Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Phytomedicine ; 129: 155559, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579642

RESUMO

BACKGROUND: Osteoclast plays an important role in maintaining the balance between bone anabolism and bone catabolism. The abnormality of osteoclast is closely related to osteolytic bone diseases such as osteoporosis, rheumatoid arthritis and tumor bone metastasis. PURPOSE: We aim to search for natural compound that may suppress osteoclast formation and function. STUDY DESIGN: In this study, we assessed the impact of Dauricine (Dau) on the formation and function of osteoclasts in vitro, as well as its potential in preventing bone loss in an ovariectomy mouse model in vivo. METHODS: Multiple in vitro experiments were carried out, including osteoclastogenesis, podosomal belt formation, bone resorption assay, RNA-sequencing, real-time quantitative PCR, ROS level detection, surface plasmon resonance assay, luciferase assay and western blot. To verify the effect in vivo, an ovariectomized mouse model (OVX model) was constructed, and bone parameters were measured using micro-CT and histology. Furthermore, metabolomics analysis was performed on blood serum samples from the OVX model. RESULTS: In vitro experiments demonstrated that Dau inhibits RANKL-induced osteoclastogenesis, podosomal belt formation, and bone resorption function. RNA-sequencing results revealed that Dau significantly suppresses genes related to osteoclast. Functional enrichment analysis indicated that Dau's inhibition of osteoclasts may be associated with NF-κB signaling pathway and reactive oxygen metabolism pathway. Molecular docking, surface plasmon resonance assay and western blot analysis further confirmed that Dau inhibits RANKL-induced osteoclastogenesis by modulating the ROS/NF-κB/NFATc1 pathway. Moreover, administration of Dau to OVX-induced mice validated its efficacy in treating bone loss disease. CONCLUSION: Dau prevents OVX-induced bone loss by inhibiting osteoclast activity and bone resorption, potentially offering a new approach for preventing and treating metabolic bone diseases such as osteoporosis. This study provides innovative insights into the inhibitory effects of Dau in an in vivo OVX model and elucidates the underlying mechanism.


Assuntos
Benzilisoquinolinas , NF-kappa B , Fatores de Transcrição NFATC , Osteoclastos , Osteogênese , Ovariectomia , Ligante RANK , Espécies Reativas de Oxigênio , Animais , Benzilisoquinolinas/farmacologia , Feminino , Ligante RANK/metabolismo , Camundongos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Osteogênese/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Modelos Animais de Doenças , Reabsorção Óssea/tratamento farmacológico , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Humanos , Tetra-Hidroisoquinolinas
2.
Artigo em Inglês | MEDLINE | ID: mdl-38321898

RESUMO

OBJECTIVE: Non-small cell lung cancer (NSCLC) is still a solid tumor with high malignancy and poor prognosis. Vascular endothelial growth factor receptor 3 (FLT4, VEGFR3) is overexpressed in NSCLC cells, making it a potential target for NSCLC treatment. In this study, we aimed to explore the anti-cancer effects of dauricine on NSCLC cells and its mechanism targeting FLT4. METHODS: We found that dauricine inhibited the growth of NCI-H1299 cells by blocking the cycle in the G2/M phase through flow cytometry analysis. In addition, dauricine also inhibited the migration of NCI-H1299 cells by wound healing assay and transwell migration assay. More importantly, our empirical analysis found the anti-cancer effect of dauricine on NCI-H1299 cells and the protein level of FLT4 had a distinctly positive correlation, and this effect was weakened after FLT4 knockdown. RESULTS: It is suggested that dauricine suppressed the growth and migration of NCI-H1299 cells by targeting FLT4. Furthermore, dauricine inhibited FLT4 downstream pathways, such as PTEN/AKT/mTOR and Ras/MEK1/2/ERK1/2, thereby regulating cell migration-related molecule MMP3 and cell cycle-related molecules (CDK1, pCDK1-T161, and cyclin B1). CONCLUSION: Dauricine may be a promising FLT4 inhibitor for the treatment of NSCLC.

3.
J Ethnopharmacol ; 321: 117560, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081396

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dauricine (DA) is a natural plant-derived alkaloid extracted from Menispermum dauricum. Menispermum dauricum has been used in traditional Chinese medicine as a classic remedy for rheumatoid arthropathy and is believed to be effective in alleviating swelling and pain in the limbs. AIM OF THE STUDY: Osteoarthritis (OA) is a classic degenerative disease involving chondrocyte death, and there is still a lack of effective therapeutic agents that can reverse the progression of the disease. Here we explored the therapeutic effects of DA against OA and further explored the mechanism. MATERIALS AND METHODS: The effect of DA on cell viability was assessed by CCK-8. IL-1ß-treated mouse chondrocytes were used as an in vitro model of OA, and apoptosis was detected by flow cytometry. QRT-PCR, western blotting, cell staining, and immunofluorescence were used to detect relevant inflammatory factors and cartilage-specific expression. RNA sequencing was used to identify pertinent signaling pathways. The therapeutic effect of DA was verified by micro-CT, histological analysis and immunohistochemical analysis in a mouse OA model. RESULTS: DA demonstrated a high safety profile on chondrocytes, significantly reversing the inflammatory response induced by IL-1ß, and promoting factors associated with cartilage regeneration. Moreover, DA exhibited a significant protective effect on the knee joints of mice undergoing ACLT-DMM, effectively preventing cartilage degeneration and subchondral bone tissue destruction. These positive therapeutic effects were achieved through the modulation of the NF-κB pathway and the Ca2+ signaling pathway by DA. CONCLUSION: Being derived from a traditional herb, DA exhibits remarkable therapeutic potential and safety in OA treatment, presenting a promising option for patients dealing with osteoarthritis.


Assuntos
Benzilisoquinolinas , Menispermum , Osteoartrite , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Condrócitos , Menispermum/metabolismo , Células Cultivadas , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Benzilisoquinolinas/farmacologia , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Interleucina-1beta/metabolismo
4.
Phytother Res ; 38(1): 131-146, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37821355

RESUMO

Neuroblastoma and glioblastoma are primary malignant tumors of the nervous system, with frequent relapse and limited clinical therapeutic drugs. The failure of their treatment is due to the tumor cells exhibiting cancer stem-like cells (CSLCs) properties. Octamer binding transcription factor 4 (Oct4) is involved in mediating CSLCs, our previous work found that Oct4-driven reprogramming of astrocytes into induced neural stem cells was potentiated with continuous sonic hedgehog (Shh) stimulation. In this study, we aimed to study the importance of Oct4 and Shh combination in the stemness properties induction of neuroblastoma and glioblastoma cells, and evaluate the anti-stemness effect of dauricine (DAU), a natural product of bis-benzylisoquinoline alkaloid. The effect of Oct4 and Shh co-activation on cancer stemness was evaluated by tumor spheres formation model and flow cytometry analysis. Then the effects of DAU on SH-SY5Y and T98-G cells were assessed by the MTT, colony formation, and tumor spheres formation model. DAU acts on Oct4 were verified using the Western blotting, MTT, and so on. Mechanistic studies were explored by siRNA transfection assay, Western blotting, and flow cytometry analysis. We identified that Shh effectively improved Oct4-mediated generation of stemness in SH-SY5Y and T98-G cells, and Oct4 and Shh co-activation promoted cell growth, the resistance of apoptosis. In addition, DAU, a natural product, was found to be able to attenuate Oct4/Shh co-activated stemness and induce cell cycle arrest and apoptosis via blocking AKT/ß-catenin signaling in neuroblastoma and glioblastoma, which contributed to the neuroblastoma and glioblastoma cells growth inhibition by DAU. In summary, our results indicated that the treatment of DAU may be served as a potential therapeutic method in neuroblastoma and glioblastoma.


Assuntos
Benzilisoquinolinas , Produtos Biológicos , Glioblastoma , Neuroblastoma , Tetra-Hidroisoquinolinas , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Proteínas Hedgehog/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Benzilisoquinolinas/farmacologia , Células-Tronco Neoplásicas , Proliferação de Células , Apoptose , Produtos Biológicos/farmacologia
5.
Biochem Pharmacol ; 217: 115838, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778445

RESUMO

M2 type tumor-associated macrophages, an essential component of the tumor microenvironment (TME), have been proved to contribute to tumor metastasis. Dauricine (Dau) has recently received widespread attention due to its multiple targets and low price. However, the effect of Dau on macrophage polarization of TME remains unclear. In this study, we investigated the effect of Dau on prostate cancer (PCa) metastasis and specifically its correlation to macrophage polarization. Our results showed that Dau efficiently suppressed M2 polarization of macrophages induced by interleukin (IL) -4 and IL-13. Mechanistically, Dau inhibited the activity of PI3K/AKT signaling pathway, which subsequently suppressed macrophage differentiation to M2 type. Importantly, our study indicated that Dau decreased the release of chitinase 3-like protein 1 (CHI3L1) from M2 macrophages, which ultimately inhibited the M2 macrophage-mediated progression of PCa cells in vitro and in vivo. Taken together, our data demonstrated that Dau suppressed M2 polarization of macrophages via downregulation of the PI3K/AKT signaling pathway, in turn, preventing proliferation, epithelial-mesenchymal transition, migration, and invasion of PCa cells. Thus, this study reveals a previously unrecognized function of Dau in inhibition of PCa progression via intervention in M2 polarization of macrophages.


Assuntos
Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Masculino , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Macrófagos , Neoplasias da Próstata/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral
6.
Int J Biol Macromol ; 253(Pt 7): 127344, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37848107

RESUMO

The continued viral evolution results in the emergence of various SARS-CoV-2 variants, such as delta or omicron, that are partially resistant to current vaccines and antiviral medicines, posing an increased risk to global public health and raising the importance of continuous development of antiviral medicines. Inhibitor screening targeting the interactions between the viral spike proteins and their human receptor ACE2 represents a promising approach for drug discovery. Here, we demonstrate that the evolutionary trend of the SARS-CoV-2 variants is associated with increased electrostatic interactions between S proteins and ACE2. Virtual screening based on the ACE2-RBD binding interface identified nine monomers of Traditional Chinese medicine (TCM). Furthermore, live-virus neutralization assays revealed that Dauricine, one of the identified monomers, exhibited an antiviral activity with an IC50 range of 18.2 to 33.3 µM for original strain, Delta, and Omicron strains, respectively. The computational study showed that the polycyclic and methoxy groups of Dauricine adhere to the RBD surface through π-π and electrostatic interactions. The discovery of Dauricine is a successful attempt to target viral entry, which will not only help society to respond quickly to viral variants, but also accelerate variant drug development thereby reducing the pressure on health authorities to respond to outbreaks.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Antivirais/farmacologia , Ligação Proteica
7.
Front Pharmacol ; 14: 1236892, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663242

RESUMO

[This corrects the article DOI: 10.3389/fphar.2021.758962.].

8.
Toxicol Appl Pharmacol ; 474: 116613, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37414289

RESUMO

Alzheimer's disease (AD) is a common neurodegenerative disease in the elderly. Dysregulation of intracellular Ca2+ homeostasis plays a critical role in the pathological development of AD. Dauricine (DAU) is a bisbenzylisoquinoline alkaloid isolated from Menispermum dauricum DC., which can prevent the influx of extracellular Ca2+ and inhibit the release of Ca2+ from the endoplasmic reticulum. DAU has a potential for anti-AD. However, it is unclear whether DAU can exert its anti-AD effect in vivo by regulating the Ca2+ related signaling pathways. Here, we investigated the effect and mechanism of DAU on D-galactose and AlCl3 combined-induced AD mice based on the Ca2+/CaM pathway. The results showed that DAU (1 mg/kg and 10 mg/kg for 30 days) treatment attenuated learning and memory deficits and improved the nesting ability of AD mice. The HE staining assay showed that DAU could inhibit the histopathological alterations and attenuate neuronal damage in the hippocampus and cortex of AD mice. Studies on the mechanism indicated that DAU decreased the phosphorylation of CaMKII and Tau and reduced the formation of NFTs in the hippocampus and cortex. DAU treatment also reduced the abnormally high expression of APP, BACE1, and Aß1-42, which inhibited the deposition of Aß plaques. Moreover, DAU could decrease Ca2+ levels and inhibit elevated CaM protein expression in the hippocampus and cortex of AD mice. The molecular docking results showed that DAU may have a high affinity with CaM or BACE1. DAU has a beneficial impact on pathological changes in AD mice induced by D-galactose and AlCl3 and may act by negative regulation of the Ca2+/CaM pathway and its downstream molecules such as CaMKII and BACE1.


Assuntos
Doença de Alzheimer , Benzilisoquinolinas , Disfunção Cognitiva , Doenças Neurodegenerativas , Camundongos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Galactose/toxicidade , Galactose/metabolismo , Secretases da Proteína Precursora do Amiloide/efeitos adversos , Secretases da Proteína Precursora do Amiloide/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Simulação de Acoplamento Molecular , Ácido Aspártico Endopeptidases/efeitos adversos , Ácido Aspártico Endopeptidases/metabolismo , Benzilisoquinolinas/efeitos adversos , Hipocampo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos
9.
Cell Biochem Funct ; 41(6): 713-721, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37470500

RESUMO

We aim to investigate the therapeutic effect of dauricine on ulcerative colitis (UC). Our results indicated that dauricine attenuated the reduction of colonic length, weight loss, disease activity index, colonic tissue damage, and inflammatory cytokine levels in dextran sulfate sodium mice. In addition, dauricine reduced lipopolysaccharide-induced inflammation in HT-29 cells. Mechanically, dauricine docked with p65, a member of nuclear transcription factor kappaB (NF-κB) family, through which reduced the inflammatory cytokine release from HT-29 cells. Together, the above results inferred that dauricine had therapeutic effect for UC by suppressing NF-κB pathway, which provided a promising mean for UC treatment.


Assuntos
Colite Ulcerativa , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Transdução de Sinais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Modelos Animais de Doenças
10.
Brain Sci ; 12(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36138889

RESUMO

Inflammatory reaction after ischemia-reperfusion contributes significantly to a worsened prognosis, and microglia activation is the main resource of inflammation in the nervous system. Targeting STAT5 has been shown to be a highly effective anti-inflammatory therapy; however, the mechanism by which the STAT5 signaling pathway regulates neuroinflammation following brain injury induced by ischemia-reperfusion remains unclear. Dauricine is an effective agent in anti-inflammation and neuroprotection, but the mechanism by which dauricine acts in ischemia-reperfusion remained unknown. This study is the first to find that the anti-inflammation mechanism of dauricine mainly occurs through the STAT5-NF-κB pathway and that it might act as a STAT5 inhibitor. Dauricine suppresses the inflammation caused by cytokines Eotaxin, KC, TNF-α, IL-1α, IL-1ß, IL-6, IL-12ß, and IL-17α, as well as inhibiting microglia activation. The STAT5b mutant at Tyr-699 reverses the protective effect of dauricine on the oxygen-glucose deprivation-reperfusion injury of neurons and reactivates the P-NF-κB expression in microglia. These results suggest that dauricine might be able to suppress the neuroinflammation and protect the neurons from the injury of post-ischemia-reperfusion injury via mediating the microglia activation through the STAT5-NF-κB pathway. As a potential therapeutic target for neuroinflammation, STAT5 needs to be given further attention regarding its role in ischemic stroke.

11.
J Inflamm Res ; 15: 2649-2663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494316

RESUMO

Introduction: Peripheral neutrophil infiltration can exacerbate ischemia-reperfusion injury. We focused on the relationship between various peripheral immune cells and cerebral ischemia-reperfusion (I/R) injury. Methods: In this study, we investigated the effects of dauricine on neuronal injury induced by ischemia-reperfusion and peripheral immune cells after ischemic stroke in mouse model, and we explored the undefined mechanisms of regulating peripheral immune cells through RNA sequencing and various biochemical verification in vitro and in vivo. Results: We found that dauricine improved the neurological deficits of I/R injury, reduced the infarct volume, and improved the neurological scores. Furthermore, dauricine reduced the infiltration of neutrophils into the brain after MCAO-R and increased peripheral neutrophils but unchanged the permeability of the endotheliocyte Transwell system in an in vitro blood-brain barrier (BBB) model. RNA sequencing showed that chemotaxis factors, such as CXCL3, CXCL11, CCL20, CCL22, IL12a, IL23a, and serpine1, might play a crucial role. Overexpression of serpine1 reversed LPS-induced migration of neutrophils. Dauricine can directly bind with serpine1 in ligand-receptor docking performed with the Autodock and analyzed with PyMOL. Conclusion: We identified chemotaxis factor serpine1 played a crucial role in peripheral neutrophil infiltration, which may contribute to reduce the neuronal injury induced by ischemia-reperfusion. These findings reveal that serpine1 may act as a potential treatment target in the acute stage of ischemic stroke.

12.
Eur J Pharmacol ; 914: 174461, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34469757

RESUMO

Intracerebral hemorrhage (ICH) is a severe stroke subtype with high disability and mortality, and no effective treatment is available. Previous research on intracerebral hemorrhage secondary brain injury drugs mainly targeted at cell apoptosis, inflammation and oxidative stress, but did not achieve good effects. In recent years, ferroptosis has become a focus concern in neurological diseases. Ferroptosis is a new type of programmed cell death caused by iron-dependent accumulation of lipid peroxides, in which glutathione peroxidase 4 (GPX4) is a key protein affecting ferroptosis. In this study, we used the STRING protein database to predict the proteins that may be co-expressed with GPX4, and studied the ability of Dauricine(Dau) to up-regulate the expression of GPX4 against ferroptosis and neuroprotection after intracerebral hemorrhage in normal cells in vitro, glutathione peroxidase 4 (GPX4) knockdown cells and collagenase injection in vivo in mouse models of intracerebral hemorrhage. The results showed that glutathione reductase (GSR) was a possible co-expression protein with GPX4. Dau could up-regulate the expression of glutathione peroxidase 4 (GPX4) in intracerebral hemorrhage(ICH) model, normal cells and GPX4 knockdown cells in vitro, and simultaneously up-regulate the expression of GSR in ICH mice. Dau could also reduce the levels of iron and lipid peroxidation, and have a neuroprotective effect on intracerebral hemorrhage(ICH) mice. It was tesified that Dauricine(Dau) could inhibit ferroptosis of nerve cells and alleviate brain injury after intracerebral hemorrhage by upregulating glutathione peroxidase 4 (GPX4) and glutathione reductase (GSR) co-expression. Therefore, Dau may be an effective drug for inhibiting ferroptosis and treating intracerebral hemorrhage.


Assuntos
Benzilisoquinolinas/farmacologia , Hemorragia Cerebral , Ferroptose , Glutationa Redutase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Tetra-Hidroisoquinolinas/farmacologia , Animais , Células Cultivadas , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Modelos Animais de Doenças , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Peróxidos Lipídicos/metabolismo , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Morte Celular Regulada/efeitos dos fármacos , Morte Celular Regulada/fisiologia
13.
Front Pharmacol ; 12: 758962, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925018

RESUMO

Endothelial cells are the fundamental components of blood vessels that regulate several physiological processes including immune responses, angiogenesis, and vascular tone. Endothelial dysfunction contributes to the development of various diseases such as acute lung injury, and endothelial inflammation is a vital part of endothelial dysfunction. Dauricine is an extract isolated from Menispermum dauricum DC, a traditional Chinese medical plant that can be used for pharyngitis. In this work, we found that IL-1ß-induced overexpression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin was inhibited by dauricine in primary human umbilical vein endothelial cells (HUVECs). Correspondingly, adhesion of human acute monocytic leukemia cell line (THP-1) to HUVECs was decreased by dauricine. Further studies showed that dauricine inhibited the activation of nuclear factor-κB (NF-κB) pathway in HUVECs stimulated with IL-1ß. In vivo, dauricine protected mice from lipopolysaccharide (LPS)-induced acute lung injury. In lung tissues, the activation of NF-κB pathway and the expression of its downstream genes (ICAM-1, VCAM-1, and E-selectin) were decreased by dauricine, consistent with what was found in vitro. In summary, we concluded that dauricine could alleviate endothelial inflammation by suppressing NF-κB pathway, which might serve as an effective candidate for diseases related with endothelial inflammation.

14.
Phytother Res ; 35(7): 3836-3847, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33792976

RESUMO

Melanoma is the most common type of skin cancer. Signal transducer and activator of transcription 3 (STAT3) signaling has been demonstrated to be a therapeutic target for melanoma. Dauricine (Dau), an alkaloid compound isolated from the root of Menispermum dauricum DC., has shown tumor-suppressing effects in multiple human cancers, but its potential in melanoma remains unexplored. In this study, we demonstrated that Dau significantly inhibited the viability and proliferation of A375 and A2058 melanoma cells. Death of melanoma cells was also markedly promoted by Dau. Moreover, Dau inhibited phosphorylation-mediated activation of STAT3 and Src in a dose-dependent manner. Notably, constitutive activation of Src partially abolished the antiproliferative and cytotoxic activities of Dau on melanoma cells. Molecular docking showed that Dau could dock on the kinase domain of Src with a binding energy of -10.42 kcal/mol. Molecular dynamics simulations showed that Src-Dau binding was stable. Surface plasmon resonance imaging analysis also showed that Dau has a strong binding affinity to Src. In addition, Dau suppressed the growth of melanoma cells and downregulated the activation of Src/STAT3 in a xenograft model in vivo. These data demonstrated that Dau inhibits proliferation and promotes cell death in melanoma cells by inhibiting the Src/STAT3 pathways.


Assuntos
Benzilisoquinolinas/farmacologia , Melanoma , Proteínas Proto-Oncogênicas pp60(c-src) , Fator de Transcrição STAT3 , Tetra-Hidroisoquinolinas/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Melanoma/tratamento farmacológico , Simulação de Acoplamento Molecular , Fosforilação , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Antioxidants (Basel) ; 9(7)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640590

RESUMO

Dauricine (DAC), an isoquinoline alkaloid, exhibits anti-inflammatory activity. We hypothesized that DAC may prevent the inflammatory bone loss induced by lipopolysaccharide (LPS). LPS-induced bone loss was decreased by DAC in female C57BL/6J mice as evaluated by micro-computerized tomography (µCT) analysis. In vivo tartrate-resistant acid phosphatase (TRAP) staining showed that the increased number of osteoclasts (OCs) in LPS-treated mice was attenuated by DAC, indicating that DAC exhibited bone sparing effects through acting on OCs. DAC also decreased the differentiation and activity of OCs after LPS stimulation in vitro. LPS-induced cytosolic reactive oxygen species (cROS) oxidized PP2A, a serine/threonine phosphatase, leading to the activation of IKKα/ß, followed by the nuclear localization of p65. DAC decreased LPS-induced ROS, resulting in the recovery of the activity of PP2A by reducing its oxidized form. Consequently, DAC reduced the phosphorylation of IKKα/ß to block the nuclear localization of p65, which decreased NF-κB activation. Taken together, DAC reduced the differentiation and activity of OCs by decreasing ROS via the ROS/PP2A/NF-κB axis, resulting in protection from LPS-induced bone loss. We have demonstrated that LPS-induced bone loss was inhibited by DAC via its action on OCs, implying the therapeutic potential of DAC against inflammatory bone loss.

16.
J Nanobiotechnology ; 18(1): 61, 2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32306970

RESUMO

Primary intracerebral hemorrhage (ICH) is a leading cause of long-term disability and death worldwide. Drug delivery vehicles to treat ICH are less than satisfactory because of their short circulation lives, lack of specific targeting to the hemorrhagic site, and poor control of drug release. To exploit the fact that metal ions such as Fe2+ are more abundant in peri-hematomal tissue than in healthy tissue because of red blood cell lysis, we developed a metal ion-responsive nanocarrier based on a phosphonated calix[4]arene derivative in order to deliver the neuroprotective agent dauricine (DRC) specifically to sites of primary and secondary brain injury. The potential of the dauricine-loaded nanocarriers for ICH therapy was systematically evaluated in vitro and in mouse models of autologous whole blood double infusion. The nanocarriers significantly reduced brain water content, restored blood-brain barrier integrity and attenuated neurological deficits by inhibiting the activation of glial cells, infiltration by neutrophils as well as production of pro-inflammatory factors (IL-1ß, IL-6, TNF-α) and matrix-metalloprotease-9. These results suggest that our dauricine-loaded nanocarriers can improve neurological outcomes in an animal model of ICH by reducing inflammatory injury and inhibiting apoptosis and ferroptosis.


Assuntos
Benzilisoquinolinas/química , Calixarenos/química , Hemorragia Cerebral/patologia , Portadores de Fármacos/química , Metais/química , Nanoestruturas/química , Fármacos Neuroprotetores/química , Fenóis/química , Tetra-Hidroisoquinolinas/química , Animais , Benzilisoquinolinas/administração & dosagem , Benzilisoquinolinas/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Modelos Animais de Doenças , Humanos , Interleucina-1beta/metabolismo , Íons/química , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Organofosfonatos/química , Espécies Reativas de Oxigênio/metabolismo , Tetra-Hidroisoquinolinas/administração & dosagem , Tetra-Hidroisoquinolinas/farmacologia
17.
Front Cell Dev Biol ; 8: 624339, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33634105

RESUMO

Alzheimer's disease (AD) is characterized by extracellular amyloid plaques composed of ß-amyloid (Aß) and intracellular neurofibrillary tangles containing hyperphosphorylated tau protein. No effective therapy is available for this disease. In this study, we investigated the potential therapeutic effects of dauricine (DAU), a benzyl tetrahydroisoquinoline alkaloid, on AD, and found that DAU administration significantly improved cognitive impairments in 3xTg-AD mice by decreasing Aß plaques and hyperphosphorylated tau and increasing the hippocampal ATP level. Proteomic and western blot analyses revealed that DAU treatment mainly modified the expression of proteins involved in mitochondrial energy metabolism, such as Aco2, Ndufs1, Cox5a, and SDHB, and that of synapse-related proteins such as Syn1 and Syn2. Pathway analysis revealed that DAU modulated the tricarboxylic acid cycle, synaptic vesicle cycle, glycolysis, and gluconeogenesis in 3xTg-AD mice. Our study suggests that DAU may be a potential drug for the treatment of AD.

18.
Life Sci ; 243: 117237, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887302

RESUMO

AIMS: Dauricine has been found that has significant neuroprotective effect on Alzheimer's disease (AD), but the mechanism is unclear, so we further investigated the possible mechanism of dauricine on AD. MAIN METHODS: Cell counting kit-8 (CCK8) was applied to measure the cytotoxicity of dauricine on SH-SY5Y cells that overexpress the Swedish mutant form of human ß-amyloid precursor protein (APPsw) and control cells (Neo). We used the Cu2+ to induce oxidative damage on APPsw cells, then tested the effect of dauricine on the damage and relative factors including reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and superoxide dismutase (SOD) activity. The secretion level of amyloid beta 1-42(Aß1-42), protein expression of apoptosis-related factors and the components of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway were determined by western blotting. Aß1-42-transgenic Caenorhabditis elegans GMC101, a model of AD, was applied to evaluate the neuroprotective effect of dauricine through the behavioral experiment and relative anti-oxidative tests. KEY FINDINGS: In vitro, dauricine decreased the secretion level of Aß1-42, significantly reduced the level of Cu2+-induced ROS, and restored MMP and SOD activity in APPsw cells. Meanwhile, dauricine could suppress the activation of caspase-3 and to upregulate the expression of Bcl-2. Dauricine also regulated the proteins levels of Nrf2, and Kelch-like ECH-associated protein 1 (Keap1) that is necessary for the activation of Nrf2 in APPsw cell. As oxidative stress induced by Aß or paraquat (PQ), dauricine showed protective effects in the survival experiment of GMC101 worms. SIGNIFICANCE: Those data revealed that dauricine has the pharmacological activity of anti-oxidative and anti-apoptosis, and shows the potential therapeutic value for AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Benzilisoquinolinas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Tetra-Hidroisoquinolinas/uso terapêutico , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Animais Geneticamente Modificados , Antioxidantes/farmacologia , Benzilisoquinolinas/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Linhagem Celular , Cobre/farmacologia , Modelos Animais de Doenças , Humanos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tetra-Hidroisoquinolinas/farmacologia
19.
Acta Anatomica Sinica ; (6): 543-547, 2020.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1015527

RESUMO

Objective To discuss the proliferation inhibition and apoptosis induction of human pancreatic cancer cell line SW1900 by dauricine and its possible mechanism. Methods The MTT colorimetric method was used to detect the inhibitory effects of cell viability. The apoptosis rate was tested by the Annexin Ⅴ-FITC / PI fluorescent staining of flow cytometric method . The expressions of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) and B-cell lymphoma-2 (Bcl-2) were detected by Real-time PCR and Western blotting assay. Results MTT assay showed that dauricine significantly inhibited the proliferation of SW1900 cells and the inhibitory effect was enhanced with the increasing of dauricine concentration, F = 783. 7, P < 0. 001. The apoptosis of 3 groups cells were (4. 34 ± 1. 30) % (0 mg / L dauricine), (14. 94±1. 94) % (6 mg / L dauricine) and (22. 68±3. 61) % (12 mg / L dauricine) . The mean difference was statistically significant among the three groups (F = 58. 52, P < 0. 001) . Dauricine could significantly induce apoptosis human pancreatic cancer cells with dose-dependent manner. Real-time PCR showed that the gene expressions of PI3K, Akt and Bcl-2 were lower obviously (PI3K mRNA, F = 101, P = 0. 01; Akt mRNA, F = 1666, P < 0. 01; Bcl-2 mRNA, F = 753, P<0. 001) with dose-dependent manner. Western blotting assay also showed that the protein expression of PI3K, Akt and Bcl-2 was down-regulated with dose-dependent manner. Conclusion Dauricine has proliferation inhibition and apoptosis inducement effect on human pancreatic cancer cells line SW1900. This function may be concerned with the regulation of PI3K / Akt signal pathway and lower Bcl-2 expression.

20.
Oncol Lett ; 18(5): 4403-4414, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31611949

RESUMO

Pancreatic cancer is a highly malignant cancer associated with high expression levels of sonic hedgehog signaling molecule (Shh), patched 1 (Ptch1), smoothened frizzled class receptor (Smo) and glioma-associated oncogene family zinc finger 1 (Gli1) in the hedgehog (Hh) signaling pathway. Inhibition of the Hh signaling pathway is a potential therapeutic target for pancreatic cancer. The aim of the present study was to investigate the effects of dauricine in a pancreatic cancer BxPC-3 ×enograft animal model and examine the underlying molecular mechanisms through Hh signaling pathway. High-and low-dose dauricine treatment significantly suppressed tumor growth with no concomitant effect on the spleen index. In addition, dauricine induced apoptosis and cell cycle arrest in pancreatic cancer BxPC-3 cells. The inhibitory effects of dauricine on pancreatic cancer may be mediated by the suppression of the Hh signaling pathway, as indicated by the decreases in the gene and protein expression levels of Shh, Ptch1, Smo and Gli1. The effects of dauricine were similar to those of 5-fluorouracil. Dauricine, a naturally occurring alkaloid, may be a potential anticancer agent for the treatment of pancreatic cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...