Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Indian J Microbiol ; 61(1): 1-9, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33505087

RESUMO

Oil tea Camellia is a major woody oil plant, which has a positive influence on alleviating the contradiction between supply and demand of edible oil in China. Microbial fertilizer for Oil tea Camellia is urgently needed in current production, and it is of great significance to improve the yield and quality. Culturable functional microorganisms are the basis of research and development for microbial fertilizer. In this study, culturable microorganisms which had abilities of antagonism, growth promotion, phosphorus solubility, nitrogen fixation and drought resistance, were integrated from oil tea literature. And the strains potential application ability were evaluated in terms of functionality, safety and adaptability, culture characteristics, suitable conditions and colonization or infection ability of strains. The results showed that the strains with strongest antagonistic ability were Bacillus amyloliquefaciens D2WM and Bacillus subtilis Y13. Beauveria bassiana BbTK-01 and Metarhizium anisopliae FJMa201101 had the strongest insect resistant ability. Glomus versiforme and Glomus intraradices can promote oil tea fastest growth. Phosphorus dissolving ability of Bacillus aryabhattai NC285 and Burkholderia cepacia 6-Y-09 were strongest. The strains with strongest Nitrogen fixing ability were Azomonas N7-3 and Sphingobium B7-7, and the strains with strongest improving drought resistance ability were Glomus versiforme and Glomus intraradices. Comprehensive evaluation of strains showed that Bacillus subtilis Y13 and Azomonas N7-3 had a good applied potential ability. This study would save time-consuming of isolate, purify and identify repetitively for the researchers of functional bacteria of oil tea Camellia. Meanwhile it provides a research basis for selecting targeted strains and constructing the combination of functional strains, therefore provides data support for fertilizer efficiency.

2.
Sheng Wu Gong Cheng Xue Bao ; 36(12): 2644-2656, 2020 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-33398961

RESUMO

Continuous planting of muskmelon and excessive application of chemical fertilizers have caused a series of problems, such as imbalance of the soil micro-ecological environment, serious soil-borne diseases and yield loss. Application of Bacillus subtilis agent is an important way to improve soil micro-ecological environment, prevent soil-borne diseases, and promote plant growth. In this study, B. subtilis was used as experimental agent to analyze the effects of different application methods on the soil microbial diversity and growth of muskmelon in greenhouse. The number of culturable microorganisms in soil was measured by dilution-plate method. The diversity of soil uncultivated microorganisms was determined by Illumina Miseq sequencing technology. The yield of muskmelon was measured by weighing method. The number of culturable bacteria in the root irrigation, hole application and dipping root application groups was higher than that of the control in different muskmelon growth stages, but there was no significant difference among the three different application methods. The number of soil fungi from B. subtilis agent treatment groups in flowering stage was significantly lower in comparison to the control group. However, B. subtilis agent treatment did not cause significant difference on soil fungi number at the fruiting and pulling stage. Diversity analysis of uncultured microorganisms showed that the Shannon index values of bacteria were higher and Simpson index values were lower respectively in the three B. subtilis treatment groups than that in the control. Moreover, the dipping root treatment produced the lowest Shannon index value and the highest Simpson index value of fungi. NMDS and cluster analysis showed that B. subtilis agents dipping root treatment significantly affected the bacterial and fungal flora, both of which were clustered into one independent branch. The application of B. subtilis agents, especially dipping root treatment, significantly decreased the abundance of Bacteroidetes, increased the abundance of Actinobacteria and Acidobacteria. The B. subtilis agent treatment didn't produce significant effect on the diversity of fungal flora except Chytridiomycota. The height, stem diameter and leaf area of muskmelon increased by applying B. subtilis agents, and dipping root treatment produced the most significant effect. As a new type of environmental protection fertilizer, B. subtilis agent can increase the number of soil culturable microorganisms, improve soil microbial diversity, and promote growth and yield. This study would provide a scientific basis for the rational application of B. subtilis.


Assuntos
Microbiologia do Solo , Solo , Bacillus subtilis/genética , Fertilizantes , Fungos
3.
Chinese Journal of Biotechnology ; (12): 2644-2656, 2020.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-878518

RESUMO

Continuous planting of muskmelon and excessive application of chemical fertilizers have caused a series of problems, such as imbalance of the soil micro-ecological environment, serious soil-borne diseases and yield loss. Application of Bacillus subtilis agent is an important way to improve soil micro-ecological environment, prevent soil-borne diseases, and promote plant growth. In this study, B. subtilis was used as experimental agent to analyze the effects of different application methods on the soil microbial diversity and growth of muskmelon in greenhouse. The number of culturable microorganisms in soil was measured by dilution-plate method. The diversity of soil uncultivated microorganisms was determined by Illumina Miseq sequencing technology. The yield of muskmelon was measured by weighing method. The number of culturable bacteria in the root irrigation, hole application and dipping root application groups was higher than that of the control in different muskmelon growth stages, but there was no significant difference among the three different application methods. The number of soil fungi from B. subtilis agent treatment groups in flowering stage was significantly lower in comparison to the control group. However, B. subtilis agent treatment did not cause significant difference on soil fungi number at the fruiting and pulling stage. Diversity analysis of uncultured microorganisms showed that the Shannon index values of bacteria were higher and Simpson index values were lower respectively in the three B. subtilis treatment groups than that in the control. Moreover, the dipping root treatment produced the lowest Shannon index value and the highest Simpson index value of fungi. NMDS and cluster analysis showed that B. subtilis agents dipping root treatment significantly affected the bacterial and fungal flora, both of which were clustered into one independent branch. The application of B. subtilis agents, especially dipping root treatment, significantly decreased the abundance of Bacteroidetes, increased the abundance of Actinobacteria and Acidobacteria. The B. subtilis agent treatment didn't produce significant effect on the diversity of fungal flora except Chytridiomycota. The height, stem diameter and leaf area of muskmelon increased by applying B. subtilis agents, and dipping root treatment produced the most significant effect. As a new type of environmental protection fertilizer, B. subtilis agent can increase the number of soil culturable microorganisms, improve soil microbial diversity, and promote growth and yield. This study would provide a scientific basis for the rational application of B. subtilis.


Assuntos
Bacillus subtilis/genética , Fertilizantes , Fungos , Solo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...