RESUMO
We fabricated ultrathin metal - oxide - semiconductor (MOS) nanocapacitors using atomic layer deposition. The capacitors consist of a bilayer of Al2O3 and Y2O3 with a total thickness of ~10 nm, deposited on silicon substrate. The presence of the two materials, each slab being ~5 nm thick and uniform over a large area, was confirmed with Transmission Electron Microscopy and X-ray photoelectron spectroscopy (XPS). The capacitance in accumulation varied from 1.6 nF (at 1MHz) to ~2.8 nF (at 10 kHz), which is one to two orders of magnitude higher than other nanocapacitors. This high capacitance is attributed to the synergy between the dielectric properties of ultrathin Al2O3 and Y2O3 layers. The electrical properties of the nanocapacitor are stable within a wide range of temperatures, from 25 °C to 150 °C, as indicated by capacitance-voltage (C - V). Since the thickness-to-area ratio is negligible, the nanocapacitor could be simulated as a single parallel plate capacitor in COMSOL Multiphysics, with good agreement between experimental and simulation data. As a proof-of-concept we simulated a MOSFET device with the nanocapacitor gate dielectric, whose drain current is sufficiently high for micro and nanoelectronics integrated circuits, including for applications in sensing.
RESUMO
Materials that have high dielectric constants, high energy densities and minimum dielectric losses are highly desirable for use in capacitor devices. In this sense, polymers and polymer blends have several advantages over inorganic and composite materials, such as their flexibilities, high breakdown strengths, and low dielectric losses. Moreover, the dielectric performance of a polymer depends strongly on its electronic, atomic, dipolar, ionic, and interfacial polarizations. For these reasons, chemical modification and the introduction of specific functional groups (e.g., F, CN and R-S(=O)2-R´) would improve the dielectric properties, e.g., by varying the dipolar polarization. These functional groups have been demonstrated to have large dipole moments. In this way, a high orientational polarization in the polymer can be achieved. However, the decrease in the polarization due to dielectric dissipation and the frequency dependency of the polarization are challenging tasks to date. Polymers with high glass transition temperatures (Tg) that contain permanent dipoles can help to reduce dielectric losses due to conduction phenomena related to ionic mechanisms. Additionally, sub-Tg transitions (e.g., γ and ß relaxations) attributed to the free rotational motions of the dipolar entities would increase the polarization of the material, resulting in polymers with high dielectric constants and, hopefully, dielectric losses that are as low as possible. Thus, polymer materials with high glass transition temperatures and considerable contributions from the dipolar polarization mechanisms of sub-Tg transitions are known as "dipolar glass polymers". Considering this, the main aspects of this combined strategy and the future prospects of these types of material were discussed.
RESUMO
The spray pyrolysis technique has been extensively used to synthesize materials for a wide variety of applications such as micro and sub-micrometer dimension MOSFET´s for integrated circuits technology, light emitting devices for displays, and solid-state lighting, planar waveguides and other multilayer structure devices for photonics. This technique is an atmospheric pressure chemical synthesis of materials, in which a precursor solution of chemical compounds in the proper solvent is sprayed and converted into powders or films through a pyrolysis process. The most common ways to generate the aerosol for the spraying process are by pneumatic and ultrasonic systems. The synthesis parameters are usually optimized for the materials optical, structural, electric and mechanical characteristics required. There are several reviews of the research efforts in which spray pyrolysis and the processes involved have been described in detail. This review is intended to focus on research work developed with this technique in relation to high-K dielectric and luminescent materials in the form of coatings and powders as well as multiple layered structures.
RESUMO
The construction and performance of a second generation of super dielectric material based electrostatic capacitors (EC), with energy density greater than 200 J·cm-³, which rival the best reported energy density of electric double layer capacitors (EDLC), also known as supercapacitors, are reported. The first generation super dielectric materials (SDM) are multi-material mixtures with dielectric constants greater than 1.0 × 105, composed of a porous, electrically insulating powder filled with a polarizable, ion-containing liquid. Second-generation SDMs (TSDM), introduced here, are anodic titania nanotube arrays filled with concentrated aqueous salt solutions. Capacitors using TiO2 based TSDM were found to have dielectric constants at ~0 Hz greater than 107 in all cases, a maximum operating voltage of greater than 2 volts and remarkable energy density that surpasses the highest previously reported for EC capacitors by approximately one order of magnitude. A simple model based on the classic ponderable media model was shown to be largely consistent with data from nine EC type capacitors employing TSDM.