Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.261
Filtrar
1.
Pest Manag Sci ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360407

RESUMO

BACKGROUND: Cross-resistance between pre-emergence herbicides is developing in Australian populations of annual ryegrass (Lolium rigidum Gaud.). A previous study has reported that selection with prosulfocarb (a pro-herbicide requiring bioactivation to its phytotoxic sulfoxide) can decrease metabolic resistance to trifluralin. Metabolism of prosulfocarb and trifluralin was investigated in L. rigidum populations with different levels of resistance to prosulfocarb, trifluralin and also pyroxasulfone, which is detoxified by glutathione (GSH) conjugation. RESULTS: Coleoptiles and radicles of herbicide-treated seedlings responded differently to the same herbicide. Radicles had a lower capacity for bioactivation of prosulfocarb, and this was correlated with a lower ability to metabolise trifluralin within and among populations. Coleoptile resistance to prosulfocarb sulfoxide was negatively correlated with abundance of a major polar metabolite. There was no evidence of GSH conjugation with the sulfoxide, making any potential links between prosulfocarb and pyroxasulfone resistance less obvious. CONCLUSIONS: Activation and metabolism of prosulfocarb in L. rigidum is complex and differentially regulated in different tissues. Selection with prosulfocarb may ameliorate trifluralin metabolism in the radicles, but the relationship between prosulfocarb and pyroxasulfone resistance is not GSH-mediated. When applying pre-emergence herbicides, care should be taken with the composition of mixtures and rotations to avoid selection of cross-resistance between pyroxasulfone and prosulfocarb. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Life Sci ; : 123104, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39366552

RESUMO

AIMS: Bisphenol A (BPA), xenoestrogen, is an environmental toxicant, that generates oxidative stress leading to, cardiotoxicity, The oxidative stress can be neutralized by natural and synthetic antioxidants. The present study elucidates the highly selective antioxidative potential of synthetic tetra aniline polymers Es-37 and L-37 against Bisphenol A-induced cardiac cellular impairments and the role of miRNA-15a-5p in the regulation of different apoptotic proteins. MATERIALS AND METHODS: The molecular docking of L-37 and Es-37 with three proteins (p53, Cytochrome c, and Bcl-2) were performed. The dose of 1 mg/kg BW of BPA, 1 mg/kg BW Es-37 and L-37 and 50 mg/kg BW N-acetyl cysteine (NAC) was administered to Sprague Dawley rats. The miRNA and target gene expression were confirmed by qRt-PCR and Immunoblotting. KEY FINDINGS: In our results, BPA administration significantly elevated the reactive oxygen species (ROS), p53, cytochrome c, and particularly miRNA-15a-5p expression; however: these changes were notably averted and reversed by Es-37 and L-37 treatment. Additionally, molecular docking of synthetic polymers validated that L-37 has a greater binding affinity with the target proteins compared to Es-37, with the highest binding values reported for the enzymatic protein cytochrome c. SIGNIFICANCE: These results suggest that both synthetic polymers Es-37 and L-37 have the potential to scavenge free radicals, boost-up antioxidant enzyme activities, and avert (BPA-induced) toxicity, thus, may serve as cardioprotective agents. Moreover, this study first time proposes that miRNA-15a-5p overexpression is associated with oxidative stress and coincides with BPA induced cardiotoxicity, thus may serve as potential therapeutic target in future.

3.
Ecol Evol ; 14(10): e70352, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39364039

RESUMO

The Ili River Valley, located in the northwest of China, serves as a vital repository for fish genetic resources. Its extensive water network and diverse climate have given rise to a unique fish composition and endemic species. In this study, we collected the cytochrome c oxidase subunit I (COI) sequences from 660 fish specimens in the Ili River Valley. The effectiveness of DNA barcoding in identifying fish species in the area was assessed by examining genetic distances, constructing phylogenetic trees, and performing ABGD (Automatic Barcode Gap Discovery) analyses, among other methods. In total, 20 species were identified, including one unidentified species (Silurus sp.). Except for Silurus asotus and Hypophthalmichthys molitrix (only one sample), the maximum intraspecific genetic distance among the remaining species was smaller than the minimum interspecific distance, which proves that the species exhibit obvious barcode gaps. In the Neighbor-Joining trees, 20 species formed separate monophyletic branches. According to ABGD analysis, 660 sequences were categorized into 19 Operational Taxonomic Units, with Silurus sp. and S. asotus grouped into a single OTU. The Silurus in this study exhibits shared haplotypes and significant genetic divergence, suggesting the potential presence of cryptic species. Furthermore, the nucleotide diversity across all species fell below the threshold level, indicating that the local fish population is gradually declining. In conclusion, this study has demonstrated the effectiveness of DNA barcoding in identifying fish species in the Ili River Valley, providing valuable data to support the conservation of local fish resources.

4.
Br J Clin Pharmacol ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367654

RESUMO

AIMS: Dersimelagon is a novel, investigational, orally administered, selective agonist of the melanocortin-1 receptor that has demonstrated efficacy at increasing symptom-free light exposure and an acceptable safety profile in patients with protoporphyria. A phase 1 drug-drug interaction (DDI) study demonstrated that dersimelagon 300 mg has the potential for clinically relevant DDIs with drugs that are substrates for breast cancer resistance protein, such as atorvastatin and rosuvastatin. This study uses physiologically based pharmacokinetic (PBPK) modelling to further investigate the DDI effects at lower doses of dersimelagon with substrate drugs. METHODS: The data from in silico, in vitro and in vivo studies were used to construct a PBPK model for dersimelagon to assess the DDI potential between dersimelagon and substrate drugs for cytochrome P450 3A, P-glycoprotein, organic anion transporting polypeptide 1B1/1B3, organic anion transporter 3 and breast cancer resistance protein, including atorvastatin and rosuvastatin. RESULTS: The systemic exposure of atorvastatin based on the maximum plasma concentration and area under the plasma concentration-time curve was predicted to increase 1.21-fold and 1.25-fold, respectively, if coadministered with dersimelagon 100 mg, and 1.42-fold and 1.45-fold with dersimelagon 200 mg. The systemic exposure of rosuvastatin followed trends similar to atorvastatin (1.67-fold and 1.34-fold increase in maximum plasma concentration and area under the plasma concentration-time curve, respectively, with dersimelagon 100 mg, and 2.40-fold and 1.69-fold with dersimelagon 200 mg). CONCLUSION: Overall, PBPK modelling results indicate that the simulated changes in plasma exposure of atorvastatin and rosuvastatin following coadministration with dersimelagon 100 or 200 mg are not clinically significant, but caution and appropriate clinical monitoring should be recommended.

5.
Mol Biol Rep ; 51(1): 1033, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354174

RESUMO

BACKGROUND: The butterfly assemblage of Ladakh Trans-Himalaya demands a thorough analysis of their population genetic structure owing to their typical biogeographic affinity and their adaptability to extreme cold-desert climates. No such effort has been taken till date, and in this backdrop, we created a COI barcode reference library of 60 specimens representing 23 species. METHODS AND RESULTS: Barcodes were generated from freshly collected leg samples using the Sanger sequencing method, followed by phylogenetic clade analyses and divergence calculation. Our data represents 22% of Ladakh's Rhopaloceran fauna with the novel barcode submission for six species, including one Schedule II species, Paralasa mani. Contrary to the 3% threshold rule, the interspecific divergence between two species pairs of typical mountain genus Hyponephele and Karanasa was found to be 2.3% and 2.2%, respectively. The addition of conspecific global barcodes revealed that most species showed little increase in divergence value, while a two-fold increase was noted in a few species. Bayesian clade clustering outcomes largely aligned with current morphological classifications, forming monophyletic clades of conspecific barcodes, with only minor exceptions observed for the taxonomically complicated genus Polyommatus and misidentified records of Aulocera in the database. We also observed variations within the same phylogenetic clades forming nested lineages, which may be attributed to the taxonomic intricacies present at the subspecies level globally, mostly among Eurasian species. CONCLUSIONS: Overall, our effort not only substantiated the effectiveness of DNA Barcoding for the identification and conservation of this climatically vulnerable assemblage but also highlighted the significance of deciphering the unique genetic composition among this geographically isolated population of Ladakh butterflies.


Assuntos
Borboletas , Código de Barras de DNA Taxonômico , Filogenia , Animais , Borboletas/genética , Borboletas/classificação , Código de Barras de DNA Taxonômico/métodos , Teorema de Bayes , Variação Genética/genética , Genética Populacional
6.
Bull Entomol Res ; : 1-8, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39354867

RESUMO

NADPH-cytochrome P450 reductase (CPR) is crucial for the detoxification process catalysed by cytochrome P450, which targets various exogenous xenobiotics, as well as pesticides. In our research, we successfully obtained the complete cDNA sequence of Apolygus lucorum's CPR (AlCPR) using reverse transcription PCR along with rapid amplification of cDNA ends technology. Bioinformatics analysis exhibited that the inferred amino acid sequence of AlCPR is characteristic of standard CPRs, featuring an N-terminal membrane anchor and three conserved FMN, FAD and NADP binding sites. Phylogenetic result revealed that AlCPR was positioned within the Hemiptera cluster, showing a close evolutionary relationship with the CPR of Cimex lectularius. The real-time quantitative PCR results demonstrated widespread expression of AlCPR across various life stages and tissues of A. lucorum, with the most prominent expression in adults and the abdominal region. Injecting double-stranded RNA of AlCPR only significantly increased the lambda-cyhalothrin susceptibility in lambda-cyhalothrin-resistant strain rather than the susceptible strain. These findings suggest a potential link between AlCPR and the P450-dependent defence mechanism against lambda-cyhalothrin in A. lucorum.

7.
Endocrinology ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363152

RESUMO

CYP24A1 is a multifunctional, P450 mitochondrial enzyme that catabolizes the vitamin D hormone (calcitriol, 1,25(OH)2D3), its precursor (calcifediol, 25(OH)D3), and numerous vitamin D metabolites. In the kidney, Cyp24a1 is induced by 1,25(OH)2D3 and FGF23, and potently suppressed by PTH to control the circulating levels of 1,25(OH)2D3. Cyp24a1 is controlled by a pair of promoter proximal (PRO) vitamin D response elements (VDREs) that are aided by distal, downstream (DS) enhancers. The DS1 enhancer is kidney-specific and responsible for PTH and FGF23 actions, and the DS2 enhancer responds to 1,25(OH)2D3 in all tissues. Despite this knowledge, in vivo contributions of the PRO VDREs to basal expression, FGF23 activation, and PTH suppression of Cyp24a1, remain unknown. Here in this study, we selectively mutated the PRO VDREs in the mouse to address these questions. We found mutation of the VDREs leads to a dramatic loss of VDR occupancy, a reduction of 1,25(OH)D3-induced kidney Cyp24a1 expression, and near elimination of intestinal Cyp24a1 induction. FGF23 induction of Cyp24a1 was reduced, but not eliminated and still showed a synergistic increase with 1,25(OH)2D3. PTH suppression of Cyp24a1 was unchanged, despite minor reductions in total pCREB occupancy. Finally, VDR recruitment was dramatically reduced across the DS enhancers in the Cyp24a1 locus. Taken together, our data suggest a cooperative relationship between the DS and PRO enhancers in the regulation of Cyp24a1 by 1,25(OH)2D3 and FGF23, and points to the DS1 region as a crucial basal switch for Cyp24a1 activity that further defines the interconnected genomic control in vitamin D catabolism.

8.
Int J Biol Macromol ; 281(Pt 1): 136234, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39366602

RESUMO

Cytochrome P450s play a crucial role in the breakdown of external substances and perform important activities in the hormone system of insects. It has been understood that P450s were essential in the metabolism of ecdysteroids. CYP303A1 is a highly conserved CYP in most insects, but its specific physiological functions remain poorly understood in Nilaparvata lugens Stål. In this study, NlCYP303A1 was identified and highly expressed in the pre-molt stages, predominantly in the cuticle-producing tissues. Silencing of NlCYP303A1 caused a lethal phenotype with a molting defect. Moreover, the 20E titers, the expression levels of Halloween genes, and critical genes associated with the 20E signaling pathway in N. lugens nymphs were significantly decreased with the silencing NlCYP303A1. We further performed additional backfilling of 20E to rescue the RNAi effects on NlCYP303A1. The gene expression levels that were previously reduced caused by silencing NlCYP303A1 were significantly elevated. However, the molting defects of nymphs were not effectively improved. The results demonstrated NlCYP303A1 plays a crucial role in the molting and metamorphosis of N. lugens by regulating the 20E signaling pathway and cuticular formation, enhances the understanding of the functional role of CYP 2 clans, and identifies candidate gene for RNAi-based control of N. lugens.

9.
Environ Sci Technol ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39370945

RESUMO

Mercury nanoparticles are abundant in natural environments. Yet, understanding their contribution to global biogeochemical cycling of mercury remains elusive. Here, we show that microbial transformation of nanoparticulate divalent mercury can be an important source of elemental and methylmercury.Geobacter sulfurreducensPCA, a model bacterium predominant in anoxic environments (e.g., paddy soils), simultaneously reduces and methylates nanoparticulate Hg(II). Moreover, the relative prevalence of these two competing processes and the dominant transformation pathways differ markedly between nanoparticulate Hg(II) and its dissolved and bulk-sized counterparts. Notably, even when intracellular reduction of Hg(II) nanoparticles is constrained by cross-membrane transport (a rate-limiting step that also regulates methylation), the overall Hg(0) formation remains substantial due to extracellular electron transfer. With multiple lines of evidence based on microscopic and electrochemical analyses, gene knockout experiments, and theoretical calculations, we show that nanoparticulate Hg(II) is preferentially associated with c-type cytochromes on cell membranes and has a higher propensity for accepting electrons from the heme groups than adsorbed ionic Hg(II), which explains the surprisingly larger extent of reduction of nanoparticles than dissolved Hg(II) at relatively high mercury loadings. These findings have important implications for the assessment of global mercury budgets as well as the bioavailability of nanominerals and mineral nanoparticles.

10.
Eur J Med Chem ; 280: 116921, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39388903

RESUMO

Drug resistance against antimalarials is rendering them increasingly ineffective and so there is a need for the development of new antimalarials. To discover new antimalarial chemotypes a phenotypic screen of the Janssen Jumpstarter library against the P. falciparum asexual stage was undertaken, uncovering the cyclopropyl carboxamide structural hit class. Structure-activity analysis revealed that each structural moiety was largely resistant to change, although small changes led to the frontrunner compound, WJM280, which has potent asexual stage activity (EC50 40 nM) and no human cell cytotoxicity. Forward genetics uncovered that cyclopropyl carboxamide resistant parasites have mutations and an amplification in the cytochrome b gene. Cytochrome b was then verified as the target with profiling against cytochrome b drug-resistant parasites and a mitochondrial oxygen consumption assay. Accordingly, the cyclopropyl carboxamide class was shown to have slow-acting asexual stage activity and activity against male gametes and exoerythrocytic forms. Enhancing metabolic stability to attain efficacy in malaria mouse models remains a challenge in the future development of this antimalarial chemotype.

11.
Structure ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39389062

RESUMO

Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules containing a ligand for a protein of interest linked to an E3 ubiquitin ligase ligand that induce protein degradation through E3 recruitment to the target protein. Small changes in PROTAC linkers can have drastic consequences, including loss of degradation activity, but the structural mechanisms governing such changes are unclear. To study this phenomenon, we screened PROTACs of diverse targeting modalities and identified dTAG-13 as an activator of the xenobiotic-sensing pregnane X receptor (PXR), which promiscuously binds various ligands. Characterization of dTAG-13 analogs and precursors revealed interplay between the PXR-binding moiety, linker, and E3 ligand that altered PXR activity without inducing degradation. A crystal structure of PXR ligand binding domain bound to a precursor ligand showed ligand-induced binding pocket distortions and a linker-punctured tunnel to the protein exterior at a region incompatible with E3 complex formation, highlighting the effects of linker environment on PROTAC activity.

12.
J Pharmacol Exp Ther ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379142

RESUMO

Single nucleotide polymorphisms (SNPs) in cytochrome P450 (CYP450) enzymes alter the metabolism of a variety of drugs. Numerous medications, including chemotherapies, are metabolized by CYP450 enzymes, making the expression of this suite of enzymes in tumor cells relevant to prescription regimens for cancer patients. We analyzed the characteristics of mutations of the CYP2D6 enzymes in cancer patients obtained from the Catalogue of Somatic Mutations in Cancer (COSMIC), including mutation type, age of the patient, tissue type, and histology. Mutations were analyzed through the Cancer-Related Analysis of Variants Toolkit (CRAVAT) software along with CHASM and VEST4 algorithms to determine the likelihood of being a driver and/or pathogenic mutation. For mutations with significant CHASM and VEST4 scores, structural analysis of each corresponding mutant protein was performed. The effect of each mutation was evaluated for its impact on the overall protein stability and ligand binding using Foldit Standalone and SwissDock, respectively. Structural analysis revealed that several missense mutations in CYP2D6 resulted in altered stability after energy minimization. Three missense mutations of CYP2D6 significantly altered docking stability and those located on alpha-helices near the docking site had a more significant impact than those not found in secondary protein structures. In conclusion, we have identified a series of mutations to CYP2D6 enzymes with possible relevance to cancer pathologies. Significance Statement CYP2D6 is responsible for the metabolism of many anti-cancer drugs. This study identified and characterized a series of mutations in the CYP2D6 enzyme that occurred in tumors. We found it likely that many of these mutations would alter enzyme function, leading to changes in drug metabolism in the tumor. We provide a basis for predicting the likelihood of a patient carrying these mutations to identify patients who may benefit from a precision medicine approach to drug selection and dosing.

13.
Br J Clin Pharmacol ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39380207

RESUMO

AIMS: Interindividual variations in efavirenz (EFV) plasma concentrations are extensive, but paediatric data on its consequences for viral control are scarce. The aim of this study was to explore the role of genetic variation in achieving therapeutic efavirenz plasma concentrations in a cohort of Ugandan children and the linkage between genetic CYP2B6 variants, EFV plasma variability, viral resistance and viral outcome. METHODS: Ninety-nine treatment-naïve children, aged 3-12 years and living with HIV, were followed for 24 weeks after ART initiation assessing mid-dose efavirenz plasma concentrations, HIV RNA, HIV drug resistance and adherence. Polymorphisms in genes coding for drug-metabolizing enzymes were genotyped. Efavirenz concentrations were determined by liquid chromatography coupled with high-resolution tandem mass spectrometry. Metabolizer phenotype was predicted from composite genotypes of CYP2B6 (c.516G>T and c.983 T>C). A mixed effects restricted maximum likelihood regression model was used to identify important factors for efavirenz exposure. RESULTS: Efavirenz plasma concentrations were below the therapeutic interval (1000-4000 mg/mL) in 12-17% and above in 21-24% of measurements. Eight children had persisting subtherapeutic concentrations, five of which failed virologically and three acquired at least one new resistant mutation. Multivariate modelling explained 70% of interindividual variation in plasma concentration, with treatment duration, adherence, CYP2B6c.136A>G, and metabolizer phenotype as independent predictors of EFV concentration. In univariate analysis, metabolizer phenotype explained 50% of interindividual variation. CONCLUSIONS: Metabolizer phenotype explained 50% of interindividual variation in efavirenz plasma concentration. Autoinduction was not confirmed and >33% of the concentrations were outside the therapeutic interval. Subtherapeutic concentrations worsened virological resistance and outcomes. Genotype-based dosing may help avert both sub- and supratherapeutic efavirenz plasma concentrations in Ugandan children.

14.
J Hazard Mater ; 480: 136020, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39383693

RESUMO

The anaerobic oxidation of methane (AOM) carried out by anaerobic methanotrophic archaea (ANME) plays an important role in mitigating methane emissions from aqueous environments and has applications in bioremediation and wastewater treatment. Previous studies showed that AOM could be coupled to chromate reduction. However, the specific responsible microorganisms and the biochemical mechanisms are unclear. Herein, we showed that a consortium dominated by ANME "Candidatus Methanoperedens" was able to couple AOM to the reduction of Cr(VI) to Cr(III) at a stoichiometry close to the theoretical ratio. Quantitative distribution analysis of Cr(III) products suggested Cr(VI) was predominantly reduced via the extracellular respiratory pathways. Further Cr(III)-targeted fluorescent visualization combined with single-cell electron microscopic imaging suggested that Cr(VI) was reduced by "Ca. Methanoperedens" independently. Biochemical mechanism investigation via proteomic analysis showed proteins for nitrate reduction under nitrate-reducing conditions were significantly downregulated in Cr(VI)-reducing incubation. Instead, many multiheme cytochrome c (MHCs) were among the most upregulated proteins during the Cr(VI) reduction process, suggesting MHC-governed pathways for extracellular Cr(VI) reduction. The significant upregulation of a formate-dependent nitrite reductase during Cr(VI) reduction indicated its potential contribution to the small proportion of Cr(VI) reduction inside cells.

15.
Drug Metab Dispos ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375042

RESUMO

Polypharmacy-related drug-drug interactions (DDIs) are a significant and growing healthcare concern. An increasing number of therapeutic drugs on the market underscores the necessity to accurately assess new drug combinations during pre-clinical evaluation for DDIs. In vitro primary human hepatocytes (PHH) models are only applicable for short term induction studies due to their rapid loss of metabolic function. Though co-culturing non-human stromal cells with PHH has been shown to stabilize metabolic activity long-term, there are concerns about human specificity for accurate clinical assessment. In this study, we demonstrate a PHH-only liver microphysiological system (MPS) in the Liver Tissue Chip (LTC) is capable of maintaining long-term functional and metabolic activity of PHH from three individual donors, and thus a suitable platform for long-term DDI induction studies. The responses to rifampicin induction of three PHH donors were assessed using CYP activity and mRNA changes. Additionally, victim PK studies were conducted with midazolam (high clearance) and alprazolam (low clearance) following perpetrator drug treatment, rifampicin-mediated induction, which resulted in a 2-fold and a 2.6-fold increase in midazolam and alprazolam intrinsic clearance values respectively compared to the untreated liver MPS. We also investigated the induction effects of different dosing regimens of the perpetrator drug (rifampicin) on CYP activity levels, showing minimal variation in the intrinsic clearance of the victim drug (midazolam). This study illustrates the utility of the LTC for in vitro liver-specific DDI induction studies, providing a translational experimental system to predict clinical clearance values of both perpetrator and victim drugs. Significance Statement This study demonstrates the utility of the Liver Tissue Chip (LTC) with primary human hepatocyte (PHH)-only liver microphysiological system (MPS) for drug-drug interaction (DDI) induction studies. This unique in vitro system with continuous recirculation maintains long-term functionality and metabolic activity for up to 4 weeks, enabling the study of perpetrator and victim drug pharmacokinetics, quantification of drug-induced CYP mRNA and activity levels, investigation of patient variability, and ultimately clinical predictions.

16.
Plant Cell Environ ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375914

RESUMO

Mangrove plants, which have evolved to inhabit tidal flats, may adjust their physiological and morphological traits to optimize their growth in saline habitats. Furthermore, the confined distribution of mangroves within warm regions suggests that warm temperature is advantageous to their growth in saline environments. We analyzed growth, morphology and respiratory responses to moderate salinity and temperature in a mangrove species, Rhizophora stylosa. The growth of R. stylosa was accelerated in moderate salinity compared with its growth in fresh water. Under warm conditions, the increased growth is accompanied by increased specific leaf area (SLA) and specific root length. Low temperature resulted in a low relative growth rate due to a low leaf area ratio and small SLA, regardless of salinity. Salinity lowered the ratio of the amounts of alternative oxidase to cytochrome c oxidase in the mitochondrial respiratory chain in leaves. Salinity enhanced the leaf respiration rate for maintenance, but under warm conditions this enhancement was compensated by a low leaf respiration rate for growth. In contrast, salinity enhanced overall leaf respiration rates at low temperature. Our results indicate that under moderate saline conditions R. stylosa leaves require warm temperatures to grow with a high rate of resource acquisition without enhancing respiratory cost.

17.
Int J Biol Macromol ; 281(Pt 1): 136075, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39370082

RESUMO

Pseudomonas putida KT2440 encodes a defense system that rigidifies membranes by a cytochrome c-type cis/trans fatty acid isomerase (CTI). Despite its potential as an industrial biocatalyst for directly regulating the geometric isomerism of monounsaturated fatty acids, its original catalytic and structural properties have remained elusive. In this study, the catalytic nature of wild-type CTI purified P. putida KT2440 against dietary monounsaturated fatty acids was investigated. It showed substrate preference for palmitoleic acid (C16:1, cis-Δ9), along with substrate promiscuity with chain length and double bond position (palmitoleic acid>cis-vaccenic acid>oleic acid). Under determined optimum reaction conditions, its catalytic efficiency (kcat/Km) was evaluated as 5.13 × 102 M-1·sec-1 against palmitoleic acid. Furthermore, computational predictions of the protein structure revealed its monoheme cytochrome c-type domain and a parasol-like transmembrane domain, suggesting its catalytic mode of action. For effective cis/trans isomerization, the ethylene double bond of monounsaturated fatty acids should be precisely positioned at the heme center of CTI, indicating that its substrate specificity can be determined by the alkyl chain length and the double bond position of the fatty acid substrates. These findings shed light on the potential of CTI as a promising biocatalyst for the food and lipid industry.

18.
Appl Microbiol Biotechnol ; 108(1): 483, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377838

RESUMO

Terpenoids are known for their diverse structures and broad bioactivities with significant potential in pharmaceutical applications. However, natural products with low yields are usually ignored in traditional chemical analysis. Feature-based molecular networking (FBMN) was developed recently to cluster compounds with similar skeletons, which can highlight trace amounts of unknown compounds. Fusoxypene A is a sesterterpene synthesized by Fusarium oxysporum fusoxypene synthase (FoFS) with a unique 5/6/7/3/5 ring system. In this study, the FoFS-containing biosynthetic gene cluster was identified from F. oxysporum FO14005, and an efficient FBMN-based strategy was established to characterize four new sesterterpenoids, fusoxyordienoid A-D (1-4), based on a small-scale fermentation strategy. A cytochrome P450 monooxygenase, FusB, was found to be involved in the functionalization of fusoxypene A at C-17 and C-24 and responsible for the hydroxylation of fusoxyordienoid A at C-1 and C-8. This study highlights the potential of FBMN as a powerful tool for the discovery and characterization of natural compounds with low abundance. KEY POINTS: Combined small-scale fermentation and FBMN for rapid discovery of fusoxyordienoids Characterization of four new fusoxyordienoids with 5/6/7/3/5 ring system Biosynthetic pathway elucidation via tandem expression and substrate feeding.


Assuntos
Fermentação , Fusarium , Família Multigênica , Sesterterpenos , Fusarium/metabolismo , Fusarium/genética , Sesterterpenos/metabolismo , Sesterterpenos/química , Vias Biossintéticas/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Produtos Biológicos/metabolismo
19.
Parasit Vectors ; 17(1): 419, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375755

RESUMO

BACKGROUND: Scabies, an infestation of the mite Sarcoptes scabiei, has seen an increase in clinical diagnoses in the Netherlands since 2011. This study aimed to analyse PCR-positive S. scabiei skin samples through partial genome sequencing and to link findings to patient epidemiological characteristics. METHODS: Skin samples were collected from individuals in the Netherlands between January 2016 and January 2023. On the PCR-positive S. scabiei skin samples, partial mitochondrial cytochrome c oxidase subunit 1 gene (cox1) sequencing was performed to assess genetic variability. Epidemiological information was collected through interviews. We examined associations between cox1 subtypes, epidemiological factors and treatment outcomes. RESULTS: Sequencing results were obtained from 128 patients, with epidemiological information available for 55 (43%) of these patients. Fifteen distinct cox1 subtypes were identified. Subtype 01 was most prevalent (45%) and present across all age groups and social settings. The remaining subtypes were less common and not consistently found in all contexts. Five clusters were identified, each with identical cox1 subtypes. Comparative analysis with GenBank sequences revealed genetic similarities with strains from Australia, the USA and China, suggesting the global distribution and transmission of specific subtypes. A substantial proportion (73%) of patients with scabies required multiple treatments to eradicate the infestation, with no subtype-related differences. CONCLUSIONS: This is the first study linking S. scabiei sequencing results to patient epidemiological data. Several subtypes clustered in specific geographic regions and social contexts, underscoring localised transmission patterns. Further research with larger sample sizes is needed to enhance our understanding of the transmission of this mite. This study provides valuable insights that will strengthen scabies control efforts.


Assuntos
Sarcoptes scabiei , Escabiose , Sarcoptes scabiei/genética , Escabiose/epidemiologia , Escabiose/transmissão , Escabiose/parasitologia , Humanos , Países Baixos/epidemiologia , Animais , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Criança , Adolescente , Adulto Jovem , Complexo IV da Cadeia de Transporte de Elétrons/genética , Pré-Escolar , Tipagem Molecular , Idoso de 80 Anos ou mais , Filogenia , Pele/parasitologia , Variação Genética , Lactente
20.
Expert Rev Clin Pharmacol ; : 1-8, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360663

RESUMO

OBJECTIVE: We aimed to investigate the ambiguous findings of earlier research regarding the reduction of quetiapine plasma levels when combined with lamotrigine, most likely via UDP-glucuronosyltransferase induction by lamotrigine. METHODS: One thousand one hundred and fifty samples, divided into four groups of patients receiving either quetiapine immediate- (IR) or extended-release (XR) without or in combination with lamotrigine were compared regarding absolute and dose-adjusted plasma concentrations. Furthermore, samples of intra-individual controls were analyzed. RESULTS: Patients receiving quetiapine IR in combination with lamotrigine showed 31% lower plasma (p = 0.002) and 23% lower dose-adjusted plasma concentrations (p = 0.004) compared to those receiving IR monotherapy. The proportion of patients with quetiapine plasma concentrations below the lower limit of the therapeutic reference range was 50% and 30% in the combination group and in patients receiving monotherapy, respectively (p = 0.03). However, no significant differences regarding plasma concentration (p = 0.13) and dose-adjusted plasma concentration (p = 0.42) were observed in patients with combination vs. monotherapy with the XR formulation of quetiapine. In the intra-individual controls, no trends could be identified, possibly due to insufficient number of samples (p > 0.05). CONCLUSIONS: The combination of quetiapine IR with lamotrigine is associated with significantly lower drug concentrations of quetiapine, potentially impacting quetiapine effectiveness. For quetiapine ER, a significant interaction is less likely.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA