Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
1.
BMC Res Notes ; 17(1): 182, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951856

RESUMO

OBJECTIVE: Livestock droppings cause some environmental problems, but they have the potential to be used as effective biomass resources. The black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), is suitable for efficiently processing such resources. By using BSF larvae for the disposal of livestock droppings, we can obtain two valuable products: protein resources and organic fertilizer. However, there is insufficient research on the digestive enzymes suitable for processing this waste. Here, we aimed to construct an efficient BSF processing system using livestock droppings, and we explored the digestive enzymes involved in this process. RESULTS: First, we investigated the characteristics of transcripts expressed in the midgut of BSF larvae and found that immune response-related genes were expressed in the midgut. Then, we investigated digestive enzymes and identified a novel serine protease, HiBrachyurin, whose mRNA was highly expressed in the posterior midgut when BSF larvae fed on horse droppings. Despite the low protein content of horse droppings, larvae that fed on horse droppings accumulated more protein than those in the other groups. Therefore, HiBrachyurin may contribute to digestibility in the early stage of protein degradation in BSF larvae fed on horse droppings.


Assuntos
Dípteros , Larva , Serina Proteases , Animais , Dípteros/genética , Dípteros/metabolismo , Dípteros/enzimologia , Larva/metabolismo , Larva/genética , Cavalos , Serina Proteases/metabolismo , Serina Proteases/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Fezes
2.
Heliyon ; 10(12): e32789, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975065

RESUMO

Huoxiang Zhengqi San (HXZQS), a traditional Chinese herbal formula, enjoys widespread use in Chinese medicine to treat diarrhea with cold-dampness trapped spleen syndrome (CDSS), which is induced by exposure to cold and high humidity stress. This study aimed to explore its therapeutic mechanisms in mice, particularly focusing on the intestinal microbiota. Forty male SPF-grade KM mice were allocated into two groups: the normal control group (H-Cc, n = 10) and the CDSS group (H-Mc, n = 30). After modeling, H-Mc was subdivided into H-Mc (n = 15) and HXZQS treatment (H-Tc, n = 15) groups. Intestinal samples were analyzed for enzyme activity and microbiota composition. Our findings demonstrated a notable reduction in intestinal lactase activity post-HXZQS treatment (P < 0.05). Lactobacillus johnsonii, Lactobacillus reuteri, and Lactobacillus murinus emerged as the main dominant species across most groups. However, in the H-Mc group, Clostridium sensu stricto 1 was identified as the exclusive dominant bacteria. LEfSe analysis highlighted Clostridiales vadinBB60 group and Corynebacterium as differential bacteria in the H-Tc group, and Cyanobacteria unidentified specie in the H-Mc group. Predicted microbiota functions aligned with changes in abundance, notably in cofactors and vitamins metabolism. The collinear results of the intestinal microbiota interaction network showed that HXZQS restored cooperative interactions among rare bacteria by mitigating their mutual promotion. The HXZQS decoction effectively alleviates diarrhea with CDSS by regulating intestinal microbiota, digestive enzyme activity, and microbiota interaction. Notably, it enhances Clostridium vadinBB60 and suppresses Cyanobacteria unidentified specie, warranting further study.

3.
Crit Rev Food Sci Nutr ; : 1-16, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920118

RESUMO

As compared with exogenous components, non-starch components (NSCS), such as proteins, lipids, non-starch polysaccharides (NSPs), and polyphenols, inherently present in cereals, are more effective at inhibiting starch digestibility. Existing research has mostly focused on complex systems but overlooked the analysis of the in-situ role of the NSCS. This study reviews the crucial mechanisms by which endogenous NSCS inhibit starch digestion, emphasizing the spatial distribution-function relationship. Starch granules are filled with pores/channels-associated proteins and lipids, embedding in the protein matrix, and maintained by endosperm cell walls. The potential starch digestion inhibition of endogenous NSCS is achieved by altering starch gelatinization, molecular structure, digestive enzyme activity, and accessibility. Starch gelatinization is constrained by endogenous NSCS, particularly cell wall NSPs and matrix proteins. The stability of the starch crystal structure is enhanced by the proteins and lipids distributed in the starch granule pores and channels. Endogenous polyphenols greatly inhibit digestive enzymes and participate in the cross-linking of NSPs in the cell wall space, which together constitute a physical barrier that hinders amylase diffusion. Additionally, the spatial entanglement of NSCS and starch under heat and non-heat processing conditions reduces starch accessibility. This review provides novel evidence for the health benefits of whole cereals.

4.
Anim Biotechnol ; 35(1): 2362640, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38860902

RESUMO

In this study, we investigated the effects of supplemental Glycyrrhiza polysaccharide (GCP) on growth performance and intestinal health of weaned piglets. Ninety piglets weaned at 28 days of age were randomly allocated to three groups with five replicates per treatment. Piglets were fed the following diets for 28 days: (1) CON (control group), basal diet; (2) G500, CON + 500 mg/kg GCP; (3) G1000, CON + 1000 mg/kg GCP. The results showed that supplementation with 1000 mg/kg GCP increased the average daily gain (ADG) and decreased the feed-to-gain ratio (F/G) (P < 0.05). Serum diamine oxidase (DAO) and D-lactic acid (DL-A) levels were lower in the G1000 group (P < 0.05). Dietary GCP 1000 mg/kg improved mucosal trypsin activity in the duodenum, jejunum and ileum and increased lipase and amylase activity in the jejunum (P < 0.05). Moreover, in the G1000 group, ZO-1, claudin 1 and occludin levels were increased in the jejunum mucosa, whereas interleukin-1ß (IL-1ß) and IL-6 levels were decreased (P < 0.05). The 16S rRNA gene analysis indicated that dietary 1000 mg/kg GCP altered the jejunal microbial community, with increased relative abundances of beneficial bacteria. In conclusion, dietary GCP 1000 mg/kg can improve growth performance, digestive enzyme activity, intestinal immunity, barrier function and microbial community in weaned piglets.


Assuntos
Ração Animal , Suplementos Nutricionais , Glycyrrhiza , Polissacarídeos , Desmame , Animais , Polissacarídeos/farmacologia , Polissacarídeos/administração & dosagem , Suínos/crescimento & desenvolvimento , Ração Animal/análise , Glycyrrhiza/química , Intestinos/efeitos dos fármacos , Dieta/veterinária , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino
5.
Poult Sci ; 103(8): 103849, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38838588

RESUMO

A 28-d experiment was conducted to investigate the effects of feed-conditioning temperature on the pellet quality, growth performance, intestinal development, and blood parameters of geese. A total of 180 one-day-old White Yuzhou goslings were randomly allotted to 5 treatment groups, with 6 replicates containing 6 birds each. Five diets were conditioned at 65, 70, 75, 80, and 85°C. Body weight and feed intake per pen basis were recorded from the arrival to the end of the trial. Blood and small intestine samples were collected on d 28 for analysis. The results showed that the pellet durability index (PDI), pellet hardness, and gelatinisation degree of starch (GDS) increased with increasing conditioning temperature (P < 0.05). The final body weight (FBW), average daily gain (ADG) and average daily feed intake (ADFI) of goslings significantly increased when conditioning temperature increased from 65 or 70°C to 80 or 85°C (P < 0.05), accompanied by unaffected feed conversion ratio (FCR) (P > 0.05). The villus height to crypt depth ratio (VH/CD) in the duodenum and ileum improved with increasing conditioning temperature (P < 0.05). Additionally, trypsin and amylase activity were enhanced when the conditioning temperature increased from 65 to 85°C (P < 0.05). No significant differences in the carcass traits and blood parameters of goslings were observed among the groups (P > 0.05). Overall, under the present experimental conditions, increasing the steam-conditioning temperature of pelleted feed improved pellet quality, growth performance, intestinal morphology, and digestive enzyme activity in goslings. Based on broken-line regression analysis, the lower critical conditioning temperature for ADG in geese from 1 to 28 d of age was 80.95°C.

6.
Heliyon ; 10(7): e28224, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560210

RESUMO

This study evaluated the effects of potato, wheat, rice, and corn starch on growth performance, blood parameters, digestive enzyme activity, antioxidative response, and gut microbiota of African catfish, Clarias gariepinus. A control diet (a commercial fish diet) and four different starch (potato, PO; wheat, WH; corn, CO; rice, RC) formulations were fed to African catfish with average weight of 10.5g (n = 30) for eight weeks. The experiment was conducted in triplicates. At the end of the feeding trial, the growth performance of African catfish fed with potato starch (PO) was significantly higher than other treatment groups. Furthermore, this group recorded significant and lowest feed conversion ratio (FCR) compared to other groups. Meanwhile, there were no significant differences in all tested hematological parameters and antioxidative response between the groups. Digestive enzyme activities in the fish intestines, including amylase, lipase, and protease, were significantly higher in African catfish fed with the PO diet. In addition, this group demonstrated substantially lower viscerosomatic index (VSI) and hepatosomatic index (HSI) than other groups, indicating that the fish has more meat on its body. The PO diet group also recorded significantly higher Akkermansia muciniphila, a good gut microbiota. Therefore, the PO diet potentially improves African catfish's growth performance and health status.

7.
Heliyon ; 10(8): e29826, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38681660

RESUMO

The feeding rhythm is one of the key factors determining the success of artificial breeding of S. paramamosain. To understand the feeding rhythm of the different zoea larva developmental stages of S. paramamosain, the feeding rate, digestive enzyme activity, and expression of metabolism-related genes were investigated in the present study. The results showed that the S. paramamosain feeding rate has strong diurnal feeding rhythm, being significantly higher at 10:00-14:00 from stages ZI to ZIV. While the feeding rate peaked at 14:00 on Days 10 and 11, the peak shifted to 18:00 on Day 12. The activity of digestive enzymes amylase, pepsin and lipase decreased at night but increased in the daytime, showing a single-phase rhythm similar to that of the feeding rate, suggesting that the digestive enzyme activity was closely associated with the feeding rate during the larval development. Compared to pepsin and lipase, the activity of amylase was the most consistent with feeding rate. In particular, amylase activity peaked at 18:00 on Day 12. Due to its synchronicity with feeding activity, the activity of amylase could provide a potential reference for determining the best feeding time during zoea stages in S. paramamosain breeding. Moreover, the relative mRNA expression of metabolism-related genes SpCHH and SpFAS at most tested points was lower from 10:00 to 14:00, but higher at 18:00 to 6:00 of the next day. On the other hand, the expression patterns of SpHSL and SpTryp were converse to those of SpCHH and SpFAS. Our findings revealed that the S. paramamosain zoea has an obvious feeding rhythm, and the most suitable feeding time was 10:00-18:00 depending on different stages. The feeding rhythm is a critical aspect in aquaculture, influencing a series of physiological functions in aquatic animals. This study provides insights into the feeding rhythm during the zoea development of S. paramamosain, making a significant contribution to optimizing feeding strategy, improving aquafeed utilization, and reducing the impact of residual feed on water environment.

8.
Front Immunol ; 15: 1319698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646543

RESUMO

This study explored the impacts of supplementation of different levels of coated methionine (Met) in a high-plant protein diet on growth, blood biochemistry, antioxidant capacity, digestive enzymes activity and expression of genes related to TOR signaling pathway in gibel carp (Carassius auratus gibeilo). A high-plant protein diet was formulated and used as a basal diet and supplemented with five different levels of coated Met at 0.15, 0.30, 0.45, 0.60 and 0.75%, corresponding to final analyzed Met levels of 0.34, 0.49, 0.64, 0.76, 0.92 and 1.06%. Three replicate groups of fish (initial mean weight, 11.37 ± 0.02 g) (20 fish per replicate) were fed the test diets over a 10-week feeding period. The results indicated that with the increase of coated Met level, the final weight, weight gain (WG) and specific growth rate initially boosted and then suppressed, peaking at 0.76% Met level (P< 0.05). Increasing dietary Met level led to significantly increased muscle crude protein content (P< 0.05) and reduced serum alanine aminotransferase activity (P< 0.05). Using appropriate dietary Met level led to reduced malondialdehyde concentration in hepatopancreas (P< 0.05), improved superoxide dismutase activity (P< 0.05), and enhanced intestinal amylase and protease activities (P< 0.05). The expression levels of genes associated with muscle protein synthesis such as insulin-like growth factor-1, protein kinase B, target of rapamycin and eukaryotic initiation factor 4E binding protein-1 mRNA were significantly regulated, peaking at Met level of 0.76% (P< 0.05). In conclusion, supplementing optimal level of coated Met improved on fish growth, antioxidant capacity, and the expression of TOR pathway related genes in muscle. The optimal dietary Met level was determined to be 0.71% of the diet based on quadratic regression analysis of WG.


Assuntos
Ração Animal , Antioxidantes , Suplementos Nutricionais , Metionina , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Metionina/administração & dosagem , Serina-Treonina Quinases TOR/metabolismo , Antioxidantes/metabolismo , Ração Animal/análise , Carpa Dourada/crescimento & desenvolvimento , Carpa Dourada/genética , Carpa Dourada/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos
9.
Front Vet Sci ; 11: 1366314, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577544

RESUMO

The present study assessed the effects of oligosaccharide-chelated organic trace minerals (OTM) on the growth performance, digestive enzyme activity, blood parameters, slaughter performance, and meat quality indexes of mutton sheep. A total of 60 East Ujumuqin × small-tailed Han crossbred mutton sheep were assigned to two groups (10 duplicates per group) by body weight (26.12 ± 3.22 kg) according to a completely randomized design. Compared to the CON group, the results of the OTM group showed: (1) no significant changes in the initial body weight, final body weight, dry matter intake, average daily gain, and feed conversion ratio (p > 0.05); (2) the activities of trypsin, lipase, and amylase in the jejunum were significantly increased (p < 0.05); (3) serum total protein, albumin, and globulin of the blood were significantly increased (p < 0.05), and the growth factor interleukin IL-10 was significantly higher (p < 0.05), while IL-2, IL-6, and γ-interferon were significantly lower (p < 0.05). Immunoglobulins A, M, and G were significantly higher (p < 0.05); (4) the live weight before slaughter, carcass weights, dressing percentage, eye muscle areas, and GR values did not differ significantly (p > 0.05); (5) shear force of mutton was significantly lower (p < 0.05), while the pH45min, pH24h, drip loss, and cooking loss did not show a significant difference (p > 0.05). The content of crude protein was significantly higher (p < 0.05), while the ether extract content was significantly reduced (p < 0.05), but no significant difference was detected between moisture and ash content; (6) the total amino acids, essential amino acids, semi-essential amino acids, and umami amino acids were significantly increased (p < 0.05). Although umami amino acids were not significant, the total volume increased (p > 0.05). Among these, the essential amino acids, threonine, valine, leucine, lysine in essential amino acids and arginine were significantly increased (p < 0.05). Also, non-essential amino acids, glycine, serine, proline, tyrosine, cysteine, and aspartic acid, were significantly higher (p < 0.05). The content of alanine, aspartate, glutamic acid, phenylalanine, and tyrosine in umami amino acids was significantly higher (p < 0.05).

10.
Aquat Toxicol ; 270: 106900, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537436

RESUMO

Marine nano-titanium dioxide (nano-TiO2) and pentachlorophenol (PCP) pollution are escalating concerns in coastal areas. This study investigated the combined effects of continuous exposure to nano-TiO2 (25 nm, 100 nm) and PCP (0, 1, 10 µg/L) for 28 days on the antioxidant, digestive, and immune abilities of the swimming crab Portunus trituberculatus. Compared with the control group, the interaction between nano-TiO2 and PCP was significantly higher than exposure to a single stressor, with a pronounced decrease in amylase activity observed due to the reducing nano-TiO2 particle sizes. Resulting in increased MDA and SOD activity. The expression levels of Toll4, CSP3, and SER genes in crab hemolymph showed perturbations following exposure to nano-TiO2 and PCP. In summary, according to the results of CAT, GPX, PES and AMS enzyme activities, it was concluded that compared to the larger particle size (100 nm), the single stress of nano-TiO2 at a smaller particle size (25 nm) and co-stress with PCP have more significant impacts on P. trituberculatus. However, the potential physiological regulation mechanism of the interaction between these pollutants remains elusive and requires further study.


Assuntos
Braquiúros , Pentaclorofenol , Poluentes Químicos da Água , Animais , Antioxidantes , Pentaclorofenol/toxicidade , Braquiúros/genética , Natação , Poluentes Químicos da Água/toxicidade , Titânio/toxicidade , Imunidade
11.
J Hazard Mater ; 470: 134107, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554520

RESUMO

Rayon microfibers, micro-sized semi-synthetic polymers derived from cellulose, have been frequently detected and reported as "micropollutants" in marine environments. However, there has been limited research on their ecotoxicity and combined effects with persistent organic pollutants (POPs). To address these knowledge gaps, thick-shell mussels (Mytilus coruscus) were exposed to rayon microfibers at 1000 pieces/L, along with polychlorinated biphenyls (PCBs) at 100 and 1000 ng/L for 14 days, followed by a 7-day recovery period. We found that rayon microfibers at the environmentally relevant concentration exacerbated the irreversible effects of PCBs on the immune and digestive systems of mussels, indicating chronic and sublethal impacts. Furthermore, the results of 16 s rRNA sequencing demonstrated significant effects on the community structure, species richness, and diversity of the mussels' intestinal microbiota. The branching map analysis identified the responsive bacteria to rayon microfibers and PCBs belonging to the Proteobacteria, Actinobacteriota, and Bacteroidota phyla. Despite not being considered a conventional plastic, the extensive and increasing use of rayon fibers, their direct toxicological effects, and their interaction with POPs highlight the need for urgent attention, investigation, and regulation to address their contribution to "micropollution".


Assuntos
Microbioma Gastrointestinal , Mytilus , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Bifenilos Policlorados/toxicidade , Poluentes Químicos da Água/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Mytilus/efeitos dos fármacos , Celulose/química , Celulose/toxicidade , RNA Ribossômico 16S/genética
13.
Front Nutr ; 11: 1363411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379546

RESUMO

A 12-week feeding trial was conducted to evaluate the effects of replacing soybean meal with different types of rapeseed meal (RSM; Chinese 95-type (oil press model) rapeseed meal [C95RM], Chinese 200-type rapeseed meal [C200RM], cold pressed rapeseed cake [CPRC], Indian rapeseed meal [IRM] and Canadian rapeseed meal [CRM]) on growth, antioxidant capacity, non-specific immunity and Aeromonas hydrophila infection tolerance in 990 fingering (average weight 12.77 ± 0.01 g) rainbow trout (Oncorhynchus mykiss). A basal diet was prepared using fishmeal and soybean meal as the main protein sources, the other 10 diets were formulated with five types of RSM at 20% (C95RM20, C200RM20, CPRC20, IRM20, CRM20) or 35% (C95RM35, C200RM35, CPRC35, IRM35, CRM35) inclusion levels to replace iso-nitrogenous soybean meal. Regardless of the RSM source, dietary inclusion of 20% RSM significantly reduced the weight gain rate (WGR) and digestive enzymes activities (except C200RM20) of fish, but increased the blood urea nitrogen (BUN) and hepatic malondialdehyde (MDA) content (except CRM20). Fish fed with CPRC20 and IRM20 exhibited relatively higher plasma cortisol and MDA content, but lower content/activities of triiodothyronine (T3), thyroxine (T4) and glutathione peroxidase (GPx) in plasma, lysozyme (LZM) and complement 3 (C3) in serum, catalase (CAT) in liver, and respiratory burst activity (RBA) of head kidney macrophages. The intestinal and hepatic tissues fed with 20% RSM were damaged to some extent, with the CPRC20 and IRM20 groups being the most severely affected. Regardless of the RSM source, dietary inclusion of 35% RSM significantly decreased WGR and digestive enzymes activities, but significantly increased plasma BUN and MDA content. The fish fed with CPRC35 and IRM35 exhibited relatively higher plasma cortisol, MDA, serum triglyceride, BUN content, but lower content/activities of T3, T4, C3, and LZM in serum, CAT, peroxidase and GPx in plasma, CAT in liver, RBA and phagocytic activity of head kidney macrophage. The hepatic and intestinal tissues damage was the worst in the IRM35 group among the 35% RSM inclusion groups. These results indicate that including ≥20% RSM in the diet, regardless of the source, reduced the growth, antioxidant capacity, immunity, and survival to Aeromonas hydrophila infection in rainbow trout.

14.
Anim Nutr ; 16: 422-428, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38379939

RESUMO

Phytin is the Ca2+-Mg2+-K+ salt of phytic acid that is created and deposited in the aleurone layer and/or germ of grains and legumes. Its high presence in feedstuffs for fowl and swine diets results in it being a universal and significant impediment to optimum performance. Phytin impairs gastrointestinal recovery of a wide array of nutrients, the effect varying with the nutrient concerned. On exposure to low pH during gastric digestion, phytin dissociates into phytic acid and solubilized Ca2+. Even at low gastric pH, phytic acid is negatively charged which forms the basis of its anti-nutritive behavior. Pepsinogen has extensive basic amino acids on its activation peptide that are presented as cations at low pH which are targeted by pepsin for activation. Partially crystalized Ca2+ near the enzyme's active site further stabilizes its newly formed structure. Thus, phytic acid appears to interfere with gastric digestion by several mechanisms; interfering with pepsinogen activation by binding to the polypeptide's basic amino acids; coordinating free Ca2+, destabilizing pepsin; binding some dietary proteins directly, further compromising gastric proteolysis. Upon digesta attaining neutrality in the duodenum, Ca2+ and other cations re-bind with accessible anions, phytic acid being a significant contender. Phytate not only binds free cations but can also strip them from enzymes (e.g. Ca2+, Zn2+) which reduces their structural resistance to autolysis and ability as co-factors (e.g. Zn2+) to increase enzyme activity. Goblet cells initially employ Ca2+ as an electronic shield between mucin layers enabling granule formation and cell storage. After mucin granule release, Ca2+ is progressively displaced by Na+ to free the viscous mucins enabling its translocation. Mucin entangles with the glycocalyx of adjacent enterocytes thereby constructing the unstirred water layer (USWL). Excessive removal of Ca2+ from mucin by phytic acid increases its fluidity facilitating its loss from the USWL with its associated Na+. This partly explains increased mucin and Na+ losses noted with high phytate diets. This review suggests that phytic acid binding of Ca2+ and less so Zn2+ is the basis for the diversity in nutrient losses encountered and that such losses are in proportion to dietary phytate content.

15.
Anim Nutr ; 16: 105-121, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38357575

RESUMO

Low-fishmeal and protein-saving diets are two prominent nutritional strategies utilized to address challenges related to the scarcity and sustainability of protein sources in aquaculture. However, these diets have been associated with adverse effects on the growth performance, feed utilization, and disease resistance of aquatic animals. To mitigate these challenges, exogenous protease has been applied to enhance the quality of diets with lower protein contents or fishmeal alternatives, thereby improving the bioavailability of nutritional ingredients. Additionally, protease preparations were also used to enzymatically hydrolyze fishmeal alternatives, thus enhancing their nutritional utilization. The present review aims to consolidate recent research progress on the use of protease in aquaculture and conclude the benefits and limitations of its application, thereby providing a comprehensive understanding of the subject and identifying opportunities for future research.

16.
Int J Biometeorol ; 68(2): 279-288, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38047943

RESUMO

To assess the impact of supplementing betaine (BT) under heat stress (HS) conditions on broiler performance and intestinal health from 21 to 42 days of age, a total of 150 male Ross 308 broilers were indiscriminately allotted to 3 treatments with 10 replications of 5 birds each. The control (CON) group was given a basal ration and accommodated at a thermoneutral condition (22 ± 1 °C), whereas the HS and HS + BT groups were raised under cyclic HS (33 ± 1 °C for 8 h and 22 ± 1 °C for 16 h per day) and received the basal ration without or with 1000 mg/kg BT, respectively. The HS reduced average daily gain (ADG); average daily feed intake; villus height (VH); VH to crypt depth (CD) ratio (VCR); activities of trypsin, lipase, glutathione peroxidase (GPX), and catalase; and enumeration of Lactobacillus and Bifidobacterium (P < 0.05) and augmented feed conversion ratio (FCR), CD, malondialdehyde (MDA) accumulation, and enumeration of Escherichia coli, Clostridium, and coliforms (P < 0.05). Conversely, BT supplementation heightened ADG, VH, VCR, trypsin activity, GPX activity, and populations of Lactobacillus and Bifidobacterium (P < 0.05) and lowered FCR, MDA accumulation, and Clostridium population (P < 0.05). Furthermore, the FCR value, trypsin and GPX activities, MDA content, and Bifidobacterium and Clostridium populations in the HS + BT group were nearly equivalent to those in the CON group. To conclude, feeding BT under HS conditions could improve broiler performance through improving intestinal health by specifically mitigating oxidative damage and enhancing the colonization of beneficial bacteria.


Assuntos
Betaína , Microbiota , Animais , Masculino , Betaína/farmacologia , Galinhas/metabolismo , Tripsina , Antioxidantes , Resposta ao Choque Térmico , Estresse Oxidativo , Ração Animal/análise , Suplementos Nutricionais , Dieta/veterinária
17.
Int J Biol Macromol ; 257(Pt 2): 128616, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070815

RESUMO

Persimmon tannins, particularly in immature persimmons, haven't yet received corresponding attention to research on therapy of diabetes mellitus in spite of high hypoglycemic activity. To accurately screening key hypoglycemic components, immature persimmon extracts were isolated and identified using enzyme affinity ultrafiltration and HRLC-ESI-MS/MS. Among them, Hederagenin (IC50 = 0.077 ± 0.003 mg/mL), Ursolic acid (IC50 = 0.001 ± 0.000 mg/mL) and Quercetin dehydrate (IC50 = 0.081 ± 0.001 mg/mL) exhibited the strongest inhibitory effect on α-amylase (HSA and PPA) and α-glucosidase, respectively. And their inhibition mechanisms were analyzed using multi-spectral analysis, atomic force microscope and molecular docking, indicating the bonding with starch digestion enzymes through hydrogen bonding and hydrophobic interaction, and generating the enzyme aggregation. In vivo starch-tolerance experiment further verified that these inhibitors could improve postprandial hyperglycemia (17.18 % âˆ¼ 40.29 %), far more than acarbose. Suppressing, Hederagenin and Ursolic acid as triterpenoids appeared amazing potentiality to alleviate postprandial hyperglycemia, which suggested that IPE were comprehensive exploration values on prevention and treatment of hyperglycemia.


Assuntos
Diospyros , Hiperglicemia , Ácido Oleanólico/análogos & derivados , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Diospyros/química , alfa-Glucosidases , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Simulação de Acoplamento Molecular , alfa-Amilases , Espectrometria de Massas em Tandem , Amido , Inibidores de Glicosídeo Hidrolases/farmacologia
18.
Toxics ; 11(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38133423

RESUMO

The wild population resources of Coreius guichenoti have sharply declined in recent decades, and any negative factors may have a significant impact on their survival. In this study, the enzymatic stress responses of C. guichenoti to 25 and 48 µm polyethylene fragments were explored for the first time. This was achieved by evaluating the changes in physiological and biochemical indicators of the species in response to the environmental stimuli of microplastics. In this study, we observed an early stress response in the external tissues of C. guichenoti following exposure to microplastics. The TP content in skin and muscle and the MDA content in skin, gill and muscle initially showed a significant increase. The skin, gill, and muscle exhibited greater stress responses to M5 particles, whereas M3 particles caused a greater response in the intestine and especially the liver. After the removal of microplastic exposure, the stress state of the C. guichenoti would be alleviated in a short period, but it could not fully recover to the pre-exposure level. In summary, microplastics pose a significant threat to C. guichenoti. While their negative effects can be alleviated by the removal of microplastics exposure, full recovery does not occur in a short period. Continuous monitoring of microplastics in natural waters and targeted aquatic ecological restoration are essential to ensure the normal growth and reproduction of the wild population of C. guichenoti.

19.
Front Microbiol ; 14: 1322910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125573

RESUMO

Introduction: In recent years, a large number of studies have shown that Bacillus velezensis has the potential as an animal feed additive, and its potential probiotic properties have been gradually explored. Methods: In this study, Illumina NovaSeq PE150 and Oxford Nanopore ONT sequencing platforms were used to sequence the genome of Bacillus velezensis TS5, a fiber-degrading strain isolated from Tibetan sheep. To further investigate the potential of B. velezensis TS5 as a probiotic strain, in vivo experiments were conducted using 40 five-week-old male specific pathogen-free C57BL/6J mice. The mice were randomly divided into four groups: high fiber diet control group (H group), high fiber diet probiotics group (HT group), low fiber diet control group (L group), and low fiber diet probiotics group (LT group). The H and HT groups were fed high-fiber diet (30%), while the L and LT groups were fed low-fiber diet (5%). The total bacteria amount in the vegetative forms of B. velezensis TS5 per mouse in the HT and LT groups was 1 × 109 CFU per day, mice in the H and L groups were given the same volume of sterile physiological saline daily by gavage, and the experiment period lasted for 8 weeks. Results: The complete genome sequencing results of B. velezensis TS5 showed that it contained 3,929,788 nucleotides with a GC content of 46.50%. The strain encoded 3,873 genes that partially related to stress resistance, adhesion, and antioxidants, as well as the production of secondary metabolites, digestive enzymes, and other beneficial nutrients. The genes of this bacterium were mainly involved in carbohydrate metabolism, amino acid metabolism, vitamin and cofactor metabolism, biological process, and molecular function, as revealed by KEGG and GO databases. The results of mouse tests showed that B. velezensis TS5 could improve intestinal digestive enzyme activity, liver antioxidant capacity, small intestine morphology, and cecum microbiota structure in mice. Conclusion: These findings confirmed the probiotic effects of B. velezensis TS5 isolated from Tibetan sheep feces and provided the theoretical basis for the clinical application and development of new feed additives.

20.
Animals (Basel) ; 13(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38136924

RESUMO

An 8-week feeding trial was conducted to assess the effects on growth, antioxidant capacity, digestive enzyme activity, and gene expression related to muscle growth and protein synthesis of juvenile greasyback shrimp (Metapenaeus ensis) using five experimental diets containing 29.37%, 34.30%, 39.11%, 44.05%, and 49.32% of protein. The results demonstrated that juvenile greasyback shrimp consuming 39.11%, 44.05%, and 49.32% dietary protein had a significantly higher final body weight (FBW), weight gain (WG), feed conversion ratio (FCR), and specific growth rate (SGR) than other groups (p < 0.05). The protein efficiency ratio (PER) showed a significantly quadratic pattern with increasing dietary protein levels (p < 0.05). The highest trypsin and pepsin activities were observed in the group with a protein level of 44.05% (p < 0.05). Relatively higher superoxide dismutase (SOD) activity was found in groups with protein levels of 39.11% (p < 0.05). Alkaline phosphatase (AKP) and catalase (CAT) activity showed a significantly linear increasing pattern with increasing protein intake up to 44.05%, and then decreased gradually (p < 0.05). Compared to the dietary 29.37% protein level, the expression levels of myogenic regulatory factors (mef2α, mlc, and myf5) and mTOR pathway (mtor, s6k, akt, and pi3k)-related genes were significantly up-regulated in muscle with 39.11%, 44.05%, and 49.32% dietary protein levels (p < 0.05). The AAR pathway (gcn2, eif2α, and atf4)-related gene expression levels were significantly lower in muscles with 39.11%, 44.05%, and 49.32% protein levels than in other groups (p < 0.05). Based on the broken-line regression analysis of SGR, the estimated appropriate dietary protein requirement for juvenile greasyback shrimp is 38.59%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...