Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37837120

RESUMO

The wireless communication system is used to provide dispatching, control, communication and other services for rail transit operations. In practice, interference from other wireless communication systems will affect the normal operation of trains, so it is an urgent problem to study the interference detection algorithms for rail transit applications. In this paper, the fourth-order cyclic cumulant (FOCC) of signals with different modulation modes is analyzed for the narrow-band wireless communications system of rail transit. Based on the analysis results, an adjacent-frequency interference detection algorithm is proposed according to the FOCC of the received signal within the predetermined cyclic frequency range. To detect interference with the same carrier frequency, a same-frequency interference detection algorithm using the relationship between the FOCC and the received power is proposed. The performance of the proposed detection algorithms in terms of correct rate and computational complexity is analyzed and compared with the traditional second-order statistical methods. Simulation results show that when an interference signal coexists with the expected signal, the correct rates of the adjacent-frequency and the same-frequency interference detection algorithms are greater than 90% when the signal-to-noise ratio (SNR) is higher than 2 dB and -4 dB, respectively. Under the practical rail transit wireless channel with multipath propagation and the Doppler effect, the correct rates of the adjacent-frequency and the same-frequency interference detection algorithms are greater than 90% when the SNR is higher than 3 dB and 7 dB, respectively. Compared with the existing second-order statistical methods, the proposed method can detect both the adjacent-frequency and the same-frequency interference when the interference signals coexist with the expected signal. Although the computational complexity of the proposed method is increased, it is acceptable in the application of rail transit wireless communication interference detection.

2.
Sensors (Basel) ; 22(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35161766

RESUMO

Blind modulation classification (MC) is an integral part of designing an adaptive or intelligent transceiver for future wireless communications. Blind MC has several applications in the adaptive and automated systems of sixth generation (6G) communications to improve spectral efficiency and power efficiency, and reduce latency. It will become a integral part of intelligent software-defined radios (SDR) for future communication. In this paper, we provide various MC techniques for orthogonal frequency division multiplexing (OFDM) signals in a systematic way. We focus on the most widely used statistical and machine learning (ML) models and emphasize their advantages and limitations. The statistical-based blind MC includes likelihood-based (LB), maximum a posteriori (MAP) and feature-based methods (FB). The ML-based automated MC includes k-nearest neighbors (KNN), support vector machine (SVM), decision trees (DTs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM) based MC methods. This survey will help the reader to understand the main characteristics of each technique, their advantages and disadvantages. We have also simulated some primary methods, i.e., statistical- and ML-based algorithms, under various constraints, which allows a fair comparison among different methodologies. The overall system performance in terms bit error rate (BER) in the presence of MC is also provided. We also provide a survey of some practical experiment works carried out through National Instrument hardware over an indoor propagation environment. In the end, open problems and possible directions for blind MC research are briefly discussed.


Assuntos
Algoritmos , Redes Neurais de Computação , Funções Verossimilhança , Aprendizado de Máquina , Máquina de Vetores de Suporte
3.
Sensors (Basel) ; 20(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560182

RESUMO

Non-contact detection and estimation of vital signs such as respiratory and cardiac frequencies is a powerful tool for surveillance applications. In particular, the continuous wave bio-radar has been widely investigated to determine the physiological parameters in a non-contact manner. Since the RF-reflected signal from the human body is corrupted by noise and random body movements, traditional Fourier analysis fails to detect the heart and breathing frequencies. In this effort, cyclostationary analysis has been used to improve the radar performance for non-invasive measurement of respiratory rate and heart rate. However, the preliminary works focus only on one frequency and do not include the impact of attenuation and random movement of the body in the analysis. Hence in this paper, we evaluate the impact of distance and noise on the cyclic features of the reflected signal. Furthermore, we explore the assessment of second order cyclostationary signal processing performance by developing the cyclic mean, the conjugate cyclic autocorrelation and the cyclic cumulant. In addition, the analysis is carried out using a reduced number of samples to reduce the response time. Implementation of the cyclostationary technique using a bi-static radar configuration at 2.5 GHz is shown as an example to demonstrate the proposed approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA