Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36980423

RESUMO

Mechanical ventilation (MV) is a life-saving respiratory support therapy, but MV can lead to diaphragm muscle injury (myotrauma) and induce diaphragmatic dysfunction (DD). DD is relevant because it is highly prevalent and associated with significant adverse outcomes, including prolonged ventilation, weaning failures, and mortality. The main mechanisms involved in the occurrence of myotrauma are associated with inadequate MV support in adapting to the patient's respiratory effort (over- and under-assistance) and as a result of patient-ventilator asynchrony (PVA). The recognition of these mechanisms associated with myotrauma forced the development of myotrauma prevention strategies (MV with diaphragm protection), mainly based on titration of appropriate levels of inspiratory effort (to avoid over- and under-assistance) and to avoid PVA. Protecting the diaphragm during MV therefore requires the use of tools to monitor diaphragmatic effort and detect PVA. Diaphragm ultrasound is a non-invasive technique that can be used to monitor diaphragm function, to assess PVA, and potentially help to define diaphragmatic effort with protective ventilation. This review aims to provide clinicians with an overview of the relevance of DD and the main mechanisms underlying myotrauma, as well as the most current strategies aimed at minimizing the occurrence of myotrauma with special emphasis on the role of ultrasound in monitoring diaphragm function.

2.
Front Physiol ; 10: 664, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191356

RESUMO

Chronic obstructive pulmonary disease (COPD) is a progressive disorder of the lung parenchyma which also involves extrapulmonary manifestations, such as cardiovascular impairment, diaphragm dysfunction, and frequent exacerbations. The development of animal models is important to elucidate the pathophysiology of COPD exacerbations and enable analysis of possible therapeutic approaches. We aimed to characterize a model of acute emphysema exacerbation and evaluate its consequences on the lung, heart, and diaphragm. Twenty-four Wistar rats were randomly assigned into one of two groups: control (C) or emphysema (ELA). In ELA group, animals received four intratracheal instillations of pancreatic porcine elastase (PPE) at 1-week intervals. The C group received saline under the same protocol. Five weeks after the last instillation, C and ELA animals received saline (SAL) or E. coli lipopolysaccharide (LPS) (200 µg in 200 µl) intratracheally. Twenty-four hours after saline or endotoxin administration, arterial blood gases, lung inflammation and morphometry, collagen fiber content, and lung mechanics were analyzed. Echocardiography, diaphragm ultrasonography (US), and computed tomography (CT) of the chest were done. ELA-LPS animals, compared to ELA-SAL, exhibited decreased arterial oxygenation; increases in alveolar collapse (p < 0.0001), relative neutrophil counts (p = 0.007), levels of cytokine-induced neutrophil chemoattractant-1, interleukin (IL)-1ß, tumor necrosis factor-α, IL-6, and vascular endothelial growth factor in lung tissue, collagen fiber deposition in alveolar septa, airways, and pulmonary vessel walls, and dynamic lung elastance (p < 0.0001); reduced pulmonary acceleration time/ejection time ratio, (an indirect index of pulmonary arterial hypertension); decreased diaphragm thickening fraction and excursion; and areas of emphysema associated with heterogeneous alveolar opacities on chest CT. In conclusion, we developed a model of endotoxin-induced emphysema exacerbation that affected not only the lungs but also the heart and diaphragm, thus resembling several features of human disease. This model of emphysema should allow preclinical testing of novel therapies with potential for translation into clinical practice.

3.
Arch Bronconeumol (Engl Ed) ; 55(5): 258-265, 2019 May.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-30454870

RESUMO

Atrophy and weakness of the respiratory and peripheral muscles is a common problem in the intensive care unit (ICU). It is difficult to diagnose, particularly in the early stages of critical disease. Consequently, many cases are detected only in advanced stages, for example, when difficulties in mechanical ventilation weaning are encountered. The aim of this review is to describe the main tools that are currently available for evaluation of peripheral and respiratory muscles in the ICU. Techniques of varying complexity and specificity are discussed, and particular emphasis is placed on those with greater relevance in daily clinical practice, such as ultrasound.


Assuntos
Debilidade Muscular/diagnóstico , Músculo Esquelético , Atrofia Muscular/diagnóstico , Técnicas e Procedimentos Diagnósticos , Humanos , Unidades de Terapia Intensiva , Músculos Respiratórios
4.
BMC Pulm Med ; 18(1): 126, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30068327

RESUMO

BACKGROUND: Most patients with unilateral diaphragm paralysis (UDP) have unexplained dyspnea, exercise limitations, and reduction in inspiratory muscle capacity. We aimed to evaluate the generation of pressure in each hemidiaphragm separately and its contribution to overall inspiratory strength. METHODS: Twenty-seven patients, 9 in right paralysis group (RP) and 18 in left paralysis group (LP), with forced vital capacity (FVC) < 80% pred, and 20 healthy controls (CG), with forced expiratory volume in 1 s (FEV1) > 80% pred and FVC > 80% pred, were evaluated for lung function, maximal inspiratory (MIP) and expiratory (MEP) pressure measurements, diaphragm ultrasound, and transdiaphragmatic pressure during magnetic phrenic nerve stimulation (PdiTw). RESULTS: RP and LP had significant inspiratory muscle weakness compared to controls, detected by MIP (- 57.4 ± 16.9 for RP; - 67.1 ± 28.5 for LP and - 103.1 ± 30.4 cmH2O for CG) and also by PdiTW (5.7 ± 4 for RP; 4.8 ± 2.3 for LP and 15.3 ± 5.7 cmH2O for CG). The PdiTw was reduced even when the non-paralyzed hemidiaphragm was stimulated, mainly due to the low contribution of gastric pressure (around 30%), regardless of whether the paralysis was in the right or left hemidiaphragm. On the other hand, in CG, esophagic and gastric pressures had similar contribution to the overall Pdi (around 50%). Comparing both paralyzed and non-paralyzed hemidiaphragms, the mobility during quiet and deep breathing, and thickness at functional residual capacity (FRC) and total lung capacity (TLC), were significantly reduced in paralyzed hemidiaphragm. In addition, thickness fraction was extremely diminished when contrasted with the non-paralyzed hemidiaphragm. CONCLUSIONS: In symptomatic patients with UDP, global inspiratory strength is reduced not only due to weakness in the paralyzed hemidiaphragm but also to impairment in the pressure generated by the non-paralyzed hemidiaphragm.


Assuntos
Diafragma/diagnóstico por imagem , Diafragma/fisiopatologia , Pressão , Paralisia Respiratória/fisiopatologia , Adulto , Idoso , Estudos de Casos e Controles , Estudos Transversais , Feminino , Volume Expiratório Forçado , Capacidade Residual Funcional , Humanos , Masculino , Pessoa de Meia-Idade , Nervo Frênico/fisiopatologia , Paralisia Respiratória/patologia , Ultrassonografia , Capacidade Vital
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA