Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 621
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38985427

RESUMO

The factors limiting micropollutant biodegradation in the environment and how to stimulate this process have often been investigated. However, little information is available on the capacity of microbial communities to retain micropollutant biodegradation capacity in the absence of micropollutants or to reactivate micropollutant biodegradation in systems with fluctuating micropollutant concentrations. This study investigated how a period of 2 months without the addition of micropollutants and other organic carbon affected micropollutant biodegradation by a micropollutant-degrading microbial community. Stimulation of micropollutant biodegradation was performed by adding different types of dissolved organic carbon (DOC)-extracted from natural sources and acetate-increasing 10 × the micropollutant concentration, and inoculating with activated sludge. The results show that the capacity to biodegrade 3 micropollutants was permanently lost. However, the biodegradation activity of 2,4-D, antipyrine, chloridazon, and its metabolites restarted when these micropollutants were re-added to the community. Threshold concentrations similar to those obtained before the period of no substrate addition were achieved, but biodegradation rates were lower for some compounds. Through the addition of high acetate concentrations (108 mg-C/L), gabapentin biodegradation activity was regained, but 2,4-D biodegradation capacity was lost. An increase of bentazon concentration from 50 to 500 µg/L was necessary for biodegradation to be reactivated. These results provide initial insights into the longevity of micropollutant biodegradation capacity in the absence of the substance and strategies for reactivating micropollutant biodegrading communities.

2.
Glob Chang Biol ; 30(7): e17394, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988095

RESUMO

Water-logged peatlands store tremendous amounts of soil carbon (C) globally, accumulating C over millennia. As peatlands become disturbed by human activity, these long-term C stores are getting destabilized and ultimately released as greenhouse gases that may exacerbate climate change. Oxidation of the dissolved organic carbon (DOC) mobilized from disturbed soils to streams and canals may be one avenue for the transfer of previously stored, millennia-aged C to the atmosphere. However, it remains unknown whether aged peat-derived DOC undergoes oxidation to carbon dioxide (CO2) following disturbance. Here, we use a new approach to measure the radiocarbon content of CO2 produced from the oxidation of DOC in canals overlying peatland soils that have undergone widespread disturbance in Indonesia. This work shows for the first time that aged DOC mobilized from drained and burned peatland soils is susceptible to oxidation by both microbial respiration and photomineralization over aquatic travel times for DOC. The bulk radiocarbon age of CO2 produced during canal oxidation ranged from modern to ~1300 years before present. These ages for CO2 were most strongly influenced by canal water depth, which was proportional to the water table level where DOC is mobilized from disturbed soils to canals. Canal microbes preferentially respired older or younger organic C pools to CO2, and this may have been facilitated by the use of a small particulate organic C pool over the dissolved pool. Given that high densities of canals are generally associated with lower water tables and higher fire risk, our findings suggest that peatland areas with high canal density may be a hotspot for the loss of aged C on the landscape. Taken together, the results of this study show how and why aquatic processing of organic C on the landscape can enhance the transfer of long-term peat C stores to the atmosphere following disturbance.


Assuntos
Dióxido de Carbono , Carbono , Solo , Solo/química , Dióxido de Carbono/análise , Carbono/análise , Indonésia , Oxirredução
3.
Environ Sci Technol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965050

RESUMO

Dissolved organic carbon (DOC) dynamics are critical to carbon cycling in forest ecosystems and sensitive to global change. Our study, spanning from 2001 to 2020 in a headwater catchment in subtropical China, analyzed DOC and water chemistry of throughfall, litter leachate, soil waters at various depths, and streamwater. We focused on DOC transport through hydrological pathways and assessed the long-term trends in DOC dynamics amidst environmental and climatic changes. Our results showed that the annual DOC deposition via throughfall and stream outflow was 14.2 ± 2.2 and 1.87 ± 0.83 g C m-2 year-1, respectively. Notably, there was a long-term declining trend in DOC deposition via throughfall (-0.195 mg C L-1 year-1), attributed to reduced organic carbon emissions from clean air actions. Conversely, DOC concentrations in soil waters and stream waters showed increasing trends, primarily due to mitigated acid deposition. Moreover, elevated temperature and precipitation could partly explain the long-term rise in DOC leaching. These trends in DOC dynamics have significant implications for the stability of carbon sink in terrestrial, aquatic, and even oceanic ecosystems at regional scales.

4.
Heliyon ; 10(11): e32392, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38947469

RESUMO

Despite the well-documentation of the effects of straw returning on soil structural stability and fertility, its long-term in situ impacts on profile aggregate size composition and organic carbon (OC) fractions remain poorly investigated. To address this research gap, the present nine-year field trial explored the co-effects of straw returning and chemical fertilization on soil total OC (TOC), dissolved OC (DOC), resistant OC (ROC), easily oxidative OC (EOC), as well as soil aggregate size composition of different soil depths (0-15, 15-30, and 30-50 cm) in a paddy field, East China. To do so, four different treatments were set up, including no straw returning plus no fertilization (CK), conventional fertilization (F), straw returning plus conventional fertilization (SF), and straw returning plus 80 % conventional fertilization (SDF). Our findings revealed that the >2 mm aggregates were dominant in all treatments, particularly in SF and SDF 0-30 cm soil layers ranging from 62 to 70 % (P < 0.05). The highest TOC contents happened in SF topsoil 0.25-2 mm aggregates (0-30 cm; 21.4 g/kg), 44.4 and 21.1 % higher than the CK and F treatments, respectively (P < 0.05). Regardless of soil depth, the highest EOC contents occurred in SDF 0.25-2 mm aggregates varying from 2.36 ± 0.1 to 7.7 ± 0.57 g/kg (P < 0.05). Further, the highest ROC and DOC contents took place in SF 0.25-2 mm and SF > 2 mm aggregates, respectively, differing from 3.86 to 15.8 g/kg and 250-413 mg/kg, respectively (P < 0.05). It is also worth noting that SF had the highest crop productivity with the seasonal yields of 3.51 and 13.5 t ha-1 for rapeseed and rice, respectively (P < 0.05). Altogether, our findings suggested that long-term straw returning coupled with conventional (SF) or 80 % conventional (SDF) fertilization are the most efficient schemes for the formation/stability of soil aggregates, as well as for the accumulation of different soil OC fractions and crop productivity in the Chaohu Lake agricultural soils of East China.

5.
Environ Res ; 259: 119558, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969317

RESUMO

Phosphorus (P) release from sediment poses a severe challenge for eutrophication management in the aquatic environment. The dissolved organic carbon (DOC) concentrations in riverine ecosystems have shown an increasing trend due to intensified climate change and anthropogenic activities, while their impact on sediment P cycling remains unclear. To investigate the effects of different DOC loads on sediment P release and the underlying mechanisms, we conducted a two-month experiment in 15 plexiglass tanks, with five gradient-increasing target DOC concentrations set according to reality: control (S0), 5 mg/L (S5), 10 mg/L (S10), 15 mg/L (S15), and 20 mg/L (S20). The results demonstrated that: i) DOC enrichment promoted the sediment P mobilization and release, with the underlying mechanisms exhibited periodic characteristics. ii) reduced dissolved oxygen (DO) concentration and stimulated alkaline phosphatase activity (APA) were likely the primary and sustained facilitating mechanisms. While after the termination of DOC load, elevated pH level was also considered a contributing factor when chlorophyll a (Chl a) ranged between 5.9 µg/L and 7.7 µg/L iii) ultimate concentration of total P (TP) in the overlying water depended on DOC load. After DOC addition was terminated, decreased TP concentrations were observed when DOC concentration was in the range of 5-15 mg/L, which may be attributed to the direct uptake of P by phytoplankton counteracting the minor promotion of P release induced by anoxic conditions. However, when DOC concentrations exceeded 15-20 mg/L, there were notable increments in TP concentrations. Our findings provide further insight into the response mechanisms of sediment P release to the increasing organic C load in natural ecosystems. The impact of broader C forms or C loads on sediment P cycling needs to be fully elucidated and even quantified in future studies, especially through large-scale field investigations to further clarify the coupled roles between C and P.

6.
Sci Total Environ ; 946: 174090, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914338

RESUMO

Dissolved organic carbon (DOC) and discharge are often tightly coupled, though these relationships in karst environments remain poorly constrained. In this study, DOC dynamics over 13 hydrological events, alongside monthly monitoring over an entire hydrological year were monitored in a small karst catchment, SW China. The concurrent analyses of power-law model and hysteresis patterns reveal that DOC behavior is generally transport-limited due to flushing effects of increased discharge but highly variable at both intra- and inter-event scales. The initial discharge at event onset and discharge-weighted mean concentration of DOC ([DOC]DW) of individual events can explain 37.7 % and 19.9 % of the variance of DOC behavior among events, respectively. The sustained dry-cold antecedent conditions make DOC hysteresis behavior during the earliest event complex and different from subsequent events. At event scale, the variability in DOC export is primarily controlled by [DOC]DW (explaining 64.3 %) and the yield of total dissolved solutes (YTDS, explaining 30.4 %), reflecting the impacts of variable hydrological connectivity and intense soil-water-rock interactions in this karst catchment. On an annual scale, DOC yield (YDOC, 222.86 kg C km-2) was mostly derived during the wet season (98.19 %) under the hydrological driving force. The difference in annual YDOC between this karst catchment and other regions can be well explained by annual water yield (Ywater, explaining 24.2 %) and [DOC] (explaining 35.4 %), whereas the variance in DOC export efficiency among catchments is almost exclusively controlled by [DOC] alone, independent of drainage area and annual Ywater. This study highlights the necessity of high-frequency sampling for modeling carbon biogeochemical processes and the particularity of the earliest hydrological events occurred after a long cold-dry period in karst catchments. Under the changing climate, whether DOC dynamics in karst catchments will present source-limited patterns during more extreme hydrological events merits further study.

7.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38861418

RESUMO

Molecular observational tools are useful for characterizing the composition and genetic endowment of microbial communities but cannot measure fluxes, which are critical for the understanding of ecosystems. To overcome these limitations, we used a mechanistic inference approach to estimate dissolved organic carbon (DOC) production and consumption by phytoplankton operational taxonomic units and heterotrophic prokaryotic amplicon sequence variants and inferred carbon fluxes between members of this microbial community from Western English Channel time-series data. Our analyses focused on phytoplankton spring and summer blooms, as well as bacteria summer blooms. In spring blooms, phytoplankton DOC production exceeds heterotrophic prokaryotic consumption, but in bacterial summer blooms heterotrophic prokaryotes consume three times more DOC than produced by the phytoplankton. This mismatch is compensated by heterotrophic prokaryotic DOC release by death, presumably from viral lysis. In both types of summer blooms, large amounts of the DOC liberated by heterotrophic prokaryotes are reused through internal recycling, with fluxes between different heterotrophic prokaryotes being at the same level as those between phytoplankton and heterotrophic prokaryotes. In context, internal recycling accounts for approximately 75% and 30% of the estimated net primary production (0.16 vs 0.22 and 0.08 vs 0.29 µmol l-1 d-1) in bacteria and phytoplankton summer blooms, respectively, and thus represents a major component of the Western English Channel carbon cycle. We have concluded that internal recycling compensates for mismatches between phytoplankton DOC production and heterotrophic prokaryotic consumption, and we encourage future analyses on aquatic carbon cycles to investigate fluxes between heterotrophic prokaryotes, specifically internal recycling.


Assuntos
Bactérias , Carbono , Processos Heterotróficos , Fitoplâncton , Estações do Ano , Fitoplâncton/metabolismo , Carbono/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Ciclo do Carbono , Células Procarióticas/metabolismo , Ecossistema
8.
Water Sci Technol ; 89(11): 3079-3092, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877631

RESUMO

Granular activated carbon (GAC) filtration is a commonly used method for advanced wastewater treatment. Filters can be operated continuously or discontinuously, with continuous operation not requiring feed flow interruption for backwashing and circulation (B/C). This study investigated the influence of B/C on the effluent quality of continuous filters. Two continuous GAC filters were operated for 1.5 years, with analysis of dissolved substances and particulate matter in the influent and effluent. The results indicated that various B/C modes had no impact on the removal of dissolved organic carbon and organic micropollutants (OMP), achieving an OMP removal of over 70% after 5,600 treated bed volumes (m3 treated wastewater per m3 GAC). However, it was evident that continuous B/C over 2-4 h resulted in increased turbidity, total suspended solids over 30 mg/L and total phosphorus concentrations of 1.3 mg/L in the filter effluent. Additionally, the study demonstrated that longer and more intensive B/C processes resulted in GAC size degradation with AC concentrations of up to 6.9 mg/L in the filter effluent, along with a change in GAC particle size. Furthermore, the importance of pre-filtration in reducing particulate matter in the filter influent and decreasing hydraulic head loss could be demonstrated.


Assuntos
Carvão Vegetal , Filtração , Filtração/métodos , Filtração/instrumentação , Carvão Vegetal/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Purificação da Água/instrumentação , Poluentes Químicos da Água/química , Carbono/química , Tamanho da Partícula , Fósforo/química , Fósforo/análise
9.
Bull Environ Contam Toxicol ; 112(6): 77, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758236

RESUMO

Fulvic acids (FA) are environmentally prevalent components of dissolved organic carbon. Little research has evaluated their potential influence on the bioavailability of herbicides to non-target aquatic plants. This study evaluated the potential impacts of FA on the bioavailability of atrazine (ATZ) to the aquatic plant Lemna minor. Plants were exposed to 0, 15, 30, 60, 125, and 750 µg/L ATZ in media containing three FA concentrations (0, 5, and 15 mg/L) in a factorial study under static conditions. Fronds were counted after 7- and 14-days exposure and intrinsic growth rates (IGR) and total frond yields were calculated for analysis. Atrazine NOAECs and LOAECs within each FA treatment series (0, 5, or 15 mg/L) were identified and EC50s were estimated. NOAEC/LOAECs for yield and IGR were 60/125 µg/L except for yield in the 0 mg/L-FA series (30/60) and IGR in the 5 mg/L-FA series (30/60). NOAEC/LOAECs were 30/60 µg/L for all treatments and both endpoints after 14 days exposure. EC50s ranged from 88.2 to 106.1 µg/L (frond production 7 DAT), 158.0-186.0 µg/L (IGR, 7 DAT), 74.7-86.3 µg/L (frond production, 14 DAT), and 144.1-151.3 µg/L (IGR, 14 DAT). FA concentrations did not influence the toxicity of ATZ.


Assuntos
Araceae , Atrazina , Benzopiranos , Herbicidas , Poluentes Químicos da Água , Herbicidas/toxicidade , Benzopiranos/toxicidade , Atrazina/toxicidade , Araceae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
10.
Environ Res ; 252(Pt 3): 119040, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692424

RESUMO

Floods in global large rivers modulate the transport of dissolved organic carbon (DOC) and estuarine hydrological characteristics significantly. This study investigated the impact of a severe flood on the sources and age of DOC in the Yangtze River Estuary (YRE) in 2020. Comparing the flood period in 2020 to the non-flood period in 2017, we found that the flood enhanced the transport of young DOC to the East China Sea (ECS), resulting in significantly enriched Δ14C-DOC values. During the flood period, the proportion of modern terrestrial organic carbon (OC) was significantly higher compared to the non-flood period. Conversely, the proportion of pre-aged sediment OC was significantly lower during the flood period. The high turbidity associated with the flood facilitated rapid transformation and mineralization of sedimentary and fresh terrestrial OC, modifying the sources of DOC. The flux of modern terrestrial OC transported to the ECS during the flood period was 1.58 times higher than that of the non-flood period. These findings suggest that floods can modulate the sources and decrease the age of DOC, potentially leading to increased greenhouse gas emissions. Further research is needed to understand the long-term impacts of floods on DOC dynamics in global estuaries.


Assuntos
Carbono , Estuários , Inundações , Rios , China , Rios/química , Carbono/análise , Monitoramento Ambiental , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 934: 173075, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750759

RESUMO

Unregulated antibiotic use has led to the proliferation of antibiotic-resistant bacteria (ARB) in aquatic environments. Ultraviolet light-emitting diodes (UV LEDs) have evolved as an innovative technology for inactivating microorganisms offering several advantages over traditional mercury lamps. This research concentrated on utilizing UV LEDs with three distinct wavelengths (265 nm, 275 nm, and 285 nm) to inactivate E. coli DH10ß encoding the ampicillin-resistant blaTEM-1 gene in its plasmid. Non-linear models, such as Geeraerd's and Weibull, provided more accurate characterization of the inactivation profiles than the traditional log-linear model due to the incorporation of both biological mechanisms and a deterministic approach within non-linear models. The inactivation rates of ARB were higher than antibiotic-sensitive bacteria (ASB) when subjected to UV LEDs. The highest inactivation rates were observed when all microorganisms were exposed to 265 nm. Photoreactivation emerged as the primary mechanism responsible for repairing DNA damage induced by UV LEDs. 285 nm showed the highest reactivation efficiencies for ARB under different fluences. At higher fluences, both 265 and 275 nm displayed similar effectiveness in suppressing reactivation, while at lower fluences, 275 nm exhibited better efficacies in controlling the reactivation. Therefore, the inhibition of reactivation was influenced by the extent of damage incurred to both DNA and enzymes. In nutrient-poor media (0.9 % NaCl), ASB did not exhibit any reactivation potential. However, the addition of Luria-Bertani (LB) broth promoted the reactivation of ASB. Lower fluence rate was more beneficial at 265 nm whereas higher fluence rates were more effective for longer wavelengths. The inactivation of ARB was enhanced by dissolved organic carbon (DOC) at low fluences. However, the removal of ARB was reduced due to the presence of DOC at higher fluences. The highest energy demand for ARB inactivation was reported at 285 nm. ENVIRONMENTAL IMPLICATION: The excessive and unregulated utilization of antibiotics has emerged as a significant issue for public health. This paper presents a comprehensive analysis of the effectiveness of UV LEDs, an emerging technology, in the inactivation of antibiotic-resistant bacteria (ARB). This research paper explores the kinetics of UV LEDs with different wavelengths to inactivate ARB along with the reactivation efficiencies. This research work also explores the impact and relevant mechanisms of the impact of dissolved organic carbon (DOC) on the inactivation of ARB by UV LEDs.


Assuntos
Raios Ultravioleta , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Cinética , Escherichia coli/efeitos dos fármacos , Desinfecção/métodos , Bactérias
12.
Chemosphere ; 358: 142221, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701861

RESUMO

Lanthanum modified bentonite (LMB) is typical P-inactivating agent that has been applied in over 200 lakes. Dissolved organic carbon (DOC) and high pH restrict the phosphorus (P) immobilization performance of LMB. However, the P immobilization/release behaviors of LMB-amended sediment when suspended to overlying water with high pH and DOC have not yet been studied. In the present work, batch adsorption and long-term incubation experiments were performed to study the combined effects of pH and DOC on the P control by LMB. The results showed that the coexistence of low concentration of DOC or preloading with some DOC had a negligible effect on P binding by LMB. In the presence of DOC, the P adsorption was more pronounced at pH 7.5 and was measurably less at pH 9.5. Additionally, the pH value was the key factor that decided the P removal at low DOC concentration. The increase in pH and DOC could significantly promote the release of sediment P with a higher EPC0. Under such condition, a higher LMB dosage was needed to effectively control the P releasing from sediment. In sediment/water system with intermittent resuspension, the alkaline conditions greatly facilitated the release of sediment P and DOC, which increased from 0.087 to 0.581 mg/L, and from 11.05 to 26.56 mg/L, respectively. Under the dual effect of pH and DOC, the P-immobilization performance of LMB was weakened, and a tailor-made scheme became essential for determining the optimum dosage. The desorption experiments verified that the previously loaded phosphorus on LMB was hard to be released even under high pH and DOC conditions, with an accumulative desorption rate of less than 2%. Accordingly, to achieve the best P controlling efficiency, the application strategies depending on LMB should avoid the high DOC loading period such as the rainy season and algal blooms.


Assuntos
Bentonita , Carbono , Sedimentos Geológicos , Lantânio , Fósforo , Poluentes Químicos da Água , Bentonita/química , Lantânio/química , Fósforo/química , Concentração de Íons de Hidrogênio , Sedimentos Geológicos/química , Carbono/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Lagos/química
13.
Environ Sci Technol ; 58(21): 9213-9226, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38748643

RESUMO

The use of optical proxies is essential to the sustained monitoring of dissolved organic carbon (DOC) in estuaries and coastal wetlands, where dynamics occur on subhour time scales. In situ dissolved organic matter (DOM) fluorescence, or FDOM, is now routinely measured along with ancillary water-quality indicators by commercial sondes. However, its reliability as an optical proxy of DOC concentration is often limited by uncertainties caused by in situ interferences and by variability in DOM composition and water matrix (ionic strength, pH) that are typical at the land-ocean interface. Although corrections for in situ interferences already exist, validated strategies to account for changes in the DOM composition and water matrix in these systems are still lacking. The transferability of methods across systems is also poorly known. Here, we used a comprehensive data set of laboratory-based excitation-emission matrix fluorescence and DOC concentration matched to in situ sonde measurements to develop and compare approaches that leverage ancillary water-quality indicators to improve estimates of DOC concentration from FDOM. Our analyses demonstrated the validity of in situ interference correction schemes, the importance of ancillary water-quality indicators to account for DOM composition and water matrix change, and the good transferability of the proposed methods.


Assuntos
Carbono , Monitoramento Ambiental , Estuários , Áreas Alagadas , Monitoramento Ambiental/métodos , Fluorescência
14.
MethodsX ; 12: 102663, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38559387

RESUMO

Numerous protocols for dissolved organic carbon (DOC) measurements on natural water are used in the literature. An ISO protocol for the determination of DOC exists since 2018, but it is certified for DOC values ≥ 1 mg L-1, while many publications report DOC values much lower. In addition, this ISO protocol does not include indications on vials cleaning, filtering material, and type of caps and septa to be used. The purpose of this study was to evaluate protocols for measurements of low DOC concentrations (≤ 1 mg L-1). The effect of the sample container, type of septum, filtration material, nature of acid used for storage, and matrix effects on DOC concentration were evaluated.•The use of glass vials decontaminated at 450 °C or 500 °C for at least 1 h, 0.45 µm hydrophilic polytetrafluoroethylene (PTFE) membranes previously rinsed with 20 mL ultra-pure water and HCl acidification gives the lowest DOC contamination,•Sulfides (ΣH2S), sodium (Na+) or calcium (Ca2+) do not induce high matrix effect for the analysis (≤ 10%),•At low DOC concentrations (≤ 1 mg L-1), the use of pierced PTFE septa with acidified samples induce slight DOC contamination after storage at 4 °C, and dramatic contamination after storage at -18 °C.

15.
Sci Total Environ ; 927: 172289, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599405

RESUMO

Cu, as an essential and toxic element, has gained widespread attention. Both salinity and dissolved organic carbon (DOC) are known to influence Cu toxicity in marine organisms. However, the intricate interplay between these factors and their specific influence on Cu toxicity remains ambiguous. So, this study conducted toxicity tests of Cu on Oryzias melastigma. The experiments involved three salinity levels (10, 20, and 30 ppt) and three DOC levels (0, 1, and 5 mg/L) to comprehensively investigate the underlying mechanisms of toxicity. The complex toxic effects were analyzed by mortality, NKA activity, net Na+ flux and Cu bioaccumulation in O. melastigma. The results indicate that Cu toxicity is notably influenced by both DOC and salinity. Interestingly, the discernible variation in Cu toxicity across different DOC levels diminishes as salinity levels increase. The presence of DOC enhances the impact of salinity on Cu toxicity, especially at higher Cu concentrations. Additionally, Visual MINTEQ was utilized to elucidate the chemical composition of Cu, revealing that DOC had a significant impact on Cu forms. Furthermore, we observed that fluctuations in salinity lead to the inhibition of Na+/K+-ATPase (NKA) activity, subsequently hindering the inflow of Na+. The effects of salinity and DOC on the bioaccumulation of copper were not significant. The influence of salinity on Cu toxicity is mainly through its effect on the osmotic regulation and biophysiology of O. melastigma. Additionally, DOC plays a crucial role in the different forms of Cu. Moreover, DOC-Cu complexes can be utilized by organisms. This study contributes to understanding the mechanism of copper's biological toxicity in intricate marine environments and serves as a valuable reference for developing marine water quality criteria for Cu.


Assuntos
Carbono , Cobre , Oryzias , Salinidade , Poluentes Químicos da Água , Cobre/toxicidade , Cobre/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Carbono/metabolismo , Oryzias/metabolismo , Oryzias/fisiologia , Bioacumulação
16.
Environ Int ; 186: 108629, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38582060

RESUMO

Recently, extreme wildfires occur frequently around the world and emit substantial brown carbon (BrC) into the atmosphere, whereas the molecular compositions and photochemical evolution of BrC remain poorly understood. In this work, primary smoke aerosols were generated from wood smoldering, and secondary smoke aerosols were formed by the OH radical photooxidation in an oxidation flow reactor, where both primary and secondary smoke samples were collected on filters. After solvent extraction of filter samples, the molecular composition of dissolved organic carbon (DOC) was determined by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). The molecular composition of dissolved BrC was obtained based on the constraints of DOC formulae. The proportion of dissolved BrC fractions accounted for approximately 1/3-1/2 molecular formulae of DOC. The molecular characteristics of dissolved BrC showed higher levels of carbon oxidation state, double bond equivalents, and modified aromaticity index than those of DOC, indicating that dissolved BrC fractions were a class of organic structures with relatively higher oxidation state, unsaturated and aromatic degree in DOC fractions. The comparative analysis suggested that aliphatic and olefinic structures dominated DOC fractions (contributing to 70.1%-76.9%), while olefinic, aromatic, and condensed aromatic structures dominated dissolved BrC fractions (contributing to 97.5%-99.9%). It is worth noting that dissolved BrC fractions only contained carboxylic-rich alicyclic molecules (CRAMs)-like structures, unsaturated hydrocarbons, aromatic structures, and highly oxygenated compounds. CRAMs-like structures were the most abundant species in both DOC and dissolved BrC fractions. Nevertheless, the specific molecular characteristics for DOC and dissolved BrC fractions varied with subgroups after aging. The results highlight the similarities and differences in the molecular compositions and characteristics of DOC and dissolved BrC fractions with aging. This work will provide insights into understanding the molecular composition of DOC and dissolved BrC in smoke.


Assuntos
Aerossóis , Carbono , Fumaça , Madeira , Carbono/análise , Carbono/química , Fumaça/análise , Madeira/química , Aerossóis/análise , Aerossóis/química , Oxirredução , Incêndios Florestais , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Processos Fotoquímicos
17.
Water Sci Technol ; 89(8): 2060-2072, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678409

RESUMO

A wet chemical oxidation (WCO) method has been widely used to obtain the dissolved organic carbon (DOC) content and carbon isotope (δ13CDOC) ratios. However, it is sometimes difficult to get high precision results because not enough CO2 was oxidized from the natural water samples with low DOC concentrations. This improvement primarily aims to increase the water sample volume, improve the removal rate of dissolved inorganic carbon (DIC), and minimize the blank DOC from the standard solution. Following the improved procedure, the δ13C ratios of standardized DOC solutions were consistent with their actual values, and their differences were less than 0.2‰. The improved method demonstrated good accuracy and stability when applied to natural water samples with DOC concentrations ≥0.5 mg L-1, with the precisions of DOC concentrations and δ13C ratios were better than 0.07 mg L-1 and 0.1‰, respectively. More importantly, this method saved much pre-treatment time and realized batch processing of water samples to obtain their DOC contents and isotope ratios.


Assuntos
Isótopos de Carbono , Carbono , Isótopos de Carbono/análise , Carbono/química , Carbono/análise , Água/química , Oxirredução
18.
Proc Biol Sci ; 291(2020): 20240016, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38565157

RESUMO

An emerging consensus suggests that evolved intraspecific variation can be ecologically important. However, evidence that evolved trait variation within vertebrates can influence fundamental ecosystem-level processes remains sparse. In this study, we sought to assess the potential for evolved variation in the spotted salamander (Ambystoma maculatum) to affect aquatic ecosystem properties. Spotted salamanders exhibit a conspicuous polymorphism in the colour of jelly encasing their eggs-some females produce clear jelly, while others produce white jelly. Although the functional significance of jelly colour variation remains largely speculative, evidence for differences in fecundity and the morphology of larvae suggests that the colour morphs might differ in the strength or identity of ecological effects. Here, we assessed the potential for frequency variation in spotted salamander colour morphs to influence fundamental physiochemical and ecosystem properties-dissolved organic carbon, conductivity, acidity and primary production-with a mesocosm experiment. By manipulating colour morph frequency across a range of larval densities, we were able to demonstrate that larva density and colour morph variation were ecologically relevant: population density reduced dissolved organic carbon and increased primary production while mesocosms stocked with white morph larvae tended to have higher dissolved organic carbon and conductivity. Thus, while an adaptive significance of jelly coloration remains hypothetical, our results show that colour morphs differentially influence key ecosystem properties-dissolved organic carbon and conductivity.


Assuntos
Matéria Orgânica Dissolvida , Ecossistema , Animais , Feminino , Cor , Ambystoma , Larva
19.
Proc Natl Acad Sci U S A ; 121(13): e2305030121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38517975

RESUMO

During wildfires and fossil fuel combustion, biomass is converted to black carbon (BC) via incomplete combustion. BC enters the ocean by rivers and atmospheric deposition contributing to the marine dissolved organic carbon (DOC) pool. The fate of BC is considered to reside in the marine DOC pool, where the oldest BC 14C ages have been measured (>20,000 14C y), implying long-term storage. DOC is the largest exchangeable pool of organic carbon in the oceans, yet most DOC (>80%) remains molecularly uncharacterized. Here, we report 14C measurements on size-fractionated dissolved BC (DBC) obtained using benzene polycarboxylic acids as molecular tracers to constrain the sources and cycling of DBC and its contributions to refractory DOC (RDOC) in a site in the North Pacific Ocean. Our results reveal that the cycling of DBC is more dynamic and heterogeneous than previously believed though it does not comprise a single, uniformly "old" 14C age. Instead, both semilabile and refractory DBC components are distributed among size fractions of DOC. We report that DBC cycles within DOC as a component of RDOC, exhibiting turnover in the ocean on millennia timescales. DBC within the low-molecular-weight DOC pool is large, environmentally persistent and constitutes the size fraction that is responsible for long-term DBC storage. We speculate that sea surface processes, including bacterial remineralization (via the coupling of photooxidation of surface DBC and bacterial co-metabolism), sorption onto sinking particles and surface photochemical oxidation, modify DBC composition and turnover, ultimately controlling the fate of DBC and RDOC in the ocean.

20.
Mar Pollut Bull ; 201: 116252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479328

RESUMO

Ocean acidification (OA) is a global environmental concern, and submarine groundwater discharge (SGD) is a potentially process that enhances OA. This review summarizes the relationship between two types of constituents carried by SGD into China's seawater and OA. 1) Current research predominantly concentrates on constituent fluxes from SGD, neglecting its ecological impacts on carbon and nutrients budgets, as well as the mechanisms between carbon and nutrients. 2) Uncertainties persist in SGD research methods and acidification characterization. 3) There's a need to enhance quantitative research methods of SGD-OA, particularly in areas with intricate biogeochemical processes. Effective identification methods are crucial to quantify SGD's contribution to OA. Investigating core scientific questions, including SGD's impact on OA rates and scales, is paramount. While the primary focus is on SGD-OA research in China, insights gained from novel perspectives could have broader value for coastal management globally.


Assuntos
Água Subterrânea , Água do Mar , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Monitoramento Ambiental , Água Subterrânea/química , China , Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...