Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 910
Filtrar
1.
Plant Physiol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976580

RESUMO

Chromatin dynamics play essential roles in transcriptional regulation. The chromodomain helicase DNA-binding domain 3 (CHD3) chromatin remodeler PICKLE (PKL) and HISTONE DEACETYLASE6 (HDA6) are required for transcriptional gene silencing, but their coordinated function in gene repression requires further study. Through a genetic suppressor screen, we found that a point mutation at PKL could partially restore the developmental defects of a weak Polycomb repressive complex 1 (PRC1) mutant (ring1a-2 ring1b-3), in which RING1A expression is suppressed by a T-DNA insertion at the promoter. Compared to ring1a-2 ring1b-3, the expression of RING1A is increased, nucleosome occupancy is reduced, and the histone 3 lysine 9 acetylation (H3K9ac) level is increased at the RING1A locus in the pkl ring1a-2 ring1b-3 triple mutant. HDA6 interacts with PKL and represses RING1A expression similarly to PKL genetically and molecularly in the ring1a-2 ring1b-3 background. Furthermore, we show that PKL and HDA6 suppress the expression of a set of genes and transposable elements (TEs) by increasing nucleosome density and reducing H3K9ac. Genome-wide analysis indicated they possibly coordinately maintain DNA methylation as well. Our findings suggest that PKL and HDA6 function together to reduce H3K9ac and increase nucleosome occupancy, thereby facilitating gene/TE regulation in Arabidopsis (Arabidopsis thaliana).

2.
Front Chem ; 12: 1353524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38961857

RESUMO

Chitosan, a biopolymer obtained from chitin, is known for its remarkable adsorption abilities for dyes, drugs, and fats, and its diverse array of antibacterial characteristics. This study explores the extraction and characterization of chitosan from the mycelium of Amanita phalloides. The moisture content, ash content, water binding capacity, fat binding capacity, and degree of deacetylation of the extracted chitosan were determined. The chitosan exhibited a high yield of 70%, crystallinity of 49.07%, a degree of deacetylation of 86%, and potent antimicrobial properties against both Gram-negative and Gram-positive bacteria. The study also examined the adsorption capabilities of chitosan to remove methylene blue (MB) dye by analysing specific factors like pH, reaction time, and MB concentration using the response surface model. The highest degree of MB dye removal was 91.6% at a pH of 6, a reaction time of around 60 min and an initial dye concentration of 16 ppm. This experimental design can be applied for chitosan adsorption of other organic compounds such as dyes, proteins, drugs, and fats.

3.
Materials (Basel) ; 17(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38893826

RESUMO

Acid mine drainage (AMD) is an environmental issue linked with mining activities, causing the release of toxic water from mining areas. Polyethersulphone (PES) membranes are explored for AMD treatment, but their limited hydrophilicity hinders their performance. Chitosan enhances hydrophilicity, addressing this issue. However, the effectiveness depends on chitosan's degree of deacetylation (DD), determined during the deacetylation process for chitosan production. This study optimized the chitin deacetylation temperature, alkaline (NaOH) concentration, and reaction time, yielding the highest chitosan degree of deacetylation (DD) for PES/chitosan membrane applications. Prior research has shown that high DD chitosan enhances membrane antifouling and hydrophilicity, increasing contaminant rejection and permeate flux. Evaluation of the best deacetylation conditions in terms of temperature (80, 100, 120 °C), NaOH concentration (20, 40, 60 wt.%), and time (2, 4, 6 h) was performed. The highest chitosan DD obtained was 87.11% at 80 °C, 40 wt. %NaOH at 4 h of chitin deacetylation. The PES/0.75 chitosan membrane (87.11%DD) showed an increase in surface hydrophilicity (63.62° contact angle) as compared to the pristine PES membrane (72.83° contact angle). This was an indicated improvement in membrane performance. Thus, presumably leading to high contaminant rejection and permeate flux in the AMD treatment context, postulate to literature.

4.
Neurochem Res ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862726

RESUMO

Idebenone, an antioxidant used in treating oxidative damage-related diseases, has unclear neuroprotective mechanisms. Oxidative stress affects cell and mitochondrial membranes, altering Adp-ribosyl cyclase (CD38) and Silent message regulator 3 (SIRT3) protein expression and possibly impacting SIRT3's ability to deacetylate Tumor protein p53 (P53). This study explores the relationship between CD38, SIRT3, and P53 in H2O2-injured HT22 cells treated with Idebenone. Apoptosis was detected using flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining after determining appropriate H2O2 and Idebenone concentrations.In this study, Idebenone was found to reduce apoptosis and decrease P53 and Caspase3 expression in H2O2-injured HT22 cells by detecting apoptosis-related protein expression. Through bioinformatics methods, CD38 was identified as the target of Idebenone, and it further demonstrated that Idebenone decreased the expression of CD38 and increased the level of SIRT3. An increased NAD+/NADH ratio was detected, suggesting Idebenone induces SIRT3 expression and protects HT22 cells by decreasing apoptosis-related proteins. Knocking down SIRT3 downregulated acetylated P53 (P53Ac), indicating SIRT3's importance in P53 deacetylation.These results supported that CD38 was used as a target of Idebenone to up-regulate SIRT3 to deacetylate activated P53, thereby protecting HT22 cells from oxidative stress injury. Thus, Idebenone is a drug that may show great potential in protecting against reactive oxygen species (ROS) induced diseases such as Parkinson's disease, and Alzheimer's disease. And it might be able to compensate for some of the defects associated with CD38-related diseases.

5.
Adv Sci (Weinh) ; : e2307804, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837887

RESUMO

RNA splicing is crucial in the multilayer regulatory networks for gene expression, making functional interactions with DNA- and other RNA-processing machineries in the nucleus. However, these established couplings are all major spliceosome-related; whether the minor spliceosome is involved remains unclear. Here, through affinity purification using Drosophila lysates, an interaction is identified between the minor spliceosomal 65K/RNPC3 and ANKRD11, a cofactor of histone deacetylase 3 (HDAC3). Using a CRISPR/Cas9 system, Deletion strains are constructed and found that both Dm65KΔ/Δ and Dmankrd11Δ/Δ mutants have reduced histone deacetylation at Lys9 of histone H3 (H3K9) and Lys5 of histone H4 (H4K5) in their heads, exhibiting various neural-related defects. The 65K-ANKRD11 interaction is also conserved in human cells, and the HsANKRD11 middle-uncharacterized domain mediates Hs65K association with HDAC3. Cleavage under targets and tagmentation (CUT&Tag) assays revealed that HsANKRD11 is a bridging factor, which facilitates the synergistic common chromatin-binding of HDAC3 and Hs65K. Knockdown (KD) of HsANKRD11 simultaneously decreased their common binding, resulting in reduced deacetylation of nearby H3K9. Ultimately, this study demonstrates that expression changes of many genes caused by HsANKRD11-KD are due to the decreased common chromatin-binding of HDAC3 and Hs65K and subsequently reduced deacetylation of H3K9, illustrating a novel and conserved coupling mechanism that links the histone deacetylation with minor spliceosome for the regulation of gene expression.

6.
Sci Rep ; 14(1): 11161, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750054

RESUMO

Biodegradable plastics are those subjected easily to a degradation process, in which they can be decomposed after disposal in the environment through microbial activity. 30 bioplastic film formulations based only on chitosan film were used in the current investigation as a positive control together with chitosan film recovered from chitin-waste of locally obtained Aristeus antennatus. Additionally, castor oil was used as a plasticizer. While the yield of chitosan was 18% with 7.65% moisture content and 32.27% ash in the shells, the isolated chitin had a degree of deacetylation (DD) of 86%. The synthesized bioplastic films were characterized via numerous criteria. Firstly, the swelling capacity of these biofilms recorded relatively high percentages compared to polypropylene as synthetic plastic. Noticeably, the FTIR profiles, besides DSC, TGA, and XRD, confirmed the acceptable characteristics of these biofilms. In addition, their SEM illustrated the homogeneity and continuity with a few straps of the chitosan film and showed the homogeneous mixes of chitosan and castor oil with 5 and 20%. Moreover, data detected the antibacterial activity of different bioplastic formulas against some common bacterial pathogens (Enterococcus feacalis, Kelbsiella pnumina, Bacillus subtilis, and Pseudomonas aeruginosa). Amazingly, our bioplastic films have conducted potent antimicrobial activities. So, they may be promising in such a direction. Further, the biodegradability efficacy of bioplastic films formed was proved in numerous environments for several weeks of incubation. However, all bioplastic films decreased in their weights and changed in their colors, while polypropylene, was very constant all the time. The current findings suggest that our biofilms may be promising for many applications, especially in the field of food package protecting the food, and preventing microbial contamination, consequently, it may help in extending the shelf life of products.


Assuntos
Plásticos Biodegradáveis , Óleo de Rícino , Quitosana , Plastificantes , Amido , Quitosana/química , Quitosana/farmacologia , Óleo de Rícino/química , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/farmacologia , Plastificantes/química , Amido/química , Animais , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Mariposas/efeitos dos fármacos , Testes de Sensibilidade Microbiana
7.
Front Cell Dev Biol ; 12: 1405546, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745862

RESUMO

Silent information regulator two homolog 1 (SIRT1), an NAD + -dependent histone deacetylase, plays a pivotal regulatory role in a myriad of physiological processes. A growing body of evidence suggests that SIRT1 can exert protective effects in metabolic disorders and neurodegenerative diseases by inhibiting endoplasmic reticulum (ER) stress and the nuclear factor-κB (NF-κB) inflammatory signaling pathway. This review systematically elucidates the molecular mechanisms and biological significance of SIRT1 in regulating ER stress and the NF-κB pathway. On one hand, SIRT1 can deacetylate key molecules in the ER stress pathway, such as glucose-regulated protein 78 (GRP78), X-box binding protein 1 (XBP1), PKR-like ER kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6), thereby alleviating ER stress. On the other hand, SIRT1 can directly or indirectly remove the acetylation modification of the NF-κB p65 subunit, inhibiting its transcriptional activity and thus attenuating inflammatory responses. Through these mechanisms, SIRT1 can ameliorate insulin resistance in metabolic diseases, exert cardioprotective effects in ischemia-reperfusion injury, and reduce neuronal damage in neurodegenerative diseases. However, it is important to note that while these findings are promising, the complex nature of the biological systems involved warrants further investigation to fully unravel the intricacies of SIRT1's regulatory mechanisms. Nevertheless, understanding the regulatory mechanisms of SIRT1 on ER stress and the NF-κB pathway is of great significance for expanding our knowledge of the pathogenesis of related diseases and exploring new preventive and therapeutic strategies targeting SIRT1.

8.
J Exp Bot ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769701

RESUMO

Plants synchronize their growth and development with environmental changes, which is critical for their survival. Among their life cycle transitions, seed germination is key for ensuring the survival and optimal growth of the next generation. However, even under favorable conditions, oftentimes germination can be blocked by seed dormancy, a regulatory multilayered checkpoint integrating internal and external signals. Intricate genetic and epigenetic mechanisms underlie seed dormancy establishment, maintenance, and release. In this review, we focus on recent advances that shed light on the complex mechanisms associated with physiological dormancy, prevalent in seed plants, with Arabidopsis thaliana serving as a model. Here, we summarize the role of multiple epigenetic regulators, but with a focus on histone modifications like acetylation and methylation, that finely tune dormancy responses and influence dormancy-associated gene expression. Understanding these mechanisms can lead to a better understanding of seed biology in general, as well as result in the identification of possible targets for breeding climate-resilient plants.

9.
Int J Biol Macromol ; 270(Pt 1): 132026, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704074

RESUMO

Multiple phenolic substances have been shown to promote SIRT3 expression, however, few studies have focused on the effects of these phenolics on SIRT3 enzyme activity. This study constructed a variety of reaction systems to elucidate the mechanisms by which different polyphenols affect SIRT3 enzyme activity. The results showed that acP53317-320 was the most suitable substrate among the five acetylated peptide substrates (Kcat/Km = 74.85 ± 1.86 M-1•s-1). All the phenolic compounds involved in the experiment inhibited the enzymatic activity of SIRT3, and the lowest IC50 among them was quercetin (0.12 ± 0.01 mM) and the highest was piceatannol (1.29 ± 0.08 mM). Their inhibition types were mainly competitive and mixed. In addition, piceatannol was found to be a natural SIRT3 agonist by enzyme kinetic analysis and validation of deacetylation efficiency. This study will provide a useful reference for polyphenol modulation of SIRT3 dosage, as well as the development and application of polyphenol-based SIRT3 activators and agonists.


Assuntos
Polifenóis , Sirtuína 3 , Sirtuína 3/metabolismo , Polifenóis/farmacologia , Polifenóis/química , Acetilação , Humanos , Cinética , Estilbenos/farmacologia , Estilbenos/química
10.
Food Chem ; 453: 139599, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788640

RESUMO

In this study, oxidized deacetylated konjac glucomannans with different degrees of oxidation were prepared by a combination of deacetylation and ozone oxidation. Carboxyl groups were found to be introduced into the modified konjac glucomannan while acetyl groups were removed. The backbone, branched chains, and crystal structure of modified konjac glucomannan were not significantly affected. The whiteness was enhanced to 97-99 % and the thermal degradation temperature was up to 250 °C after modification. The solubility of the modified konjac glucomannan (oxidized for 60 min) was significantly increased to 84.56 % (p < 0.05), while its viscosity and swelling power were notably decreased owing to the changes in molecular weight (from 106 to 104) and functional groups. Rheological analysis showed that oxidized deacetylated konjac glucomannan has the ability to form soft-textured gels and the potential to develop dysphagia foods. Future studies should focus on the gelation mechanisms of oxidized deacetylated konjac glucomannan.


Assuntos
Géis , Mananas , Oxirredução , Ozônio , Reologia , Mananas/química , Viscosidade , Ozônio/química , Géis/química , Acetilação , Peso Molecular , Solubilidade , Amorphophallus/química
11.
Cell Mol Life Sci ; 81(1): 204, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700532

RESUMO

The silent information regulator T1 (SIRT1) is linked to longevity and is a crucial mediator of osteoblast function. We investigated the direct role of Sirt1 during bone modeling and remodeling stages in vivo using Tamoxifen-inducible osteoblast-specific Sirt1 conditional knockout (cKO) mice. cKO mice exhibited lower trabecular and cortical bone mass in the distal femur. These phenotypes were coupled with lower bone formation and bone resorption. Metabolomics analysis revealed that the metabolites involved in glycolysis were significantly decreased in cKO mice. Further analysis of the quantitative acetylome revealed 11 proteins with upregulated acetylation levels in both the femur and calvaria of cKO mice. Cross-analysis identified four proteins with the same upregulated lysine acetylation site in both the femur and calvaria of cKO mice. A combined analysis of the metabolome and acetylome, as well as immunoprecipitation, gene knockout, and site-mutation experiments, revealed that Sirt1 deletion inhibited glycolysis by directly binding to and increasing the acetylation level of Glutamine oxaloacetic transaminase 1 (GOT1). In conclusion, our study suggested that Sirt1 played a crucial role in regulating osteoblast metabolism to maintain bone homeostasis through its deacetylase activity on GOT1. These findings provided a novel insight into the potential targeting of osteoblast metabolism for the treatment of bone-related diseases.


Assuntos
Glicólise , Homeostase , Camundongos Knockout , Osteoblastos , Sirtuína 1 , Animais , Camundongos , Acetilação , Osso e Ossos/metabolismo , Fêmur/metabolismo , Osteoblastos/metabolismo , Osteogênese , Sirtuína 1/metabolismo , Sirtuína 1/genética
12.
Cell ; 187(13): 3262-3283.e23, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38815580

RESUMO

In eukaryotes, the Suv39 family of proteins tri-methylate lysine 9 of histone H3 (H3K9me) to form constitutive heterochromatin. However, how Suv39 proteins are nucleated at heterochromatin is not fully described. In the fission yeast, current models posit that Argonaute1-associated small RNAs (sRNAs) nucleate the sole H3K9 methyltransferase, Clr4/SUV39H, to centromeres. Here, we show that in the absence of all sRNAs and H3K9me, the Mtl1 and Red1 core (MTREC)/PAXT complex nucleates Clr4/SUV39H at a heterochromatic long noncoding RNA (lncRNA) at which the two H3K9 deacetylases, Sir2 and Clr3, also accumulate by distinct mechanisms. Iterative cycles of H3K9 deacetylation and methylation spread Clr4/SUV39H from the nucleation center in an sRNA-independent manner, generating a basal H3K9me state. This is acted upon by the RNAi machinery to augment and amplify the Clr4/H3K9me signal at centromeres to establish heterochromatin. Overall, our data reveal that lncRNAs and RNA quality control factors can nucleate heterochromatin and function as epigenetic silencers in eukaryotes.


Assuntos
Proteínas de Ciclo Celular , Heterocromatina , Histona-Lisina N-Metiltransferase , Histonas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Metilação , Metiltransferases/metabolismo , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , RNA Fúngico/genética , RNA Interferente Pequeno/genética
13.
Gynecol Endocrinol ; 40(1): 2353733, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38818662

RESUMO

BACKGROUND: Polycystic ovarian syndrome (PCOS) is a prevalent metabolic and endocrine condition in females of reproductive age. This work was to discover the underlying role of Dickkopf 1 (DKK1) and its putative regulating mechanism in P COS. METHODS: Mice recieved dehydroepiandrosterone (DHEA) injection to establish the in vivo P COS model.Hematoxylin and eosin (H&E) staining was performed for histological analysis. RT-qP CR and Western blotting were used to detect gene and protein expression. CCK-8 and flow cytometry assays were applied to detect cell viability and apoptosis. Co-immunoprecipitation (Co-IP) and immunoprecipitation (IP) were applied to assess association between DKK1 and SIRT2. RESULTS: In this work, DKK1 is downregulated in P COS rats. It was revealed that DKK1 knockdown induced apoptosis and suppressed proliferation in KGN cells, whereas DKK1 overexpression had exactly the opposite effects. In addition, DKK1 deactivates the T GF-ß1/SMad3 signaling pathway, thereby controlling KGN cell proliferation and apoptosis. Besides, SIRT2 inhibition reversed the impact of DKK1 overexpression on KGN cell proliferation and apoptosis. Furthermore, SIRT2 downregulated DKK1 expression by deacetylating DKK1 in KGN cells. DISCUSSION: Altogether, we concluded that SIRT2-induced deacetylation of DKK1 triggers T GF-ß1/Smad3 hyperactivation, thereby inhibiting proliferation and promoting apoptosis of KGN cells. The above results indicated that DKK1 might function as a latent target for P COS treatment.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Síndrome do Ovário Policístico , Transdução de Sinais , Sirtuína 2 , Proteína Smad3 , Fator de Crescimento Transformador beta1 , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/genética , Feminino , Animais , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Smad3/metabolismo , Proteína Smad3/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Camundongos , Sirtuína 2/metabolismo , Sirtuína 2/genética , Ratos , Apoptose , Acetilação , Proliferação de Células , Modelos Animais de Doenças , Humanos
14.
J Adv Res ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38702028

RESUMO

INTRODUCTION: Renal cell carcinoma (RCC) is one of the most common malignant tumors of the urinary system and accounts for more than 90 % of all renal tumors. Resistance to targeted therapy has emerged as a pivotal factor that contributes to the progressive deterioration of patients with advanced RCC. Metabolic reprogramming is a hallmark of tumorigenesis and progression, with an increasing body of evidence indicating that abnormal lipid metabolism plays a crucial role in the advancement of renal clear cell carcinoma. OBJECTIVES: Clarify the precise mechanisms underlying abnormal lipid metabolism and drug resistance. METHODS: Bioinformatics screening and analyses were performed to identify hub gene. qRT-PCR, western blot, chromatin immunoprecipitation (ChIP) assays, and other biological methods were used to explore and verify related pathways. Various cell line models and animal models were used to perform biological functional experiments. RESULTS: In this study, we identified Mesoderm induction early response 2 (MIER2) as a novel biomarker for RCC, demonstrating its role in promoting malignancy and sunitinib resistance by influencing lipid metabolism in RCC. Mechanistically, MIER2 facilitated P53 deacetylation by binding to HDAC1. Acetylation modification augmented the DNA-binding stability and transcriptional function of P53, while deacetylation of P53 hindered the transcriptional process of PGC1A, leading to intracellular lipid accumulation in RCC. Furthermore, Trichostatin A (TSA), an inhibitor of HDAC1, was found to impede the MIER2/HDAC1/P53/PGC1A pathway, offering potential benefits for patients with sunitinib-resistant renal cell cancer. CONCLUSION: Our findings highlight MIER2 as a key player in anchoring HDAC1 and inhibiting PGC1A expression through the deacetylation of P53, thereby inducing lipid accumulation in RCC and promoting drug resistance. Lipid-rich RCC cells compensate for energy production and sustain their own growth in a glycolysis-independent manner, evading the cytotoxic effects of targeted drugs and ultimately culminating in the development of drug resistance.

15.
Biochem Genet ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637426

RESUMO

In this study, single-cell RNA-seq data were collected to analyze the characteristics of Histone deacetylation factor (HDF). The tumor microenvironment (TME) cell clusters related to prognosis and immune response were identified by using CRC tissue transcriptome and immunotherapy cohorts from public repository. We explored the expression characteristics of HDF in stromal cells, macrophages, T lymphocytes, and B lymphocytes of the CRC single-cell dataset TME and further identified 4 to 6 cell subclusters using the expression profiles of HDF-associated genes, respectively. The regulatory role of HDF-associated genes on the CRC tumor microenvironment was explored by using single-cell trajectory analysis, and the cellular subtypes identified by biologically characterized genes were compared with those identified by HDF-associated genes. The interaction of HDF-associated gene-mediated microenvironmental cell subtypes and tumor epithelial cells were explored by using intercellular communication analysis, revealing the molecular regulatory mechanism of tumor epithelial cell heterogeneity. Based on the expression of feature genes mediated by HDF-related genes in the microenvironment T-cell subtypes, enrichment scoring was performed on the feature gene expression in the CRC tumor tissue transcriptome dataset. It was found that the feature gene scoring of microenvironment T-cell subtypes (HDF-TME score) has a certain predictive ability for the prognosis and immunotherapy benefits of CRC tumor patients, providing data support for precise immunotherapy in CRC tumors.

17.
Molecules ; 29(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611960

RESUMO

The physical characteristics of chyme during gastrointestinal digestion are considered to significantly affect nutrient digestion and absorption (such as glucose diffusion), which has an impact on postprandial satiety. The present study aims to analyze the hydration rate (HR) and rheological properties of deacetylated konjac glucomannan (DKGM) at different degrees and then explore their effects on rice texture, digestive properties, and the subjects' post-meal appetite. The present results show that, as the deacetylation degree (DD) of KGM increased, the intersection point of the viscoelastic modulus shifted to a high shear rate frequency, and as the swelling time of the DKGM was prolonged, its HR decreased significantly. The results of the in vitro gastrointestinal digestion tests show that the hardness and chewability of the rice in the fast-hydration group (MK1) were remarkably reduced. In contrast, the slow-hydration group (MK5) exhibited an outstanding ability to resist digestion. The kinetics of starch hydrolysis revealed that the HR of the rice in the fast-hydration group was 1.8 times faster than that of the slow-hydration group. Moreover, it was found that the subjects' appetite after the meal was highly related to the HR of the MK. Their hunger (p < 0.001), desire to eat (p < 0.001), and prospective food consumption (p < 0.001) were significantly inhibited in the slow-hydration group (MK5) compared to the control. This study explored the nutritional effects of the hydration properties derived from the DKGM, which may contribute to modifying the high glycemic index food and provide ideas for the fabrication of food with enhanced satiating capacity.


Assuntos
Apetite , Mananas , Oryza , Humanos , Refeições , Digestão
18.
Proc Natl Acad Sci U S A ; 121(17): e2314201121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38635631

RESUMO

To effectively protect the host from viral infection while avoiding excessive immunopathology, the innate immune response must be tightly controlled. However, the precise regulation of antiviral innate immunity and the underlying mechanisms remain unclear. Here, we find that sirtuin3 (SIRT3) interacts with mitochondrial antiviral signaling protein (MAVS) to catalyze MAVS deacetylation at lysine residue 7 (K7), which promotes MAVS aggregation, as well as TANK-binding kinase I and IRF3 phosphorylation, resulting in increased MAVS activation and enhanced type I interferon signaling. Consistent with these findings, loss of Sirt3 in mice and zebrafish renders them more susceptible to viral infection compared to their wild-type (WT) siblings. However, Sirt3 and Sirt5 double-deficient mice exhibit the same viral susceptibility as their WT littermates, suggesting that loss of Sirt5 in Sirt3-deficient mice may counteract the increased viral susceptibility displayed in Sirt3-deficient mice. Thus, we not only demonstrate that SIRT3 positively regulates antiviral immunity in vitro and in vivo, likely via MAVS, but also uncover a previously unrecognized mechanism by which SIRT3 acts as an accelerator and SIRT5 as a brake to orchestrate antiviral innate immunity.


Assuntos
Sirtuína 3 , Sirtuínas , Viroses , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Imunidade Inata , Lisina , Sirtuína 3/genética , Sirtuínas/genética , Peixe-Zebra , Proteínas de Peixe-Zebra
19.
Microb Cell Fact ; 23(1): 120, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664812

RESUMO

BACKGROUND: The conversion of plant biomass into biochemicals is a promising way to alleviate energy shortage, which depends on efficient microbial saccharification and cellular metabolism. Trichoderma spp. have plentiful CAZymes systems that can utilize all-components of lignocellulose. Acetylation of polysaccharides causes nanostructure densification and hydrophobicity enhancement, which is an obstacle for glycoside hydrolases to hydrolyze glycosidic bonds. The improvement of deacetylation ability can effectively release the potential for polysaccharide degradation. RESULTS: Ammonium sulfate addition facilitated the deacetylation of xylan by inducing the up-regulation of multiple carbohydrate esterases (CE3/CE4/CE15/CE16) of Trichoderma harzianum. Mainly, the pathway of ammonium-sulfate's cellular assimilates inducing up-regulation of the deacetylase gene (Thce3) was revealed. The intracellular metabolite changes were revealed through metabonomic analysis. Whole genome bisulfite sequencing identified a novel differentially methylated region (DMR) that existed in the ThgsfR2 promoter, and the DMR was closely related to lignocellulolytic response. ThGsfR2 was identified as a negative regulatory factor of Thce3, and methylation in ThgsfR2 promoter released the expression of Thce3. The up-regulation of CEs facilitated the substrate deacetylation. CONCLUSION: Ammonium sulfate increased the polysaccharide deacetylation capacity by inducing the up-regulation of multiple carbohydrate esterases of T. harzianum, which removed the spatial barrier of the glycosidic bond and improved hydrophilicity, and ultimately increased the accessibility of glycosidic bond to glycoside hydrolases.


Assuntos
Esterases , Metionina , Esterases/metabolismo , Esterases/genética , Metionina/metabolismo , Xilanos/metabolismo , Sulfato de Amônio/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Hypocreales/metabolismo , Hypocreales/enzimologia , Hypocreales/genética , Lignina/metabolismo , Acetilação
20.
J Agric Food Chem ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597933

RESUMO

Chitin deacetylase (CDA) removes the acetyl group from the chitin molecule to generate chitosan in a uniform, high-quality deacetylation pattern. Herein, BaCDA was a novel CDA discovered from our previously isolated Bacillus aryabhattai strain TCI-16, which was excavated from mangrove soil. The gene BaCDA was cloned and overexpressed in Escherichia coli BL21 (DE3) to facilitate its subsequent purification. The purified recombinant protein BaCDA was obtained at a concentration of about 1.2 mg/mL after Ni2+ affinity chromatography. The molecular weight of BaCDA was around 28 kDa according to the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. In addition, BaCDA exhibited a significant deacetylation effect on colloidal chitin, and the deacetylation degree was measured from the initial 25.69 to 69.23% by Fourier transform infrared (FT-IR) spectroscopy. Scanning electron microscopy (SEM) observation showed that the surface of colloidal chitin after enzymatic digestion was rough, the crystal fibers disappeared, and the chitin structure was loose and porous with grooves. The results of electrospray ionization mass spectrometry (ESI-MS) showed that BaCDA had full-deacetylation activity against (GlcNAc)4. Molecular docking revealed that BaCDA had an open active pocket capable of binding to the GlcNAc unit. This study not only provides a novel enzymatic resource for the green and efficient application of chitin but also helps to deepen the understanding of the catalytic mechanism of CDA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...