop. However, it is susceptible to various diseases that can significantly impede fruit productivity and quality. Among these, leaf diseases pose a substantial threat, severely impacting the growth of papaya plants. Consequently, papaya farmers frequently encounter numerous challenges and financial setbacks. To facilitate the easy and efficient identification of papaya leaf diseases, a comprehensive dataset has been assembled. This dataset, comprising approximately 1400 images of diseased, infected, and healthy leaves, aims to enhance the understanding of how these ailments affect papaya plants. The images, meticulously collected from diverse regions and under varying weather conditions, offer detailed insights into the disease patterns specific to papaya leaves. Stringent measures have been taken to ensure the dataset's quality and enhance its utility. The images, captured from multiple angles and boasting high resolution are designed to aid in the development of a highly accurate model. Additionally, RGB mode has been employed to meticulously capture each detail, ensuring a flawless representation of the leaves. The dataset meticulously identifies and categorizes five primary types of leaf diseases: Leaf Curl (inclusive of its initial stage), Papaya Mosaic, Ring Spot, Mites (specifically, those affected by Red Spider Mites), and Mealybug. These diseases are recognized for their detrimental effects on both the leaves and the overall fruit production of the papaya plant. By leveraging this curated dataset, it is possible to train a model for the real-time detection of leaf diseases, significantly aiding in the timely identification of such conditions.

16.
MethodsX ; 12: 102793, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38957375

RESUMO

In a recent paper by Sajindra et al. [1], the soil nutrient levels, specifically nitrogen, phosphorus, and potassium, in organic cabbage cultivation were predicted using a deep learning model. This model was designed with a total of four hidden layers, excluding the input and output layers, with each hidden layer meticulously crafted to contain ten nodes. The selection of the tangent sigmoid transfer function as the optimal activation function for the dataset was based on considerations such as the coefficient of correlation, mean squared error, and the accuracy of the predicted results. Throughout this study, the objective is to justify the tangent sigmoid transfer function and provide mathematical justification for the obtained results.•This paper presents the comprehensive methodology for the development of deep neural network for predict the soil nutrient levels.•Tangent Sigmoid transfer function usage is justified in predictions.•Methodology can be adapted to any similar real-world scenarios.

17.
Environ Monit Assess ; 196(8): 708, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970719

RESUMO

Land suitability assessment is integral to the advancement of precision agriculture. This inquiry is focused on identifying optimal regions for cultivating Alphonso mango in the coastal belt of Maharashtra, spanning across Palghar, Raigad, Thane, Ratnagiri, and Sindhudurg districts. Employing a GIS-based Analytic Hierarchy Process (AHP) methodology, 10 crucial parameters have been considered, encompassing climatic, physical, and chemical soil characteristics: cation exchange capacity, organic carbon, slope, rainfall, soil pH, soil texture, mean annual soil temperature, base saturation, soil drainage, and soil depth. Weights are assigned to these parameters based on expert opinions and existing literature to determine their significance in developing a soil suitability map. The study reveals distinct land suitability zones for Alphonso mango cultivation. The land suitability map designates 25.78% of the study area as highly suitable, while 9.18% is considered unsuitable for Alphonso mango cultivation. To validate the study, the Receiver Operating Characteristic (ROC) curve has been employed, indicating an 83% approval rate for the reliability and performance of the soil suitability. The results categorise soil suitability classes, providing valuable insights for farmers and agricultural planners to make informed decisions regarding Alphonso mango cultivation in similar geoenvironmental regions.


Assuntos
Agricultura , Monitoramento Ambiental , Mangifera , Solo , Índia , Solo/química , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Conservação dos Recursos Naturais/métodos
18.
Biol Futur ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990490

RESUMO

Earth harbors unique environments where only microorganisms adapted to extreme conditions, known as extremophiles, can survive. This study focused on a high-altitude meltwater pond, located in the Puna de Atacama, Dry Andes. The extremophilic bacteria of this habitat must adapt to a range of extremities, including cold and dry climate, high UV radiation, high daily temperature fluctuations, low-nutrient availability, and negative water balance. This study aimed to explore the taxonomic diversity of cultivable extremophilic bacteria from sediment samples of a desiccated, high-altitude, meltwater pond using media with different organic matter contents and different incubation temperatures. Based on the 16S rRNA gene sequence analysis, the isolates were identified as members of the phyla Actinobacteria, Proteobacteria, and Firmicutes. The most abundant genera were Arthrobacter and Pseudoarthrobacter. The isolates had oligocarbophilic and psychrotrophic properties, suggesting that they have adapted to the extreme environmental parameters of their natural habitats. The results indicate a positive correlation between nutrient concentration and temperature tolerance.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38904715

RESUMO

The trisaccharide 1-kestose, a major constituent of commercial fructooligosaccharide (FOS) formulations, shows a superior prebiotic effect compared to higher-chain FOS. The plant sucrose:sucrose 1-fructosyltransferases (1-SST) are extensively used for selective synthesis of lower chain FOS. In this study, enhanced recombinant (r) 1-SST production was achieved in Komagataella phaffii (formerly Pichia pastoris) containing three copies of a codon-optimized Festuca arundinacea 1-SST gene. R1-SST production reached 47 U/mL at the shake-flask level after a 96-h methanol induction phase. A chemostat-based strain characterization methodology was adopted to assess the influence of specific growth rate (µ) on cell-specific r1-SST productivity (Qp) and cell-specific oxygen uptake rate (Qo) under two different feeding strategies across dilution rates from 0.02 to 0.05 h-1. The methanol-sorbitol co-feeding strategy significantly reduced Qo by 46 ± 2.4% compared to methanol-only feeding without compromising r1-SST productivity. Based on the data, a dilution rate of 0.025 h-1 was applied for continuous cultivation of recombinant cells to achieve a sustained r1-SST productivity of 5000 ± 64.4 U/L/h for 15 days.

20.
Synth Syst Biotechnol ; 9(4): 713-722, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38868610

RESUMO

Amino oligosaccharides (AOs) possess various biological activities and are valuable in the pharmaceutical, food industries, and agriculture. However, the industrial manufacturing of AOs has not been realized yet, despite reports on physical, chemical, and biological approaches. In this study, the de novo production of chitin oligosaccharides (CHOS), a type of structurally defined AOs, was achieved in Escherichia coli through combinatorial pathway engineering. The most suitable glycosyltransferase for CHOS production was found to be NodCL from Mesorhizobium Loti. Then, by knocking out the nagB gene to block the flow of N-acetyl-d-glucosamine (NAG) to the glycolytic pathway in E. coli and adjusting the copy number of NodCL-coding gene, the CHOS yield was increased by 6.56 times. Subsequently, by introducing of UDP-N-acetylglucosamine (UDP-GlcNAc) salvage pathway for and optimizing fermentation conditions, the yield of CHOS reached 207.1 and 468.6 mg/L in shake-flask cultivation and a 5-L fed-batch bioreactor, respectively. Meanwhile, the concentration of UDP-GlcNAc was 91.0 mg/L, the highest level reported in E. coli so far. This study demonstrated, for the first time, the production of CHOS with distinct structures in plasmid-free E. coli, laying the groundwork for the biosynthesis of CHOS and providing a starting point for further engineering and commercial production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...