RESUMO
This study aimed to evaluate the effects of direct-fed microbials (DFM) on health and growth responses of preweaning Bos indicus × Bos taurus (Gyr × Holstein) crossbred calves. Ninety newborn heifer calves (initial BW of 35 ± 4.0 kg) were used. At birth, calves were ranked by initial BW and parity of the dam and assigned to: (1) whole milk without DFM supplementation (CON; n = 30), (2) whole milk with the addition of 1.0 g/calf per day of a Bacillus-based DFM (BAC; n = 30), or (3) whole milk with the addition of 1.0 g/calf per day of BAC and 1.2 g/calf per day of Enterococcus faecium 669 (MIX; n = 30). Milk was fed individually during the study (77 d), and the BAC and MIX treatments were offered daily throughout the 77-d preweaning period. All calves were offered a starter supplement and corn silage starting on d 1 and 60 of age, respectively. Milk and starter supplement intake were evaluated daily, and BW was recorded on d 0 and at weaning (d 77). Diarrhea and pneumonia were assessed daily, and fecal samples were collected on d 0, 7, 14, 21, and at weaning (d 77) for assessment of the presence of bacterial and protozoal pathogens via qPCR. All data were analyzed using SAS (v. 9.4) with calf as the experimental unit and using single-df orthogonal contrasts (BAC + MIX vs. CON; BAC vs. MIX). Daily feeding of DFM, regardless of type, improved weaning BW. Odds ratio for occurrence of pneumonia was lower for DFM-supplemented calves, but its occurrence did not differ between BAC and MIX calves. No Salmonella spp. or Escherichia coli F41 were detected in any of the calves. The proportion of calves positive for E. coli F17 was greater for DFM calves on d 7 (92% and 96% vs. 81% for BAC, MIX, and CON, respectively), on d 21 (13% and 26% vs. 7% for BAC, MIX, and CON, respectively), and at weaning (48% and 35% vs. 22% for BAC, MIX, and CON, respectively). For Clostridium difficile, more DFM calves were positive on d 7 (65% and 30% vs. 35% for BAC, MIX, and CON, respectively) and 14 (20% and 28% vs. 7% for BAC, MIX, and CON, respectively), but proportion of positive calves was also greater for BAC versus MIX on d 7. More CON calves were positive for Clostridium perfringens on d 14 (14% vs. 3% and 8% for CON, BAC, and MIX, respectively) compared with DFM-fed calves. Incidence of calves positive for C. perfringens was greater in BAC than MIX on d 7 (50% vs. 18%), and greater for MIX than BAC at weaning (9% vs. 0%). For protozoa occurrence, a lower proportion of DFM calves were positive for Cryptosporidium spp. on d 7 (58% and 48% vs. 76% for BAC, MIX, and CON, respectively), but opposite results were observed on d 21 for Cryptosporidium spp. (3% and 11% vs. 0% for BAC, MIX, and CON, respectively) and Eimeria spp. on d 14 (7% and 8% vs. 0% for BAC, MIX, and CON, respectively) and 21 (50% and 59% vs. 38% for BAC, MIX, and CON, respectively). In summary, DFM feeding alleviated the occurrence of pneumonia and improved growth rates, while also modulating the prevalence of bacteria and protozoa in preweaning Gyr × Holstein calves.
Assuntos
Ração Animal , Dieta , Desmame , Animais , Bovinos , Dieta/veterinária , Suplementos Nutricionais , Feminino , LeiteRESUMO
This study was conducted to evaluate the effects of live or autolyzed yeast supplementation on dairy cow performance and ruminal fermentation. Two experiments were conducted to evaluate performance, feed sorting, total-tract apparent digestibility of nutrients, purine derivatives excretion, N utilization, ruminal fermentation, and the abundance of specific bacterial groups in the rumen. In experiment 1, 39 Holstein cows (171 ± 40 DIM and 32.6 ± 5.4 kg/d milk yield) were blocked according to parity, DIM, and milk yield and randomly assigned to the following treatments: control (CON); autolyzed yeast fed at 0.625 g/kg DM (AY; Levabon, DSM-Firmenich); or live yeast fed at 0.125 g/kg DM (LY; Vistacell, AB Vista). Cows were submitted to a 2-wk adaptation period followed by a 9-wk trial. In experiment 2, 8 ruminal cannulated Holstein cows (28.4 ± 4.0 kg/d milk yield and 216 ± 30 DIM), of which 4 were multiparous and 4 were primiparous, were blocked according to parity and enrolled into a 4 × 4 Latin square experiment with 21-d periods (the last 7 d for sampling). Cows within blocks were randomly assigned to treatment sequences: control (CON), LY (using the same product and dietary concentration as described in experiment 1), AY, or autolyzed yeast fed at 0.834 g/kg DM (AY2). In experiments 1 and 2, nutrient intake and total-tract apparent digestibility were not affected by treatments. Sorting for long feed particles (>19 mm) tended to be greater in cows fed yeast supplements than CON in experiment 1. Efficiency of N conversion into milk N was increased when feeding yeast supplements in experiment 1, and 3.5% FCM yield tended to be greater in cows fed yeast supplements than CON. Feed efficiency was increased when yeast supplements were fed to cows in relation to CON in experiment 1. In experiment 2, yield of FCM and fat were greater in cows fed yeast supplements compared with CON. Uric acid concentration and output in urine were increased when feeding yeast supplements when compared with CON. Neither ruminal pH nor total VFA were influenced by treatments. The current study did not reveal treatment differences in ruminal abundance of Anaerovibrio lipolytica, the genus Butyrivibrio, Fibrobacter succinogenes, Butyrivibrio proteoclasticus, or Streptococcus bovis. Yeast supplementation can increase feed efficiency without affecting nutrient intake and digestibility, ruminal VFA concentration, or ruminal abundance of specific bacterial groups. Supplementing live or autolyzed yeast, regardless of the dose, resulted in similar performance.
Assuntos
Ração Animal , Dieta , Suplementos Nutricionais , Digestão , Fermentação , Lactação , Leite , Rúmen , Animais , Bovinos , Feminino , Rúmen/metabolismo , Dieta/veterinária , Leite/química , Leite/metabolismo , Leveduras , Nutrientes/metabolismoRESUMO
The three Bacillus strains present in Norum™ were initially selected by their excellent to good relative enzyme activity (REA) production score for amylase, protease, lipase, phytase, cellulase, ß-glucanase, and xylanase. Further studies confirmed that the three isolates also showed an antibacterial activity, Gram-positive and Gram-negative poultry pathogens. Norum™ (Eco-Bio/Euxxis Bioscience LLC) is a Bacillus spore direct-fed microbial (DFM). The Bacillus isolates were screened and selected based on in vitro enzyme production profiles. Moreover, in chickens fed high non-starch polysaccharides, this DFM demonstrated to reduce digesta viscosity, bacterial translocation, increase performance, bone mineralization, and balance the intestinal microbiota. In the present study, we present the whole-genome sequence of each of the three isolates in Norum™, as well as the synergistic, additive, or antagonistic effects on the enzyme production behavior of the three Bacillus strains and their combinations when grown together vs. when grown individually. The whole-genome sequence identified isolate AM1002 as Bacillus subtilis (isolate 1), isolate AM0938 as Bacillus amyloliquefaciens (isolate 2), and isolate JD17 as Bacillus licheniformis (isolate 3). The three Bacillus isolates used in the present study produce different enzymes (xylanase, cellulase, phytase, lipase, protease, and ß-glucanase). However, this production was modified when two or more Bacillus strains were combined, suggesting possible synergistic, antagonistic, or additive interactions. The Bliss analysis suggested (p < 0.05) that the combination of Bacillus strains 1-2 and 1-2-3 had intermediate effects and predicted that the combination of Bacillus strains 2-3 could have better effects than the combination of all the three Bacillus strains. In summary, the current study demonstrated the need of selecting Bacillus strains based on quantitative enzyme determination and data analysis to assess the impacts of combinations to avoid antagonistic interactions that could limit treatment efficacy. These results suggest that using Bacillus strains 2-3 together could lead to a new generation of DFMs with effects superior to those already examined in Bacillus strains 1-2-3 and, therefore, a potential alternative to growth-promoting antibiotics. More research utilizing poultry models is being considered to confirm and expand the existing findings.
RESUMO
The aim of the present study was to evaluate the effect of a commercial Bacillus direct-fed microbial (DFM) on aflatoxin B1 toxic effects, performance, and biochemical and immunologic parameters in broiler chickens. Ninety 1-day-old Cobb 500 male broiler chicks were raised in floor pens for a period of 21 days. Chicks were neck-tagged, individually weighed, and randomly allocated to one of three groups: Negative control (basal feed), aflatoxin B1 (basal feed + 2 ppm AFB1), and DFM (basal feed + 2 ppm AFB1 + Bacillus direct-fed microbial). Each group had three replicates of 10 chickens (n = 30/group). Body weight and body weight gain were calculated weekly, while feed intake and feed conversion ratio were determined when broilers were 21 days old. On day 21, all chickens were bled, gastrointestinal samples were collected, and spleen and bursa of Fabricius were weighed. This study confirmed that 2 ppm of AFB1 causes severe detrimental effects on performance, biochemical parameters, and immunologic parameters, generating hepatic lesions in broiler chickens (P < 0.05). However, it was also observed that DFM supplementation provided beneficial effects that might help to improve gut barrier function, anti-inflammatory and antioxidant activities, as well as humoral and cellular immunomodulation. The results of the present study suggest that this Bacillus-DFM added at a concentration of 106 spores/gram of feed can be used to counteract the negative effects that occur when birds consume diets contaminated with AFB1, showing beneficial effects on performance parameters, relative organ weights, hepatic lesions, immune response, and serum biochemical variables. The addition of this Bacillus-DFM might mitigate and decrease aflatoxicosis problems in the poultry industry, improving food security, alleviating public health problems, and providing economic benefits. Future studies are needed to fully elucidate the specific mechanisms by which this Bacillus-DFM counteracts the toxic effects of aflatoxin B1.
Evaluación de un producto comercial adicionado en el alimento elaborado con Bacillus sobre los efectos tóxicos de la aflatoxina B1, el rendimiento productivo, el estado inmunológico y los parámetros bioquímicos en suero de pollos de engorde. El objetivo del presente estudio fue evaluar el efecto de un producto comercial de Bacillus adicionado al alimento (DFM) sobre los efectos tóxicos de la aflatoxina B1, el rendimiento productivo, así como en los parámetros bioquímicos e inmunológicos en pollos de engorde. Noventa pollitos de engorde machos Cobb 500 de un día de edad fueron criados en corrales en piso por un período de 21 días. Los pollos se etiquetaron en el cuello, se pesaron individualmente y se asignaron al azar en uno de tres grupos: control negativo (alimentación basal); aflatoxina B1 (alimentación basal + 2 ppm de AFB1) y DFM (alimentación basal + 2 ppm de AFB1 + producto comercial de Bacillus). Cada grupo tenía tres réplicas de 10 pollos (n = 30/grupo). El peso corporal (BW) y la ganancia de peso corporal (BWG) se calcularon semanalmente, mientras que la ingesta de alimento (FI) y la conversión alimentaria (FCR) se determinaron cuando los pollos tenían 21 días de edad. Al día 21 de edad, todos los pollos se sangraron, se recolectaron muestras gastrointestinales y se pesaron el bazo y la bolsa de Fabricio. Este estudio confirmó que 2 ppm de aflatoxina B1 causan efectos detrimentales graves sobre los parámetros productivos, bioquímicos e inmunológicos, generando lesiones hepáticas en pollos de engorde (P < 0.05). Sin embargo, también se observó que la suplementación con el producto comercial de Bacillus proporcionó efectos benéficos que podrían ayudar a mejorar la función de la barrera intestinal, las actividades antiinflamatorias y antioxidantes, así como la inmunomodulación humoral y celular. Los resultados del presente estudio sugieren que este producto comercial de Bacillus agregado a una concentración de 106 esporas/gramo de alimento puede usarse para contrarrestar los efectos negativos que se producen cuando las aves consumen dietas contaminadas con aflatoxina B1, mostrando efectos beneficiosos en los parámetros productivos, peso relativo de órganos, lesiones hepáticas, respuesta inmune y variables bioquímicas séricas. La adición de este Bacillus podría mitigar y disminuir los problemas de aflatoxicosis en la industria avícola, mejorando la seguridad alimentaria, los problemas de salud pública y los beneficios económicos. Se requieren estudios futuros para dilucidar completamente los mecanismos específicos por los cuales este producto comercial con Bacillus contrarresta los efectos tóxicos de la aflatoxina B1.
Assuntos
Bacillus/química , Galinhas/imunologia , Probióticos/farmacologia , Aflatoxina B1/toxicidade , Ração Animal/análise , Animais , Galinhas/sangue , Galinhas/crescimento & desenvolvimento , Galinhas/microbiologia , Dieta/veterinária , Masculino , Distribuição AleatóriaRESUMO
Decreases in the use of antibiotics and anticoccidials in the poultry industry have risen the appearance of necrotic enteritis (NE). The purpose of this study was to evaluate the effect of a Bacillus direct-fed microbial (DFM) on growth performance, intestinal integrity, NE lesions and ileal microbiota using a previously established NE-challenged model. At day-of-hatch, chicks were randomly assigned to three different groups: Negative control (NC), Positive control (PC) challenged with Salmonella Typhimurium (day 1), Eimeria maxima (EM, day 13) and Clostridium perfringens (CP, day 18-19), and Bacillus-DFM group (DFM) challenged as the PC. Body weight (BW) and body weight gain (BWG) were measured weekly. Total feed intake (FI) and feed conversion ratio (FCR) were evaluated at day 21. Liver samples were collected to assess bacterial translocation and blood samples were used to measure superoxide dismutase (SOD) and fluorescein isothiocyanate-dextran (FITC-d). Intestinal contents were obtained for determination of total IgA and microbiota analysis. NE lesion scores (LS) were performed at day 21. Chickens consuming the DFM significantly improved BW and had a numerically more efficient FCR compared to PC at day 21. Additionally, there were no significant differences in FCR between the DFM group and NC. Furthermore, the DFM group showed significant reductions in LS, IgA and FITC-d levels compared to the PC. However, there were no significant differences in SOD between the groups. The microbiota analysis indicated that the phylum Proteobacteria was significantly reduced in the DFM group in comparison to PC. At the genus level, Clostridium, Turicibacter, Enterococcus, and Streptococcus were reduced, whereas, Lactobacillus and Bacillus were increased in the DFM group as compared to PC (p < 0.05). Likewise, the DFM significantly reduced CP as compared to PC. In contrary, no significant differences were observed in bacterial composition between NC vs. DFM. In addition, beta diversity showed significant differences in the microbial community structure between NC vs. PC, and PC vs. DFM. These results suggest that the dietary inclusion of a selected DFM could mitigate the complex negative impacts caused by NE possibly through mechanism(s) that might involve modulation of the gut microbiota.
RESUMO
A study was conducted to investigate the effects of Bacillus amyloliquefaciens CECT 5940 as a direct-fed microbial (DFM) alone or in association with bacitracin methylene disalicylate (BMD) in broilers under enteric pathogen challenge. A total of 1,530-day-old male Cobb500 chicks were randomly assigned to 5 treatments, with 9 replicate pens with 34 birds each. Treatments included positive control (PC, basal diet without additives or challenge); negative control (NC, basal diet without additive and challenged birds); NC + 0.05 g/kg BMD; NC + 1 g/kg DFM (106 CFU B. amyloliquefaciens CECT 5940/g of feed); and NC + 0.05 g/kg BMD + 1 g/kg DFM. The challenge consisted of oral gavage with Eimeria maxima and Clostridium perfringens inoculum. Body weight gain (BWG), feed intake (FI), and feed conversion ratio (FCR) were evaluated on days 21, 35, and 42. Ileal and cecal content were collected on days 21 and 28 for C. perfringens enumeration by real-time PCR assay and the intestinal health was evaluated by scores. Uniformity (UN), carcass (CY), and breast meat yields (BMY) were evaluated on day 42. After 14 and 21 d post-inoculation, birds in the challenged groups had significant lower FI and BWG compared to the PC group (P < 0.05). However, the groups receiving DFM, BMD, or its combination presented better FCR, CY, BMY, UN, and lower incidence of footpad lesion and litter quality visual scores, compared to the NC group without feed additives (P < 0.05). Mortality was not affected by treatments (P > 0.05). Broilers fed DFM, BMD, or its combination presented lower C. perfringens in ileal content at 21 and 28 d compared to NC group without additives (P < 0.05) and also maintained gut health by keeping the frequency of ballooning, abnormal content, and swollen mucosa comparable to the PC group (P > 0.05). The study indicates that Bacillus amyloliquefaciens CECT 5940 is effective as BMD to provide similar performance and gut health in challenged broilers.
Assuntos
Antibacterianos/farmacologia , Bacillus amyloliquefaciens/química , Galinhas , Infecções por Clostridium/veterinária , Coccidiose/veterinária , Doenças das Aves Domésticas/tratamento farmacológico , Probióticos/farmacologia , Ração Animal/análise , Animais , Antibacterianos/administração & dosagem , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/microbiologia , Clostridium perfringens/fisiologia , Coccidiose/tratamento farmacológico , Coccidiose/parasitologia , Dieta/veterinária , Eimeria/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Substâncias de Crescimento/administração & dosagem , Substâncias de Crescimento/farmacologia , Masculino , Carne/análise , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/parasitologia , Probióticos/administração & dosagem , Distribuição AleatóriaRESUMO
To evaluate the effects of the supplementation of feed additives on carcass quality in beef cattle, 72 Nellore steers (339.5kg, 20-month old) were feedlot finished and fed for 91 days one of the following diets: 1) control with no additives; or added of 2) live yeast culture; 3) monensin; or 4) the association of both additives. After slaughter, renal, pelvic, and inguinal fat and hot carcass weights were recorded and carcass was split into muscle, bone, and trimmable fat. Carcass Longissimus muscle area and subcutaneous fat thickness at the 12th rib were measured and steaks of Longisimus muscle were taken to determine meat color, shear force, drip, and cooking losses. Yeast increased carcass dressing percentage but there were no effects on hot carcass weight, Longissimus area, subcutaneous fat thickness, percentage and weight of retail cut yield and trimmings. Feed additives had no effect on carcass pH, meat color, fat content, shear force, and drip losses. Supplementation of yeast, monensin or the association of both additives had no important effects on carcass traits and on meat quality of feedlot finished steers.(AU)
Avaliaram-se os efeitos da suplementação de aditivos alimentares sobre a qualidade de carcaça em bovinos de corte. Usaram-se 72 novilhos Nelore com média de peso de 339,5kg e 20 meses de idade, terminados em confinamento e alimentados por 91 dias com uma das quatro dietas: 1) dieta controle sem aditivos, ou com a adição de 2) leveduras vivas, 3) monensina ou 4) associação entre ambos aditivos. Após o abate, os pesos da gordura renal, pélvica e inguinal e da carcaça foram medidos e a carcaça dividida em músculos, ossos e aparas. Foram mensurados a área de olho de lombo e a espessura de gordura subcutânea sobre o músculo Longissimus na região da 12ª costela e foram obtidos bifes para a determinação da cor, força de cisalhamento e perdas por cocção e cozimento da carne. A levedura aumentou o rendimento de carcaça, mas não houve efeito dos tratamentos sobre o peso de carcaça, porção comestível e aparas. Os aditivos não influenciaram o pH da carcaça, a cor, a gordura intramuscular, a força de cisalhamento e as perdas por exsudação da carne. A suplementação, com levedura e com monensina em associação ou separadamente, não teve efeito importante sobre a qualidade da carcaça em novilhos terminados em confinamento.(AU)
Assuntos
Animais , Aditivos Alimentares , Leveduras , Monensin/administração & dosagem , Resistência ao Cisalhamento , BovinosRESUMO
To evaluate the effects of the supplementation of feed additives on carcass quality in beef cattle, 72 Nellore steers (339.5kg, 20-month old) were feedlot finished and fed for 91 days one of the following diets: 1) control with no additives; or added of 2) live yeast culture; 3) monensin; or 4) the association of both additives. After slaughter, renal, pelvic, and inguinal fat and hot carcass weights were recorded and carcass was split into muscle, bone, and trimmable fat. Carcass Longissimus muscle area and subcutaneous fat thickness at the 12th rib were measured and steaks of Longisimus muscle were taken to determine meat color, shear force, drip, and cooking losses. Yeast increased carcass dressing percentage but there were no effects on hot carcass weight, Longissimus area, subcutaneous fat thickness, percentage and weight of retail cut yield and trimmings. Feed additives had no effect on carcass pH, meat color, fat content, shear force, and drip losses. Supplementation of yeast, monensin or the association of both additives had no important effects on carcass traits and on meat quality of feedlot finished steers.
Avaliaram-se os efeitos da suplementação de aditivos alimentares sobre a qualidade de carcaça em bovinos de corte. Usaram-se 72 novilhos Nelore com média de peso de 339,5kg e 20 meses de idade, terminados em confinamento e alimentados por 91 dias com uma das quatro dietas: 1) dieta controle sem aditivos, ou com a adição de 2) leveduras vivas, 3) monensina ou 4) associação entre ambos aditivos. Após o abate, os pesos da gordura renal, pélvica e inguinal e da carcaça foram medidos e a carcaça dividida em músculos, ossos e aparas. Foram mensurados a área de olho de lombo e a espessura de gordura subcutânea sobre o músculo Longissimus na região da 12ª costela e foram obtidos bifes para a determinação da cor, força de cisalhamento e perdas por cocção e cozimento da carne. A levedura aumentou o rendimento de carcaça, mas não houve efeito dos tratamentos sobre o peso de carcaça, porção comestível e aparas. Os aditivos não influenciaram o pH da carcaça, a cor, a gordura intramuscular, a força de cisalhamento e as perdas por exsudação da carne. A suplementação, com levedura e com monensina em associação ou separadamente, não teve efeito importante sobre a qualidade da carcaça em novilhos terminados em confinamento.