Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Neurosci Lett ; 839: 137933, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39128818

RESUMO

The dorsal raphe nucleus (DRN) receives dopaminergic inputs from the ventral tegmental area (VTA). Also, the DRN contains a small population of cells that express dopamine (DRNDA neurons). However, the physiological role of dopamine (DA) in the DRN and its interaction with serotonergic (5-HT) neurons is poorly understood. Several works have reported moderate levels of D1, D2, and D3 DA receptors in the DRN. Furthermore, it was found that the activation of D2 receptors increased the firing of putative 5-HT neurons. Other studies have reported that D1 and D2 dopamine receptors can interact with glutamate NMDA receptors, modulating the excitability of different cell types. In the present work, we used immunocytochemical techniques to determine the kind of DA receptors in the DRN. Additionally, we performed electrophysiological experiments in brainstem slices to study the effect of DA agonists on NMDA-elicited currents recorded from identified 5-HT DRN neurons. We found that D2 and D3 but not D1 receptors are present in this nucleus. Also, we demonstrated that the activation of D2-like receptors increases NMDA-elicited currents in 5-HT neurons through a mechanism involving phospholipase C (PLC) and protein kinase C (PKC) enzymes. Possible physiological implications related to the sleep-wake cycle are discussed.


Assuntos
Núcleo Dorsal da Rafe , Receptores de Dopamina D2 , Receptores de N-Metil-D-Aspartato , Neurônios Serotoninérgicos , Animais , Núcleo Dorsal da Rafe/metabolismo , Núcleo Dorsal da Rafe/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , Neurônios Serotoninérgicos/metabolismo , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Serotoninérgicos/fisiologia , Masculino , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Dopamina D3/metabolismo , N-Metilaspartato/farmacologia , N-Metilaspartato/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/agonistas , Agonistas de Dopamina/farmacologia , Ratos , Fosfolipases Tipo C/metabolismo , Ratos Wistar
2.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38399382

RESUMO

Dopamine and serotonin receptors and transporters play an essential role in the pathophysiology of schizophrenia; changes in their expression have been reported in neurons and leukocytes. Each antipsychotic induces a unique pattern in leukocyte function and phenotype. However, the use of polytherapy to treat schizophrenia makes it challenging to determine the specific effects of risperidone on peripheral blood mononuclear cells (PBMCs). The aim of this study was to evaluate the changes in the expression of D3, D5, DAT, 5-HT2A, and SERT in PBMCs from healthy volunteers (HV), drug-naive patients with schizophrenia (PWS), drug-free PWS, and PWS treated with risperidone for up to 40 weeks using quantitative PCR. Our study revealed elevated mRNA levels of D3, DAT, 5-HT2A, and SERT in unmedicated PWS. Treatment with risperidone led to a reduction only in the expression of 5-HT2A and SERT. Furthermore, we observed a moderate correlation between 5-HT2A expression and the positive and negative syndrome scale (PANSS), as well as SERT expression and PANSS scale. We also found a moderate correlation between 5-HT2A and SERT expression and the positive subscale. The duration of risperidone consumption had a significant negative correlation with the expression of 5-HT2A and SERT. Our study introduces the measurement of 5-HT2A and SERT expression in PBMCs as a useful parameter for assessing the response to risperidone in PWS.

3.
Neuroscience ; 528: 12-25, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37536611

RESUMO

We employed the whole-cell patch-clamp method and ChAT-Cre mice to study the electrophysiological attributes of cholinergic neurons in the external globus pallidus. Most neurons were inactive, although approximately 20% displayed spontaneous firing, including burst firing. The resting membrane potential, the whole neuron input resistance, the membrane time constant and the total neuron membrane capacitance were also characterized. The current-voltage relationship showed time-independent inward rectification without a "sag". Firing induced by current injections had a brief initial fast adaptation followed by tonic firing with minimal accommodation. Intensity-frequency plots exhibited maximal average firing rates of about 10 Hz. These traits are similar to those of some cholinergic neurons in the basal forebrain. Also, we examined their dopamine sensitivity by acutely blocking dopamine receptors. This action demonstrated that the membrane potential, excitability, and firing pattern of pallidal cholinergic neurons rely on the constitutive activity of dopamine receptors, primarily D2-class receptors. The blockade of these receptors induced a resting membrane potential hyperpolarization, a decrease in firing for the same stimulus, the disappearance of fast adaptation, and the emergence of a depolarization block. This shift in physiological characteristics was evident even when the hyperpolarization was corrected with D.C. current. Neither the currents that generate the action potentials nor those from synaptic inputs were responsible. Instead, our findings suggest, that subthreshold slow ion currents, that require further investigation, are the target of this novel dopaminergic signaling.


Assuntos
Dopamina , Globo Pálido , Camundongos , Animais , Dopamina/fisiologia , Potenciais de Ação/fisiologia , Neurônios Colinérgicos , Receptores Dopaminérgicos , Colinérgicos
4.
Cureus ; 15(6): e39826, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37397644

RESUMO

Objectives Meningiomas (MNGs) are the most common intracranial tumors found in the adult population. While most intracranial MNGs may be surgically removed, a subset of patients remains ineligible for conventional treatment. This is either because of a lack of surgical access or due to atypical, anaplastic or invasive characteristics of the tumors. These patients may benefit from targeted therapies that focus on cell receptor expression. The aim of this study was to assess dopamine receptor (DR) and Ki-67 expression in the MGNs of patients treated with surgery in the Instituto Nacional de Neurología y Neurocirugía, Mexico. Materials and methods This study analyzed 23 patients with confirmed MNG diagnoses (10 female and 13 male (mean age: 44.5 years)) who had undergone surgical resection between 2010 and 2014 at our institution. In the collected samples, we performed analyses for Ki-67, Dopamine 1 and Dopamine 2 receptors' expression. Results For the markers Ki-67, DR-D1 and DR-D2, the mean percentual expressions were 18.9%, 23.02% and 8.33%. No significant correlation was found between the expressions of these receptors and the studied MNG characteristics. The expression index of Ki-67 showed a significant relation with mean age (p = 0.03) and prolactin levels (p = 0.02). Conclusions Samples showed varied expressions of the studied receptors. Despite the difference in expressions between the markers, more studies are needed to confirm the findings. In contrast to previous studies, we could not find any relationship between D2-R and tumor characteristics.

5.
Psychopharmacology (Berl) ; 240(4): 797-812, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36745226

RESUMO

RATIONALE: Drug and natural rewarding stimuli activate the mesolimbic dopaminergic system. Both methamphetamine (Meth) and copulation to satiety importantly increase dopamine (DA) release in the nucleus accumbens (NAc), but with differences in magnitude. This paper analyzes the interaction between Meth administration and the intense sexual activity associated with sexual satiety. OBJECTIVES: To evaluate possible changes in Meth-induced behavioral effects and striatal DA-related protein expression due to sexual satiety. METHODS: Meth-induced locomotor activity and conditioned place preference (CPP) were tested in sexually experienced male rats that copulated to satiety (S-S) or ejaculated once (1E) the day before or displayed no sexual activity (control group; C). DA receptors and DA transporter expression were determined by western blot in the striatum of animals of all sexual conditions treated with specific Meth doses. RESULTS: Meth's locomotor and rewarding effects were exacerbated in S-S animals, while in 1E rats, only locomotor effects were enhanced. Sexual activity, by itself, modified DA-related protein expression in the NAc core and in the caudate-putamen (CPu), while Meth treatment alone changed their expression only in the NAc shell. Meth-induced changes in the NAc shell turned in the opposite direction when animals had sexual activity, and additional changes appeared in the NAc core and CPu of S-S rats. CONCLUSION: Sexual satiety sensitizes rats to Meth's behavioral effects and the Meth-induced striatal DA-related protein adaptations are modified by sexual activity, evidencing cross-sensitization between both stimuli.


Assuntos
Metanfetamina , Ratos , Masculino , Animais , Dopamina/metabolismo , Núcleo Accumbens , Corpo Estriado , Neostriado/metabolismo
6.
Brain Res ; 1799: 148167, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36402178

RESUMO

Fibromyalgia is a complex pain syndrome without a precise etiology. Reduced monoamines levels in serum and cerebrospinal fluid in fibromyalgia patients has been reported and could lead to a dysfunction of descending pain modulatory system producing the painful syndrome. This study evaluated the role of D1-like dopamine receptors in the reserpine-induced fibromyalgia-like pain model in female Wistar rats. Reserpine-treated animals were intrathecally injected with different dopamine receptors agonists and antagonists, and small interfering RNAs (siRNAs) against D1 and D5 receptor subtypes. Withdrawal and muscle pressure thresholds were assessed with von Frey filaments and the Randall-Selitto test, respectively. Expression of D1-like receptors in lumbar spinal cord and dorsal root ganglion was determined using real time polymerase chain reaction (qPCR). Reserpine induced tactile allodynia and muscle hyperalgesia. Intrathecal dopamine and D1-like receptor agonist SKF-38393 induced nociceptive hypersensitivity in naïve rats, whilst this effect was prevented by the D1-like receptor antagonist SCH-23390. Moreover, SCH-23390 induced a sex-dependent antiallodynic effect in reserpine-treated rats. Furthermore, transient silencing of D1 and D5 receptors significantly reduced reserpine-induced hypersensitivity in female rats. Reserpine slightly increased mRNA D5 receptor expression in dorsal spinal cord, but not in DRG. This work provides new insights about the involvement of the spinal dopaminergic D1/D5 receptors in reserpine-induced hypersensitivity in rats.


Assuntos
Fibromialgia , Ratos , Feminino , Animais , Fibromialgia/induzido quimicamente , Dopamina/fisiologia , Reserpina/efeitos adversos , Ratos Wistar , Dor/induzido quimicamente , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Receptores Dopaminérgicos , Receptores de Dopamina D1/agonistas
7.
Biomolecules ; 12(8)2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-36009006

RESUMO

Most neurodegenerative diseases are multifactorial, and the discovery of several molecular mechanisms related to their pathogenesis is constantly advancing. Dopamine and dopaminergic receptor subtypes are involved in the pathophysiology of several neurological disorders, such as schizophrenia, depression and drug addiction. For this reason, the dopaminergic system and dopamine receptor ligands play a key role in the treatment of such disorders. In this context, a novel series of conformationally restricted N-arylpiperazine derivatives (5a-f) with a good affinity for D2/D3 dopamine receptors is reported herein. Compounds were designed as interphenylene analogs of the drugs aripiprazole (2) and cariprazine (3), presenting a 1,3-benzodioxolyl subunit as a ligand of the secondary binding site of these receptors. The six new N-arylpiperazine compounds were synthesized in good yields by using classical methodologies, and binding and guanosine triphosphate (GTP)-shift studies were performed. Affinity values below 1 µM for both target receptors and distinct profiles of intrinsic efficacy were found. Docking studies revealed that Compounds 5a-f present a different binding mode with dopamine D2 and D3 receptors, mainly as a consequence of the conformational restriction imposed on the flexible spacer groups of 2 and 3.


Assuntos
Doenças Neurodegenerativas , Receptores de Dopamina D3 , Dopamina/metabolismo , Humanos , Ligantes , Doenças Neurodegenerativas/tratamento farmacológico , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo
8.
Clin Sci (Lond) ; 136(16): 1205-1227, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35979889

RESUMO

Systemic arterial hypertension is one of the leading causes of morbidity and mortality in the general population, being a risk factor for many cardiovascular diseases. Although its pathogenesis is complex and still poorly understood, some systems appear to play major roles in its development. This review aims to update the current knowledge on the interaction of the intrarenal renin-angiotensin system (RAS) and dopaminergic system in the development of hypertension, focusing on recent scientific hallmarks in the field. The intrarenal RAS, composed of several peptides and receptors, has a critical role in the regulation of blood pressure (BP) and, consequently, the development of hypertension. The RAS is divided into two main intercommunicating axes: the classical axis, composed of angiotensin-converting enzyme, angiotensin II, and angiotensin type 1 receptor, and the ACE2/angiotensin-(1-7)/Mas axis, which appears to modulate the effects of the classical axis. Dopamine and its receptors are also increasingly showing an important role in the pathogenesis of hypertension, as abnormalities in the intrarenal dopaminergic system impair the regulation of renal sodium transport, regardless of the affected dopamine receptor subtype. There are five dopamine receptors, which are divided into two major subtypes: the D1-like (D1R and D5R) and D2-like (D2R, D3R, and D4R) receptors. Mice deficient in any of the five dopamine receptor subtypes have increased BP. Intrarenal RAS and the dopaminergic system have complex interactions. The balance between both systems is essential to regulate the BP homeostasis, as alterations in the control of both can lead to hypertension.


Assuntos
Hipertensão , Sistema Renina-Angiotensina , Animais , Pressão Arterial , Pressão Sanguínea , Dopamina/metabolismo , Dopamina/farmacologia , Humanos , Rim/metabolismo , Camundongos , Receptores Dopaminérgicos/metabolismo , Renina/metabolismo , Sistema Renina-Angiotensina/fisiologia
9.
Arch. endocrinol. metab. (Online) ; 66(4): 506-511, July-Aug. 2022. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1403232

RESUMO

ABSTRACT Objective: To evaluate the response to cabergoline (CBG) treatment in patients with non-functioning pituitary adenomas (NFPA). Subjects and methods: Retrospective, single tertiary care center study. A total of 44 patients were treated with 3 mg/week of CBG, 32 after surgical treatment (transsphenoidal surgery [TSS] in 27 and TC in 5 patients) and 12 as primary therapy. Mean age was 59.2 ± 12 years and 23 (52.2%) were women. Response to therapy was ascertained by serial magnetic resonance imaging. The median duration of CBG therapy was 30 months (IQR 24-48). Response to CBG therapy was defined as a greater than 20% reduction in tumor size and volume. Results: A significant reduction in tumor size was documented in 29 patients (66%), whereas in 11 patients (25%) the tumor increased in size and in 4 (9%), it remained stable. Significant tumor shrinkage was documented in 4 (33.3%) of 12 patients treated primarily and in 23 (71.8%) of those treated secondarily. The three-year progression-free survival was 0.61. Conclusion: Cabergoline therapy is effective in reducing tumor growth in over two thirds of patients with NFPA, however 16% of patients will escape to this beneficial effect and will require alternative forms of treatment to halt tumor progression.

10.
Front Pharmacol ; 13: 837652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847016

RESUMO

Gut microbiota with a stable, rich, and diverse composition is associated with adequate postnatal brain development. Colonization of the infant's gut begins at birth when parturition exposes the newborn to a set of maternal bacteria, increasing richness and diversity until one to two first years of age when a microbiota composition is stable until old age. Conversely, alterations in gut microbiota by diet, stress, infection, and antibiotic exposure have been associated with several pathologies, including metabolic and neuropsychiatric diseases such as obesity, anxiety, depression, and drug addiction, among others. However, the consequences of early-life exposure to antibiotics (ELEA) on the dopamine (DA) mesocorticolimbic circuit are poorly studied. In this context, we administered oral non-absorbable broad-spectrum antibiotics to pregnant Sprague-Dawley dams during the perinatal period (from embryonic day 18 until postnatal day 7) and investigated their adult offspring (postnatal day 60) to assess methylphenidate-induced conditioned place preference (CPP) and locomotor activity, DA release, DA and 3,4-dihydroxyphenylacetic acid (DOPAC) content in ventral tegmental area (VTA), and expression of key proteins within the mesocorticolimbic system. Our results show that ELEA affect the rats conduct by increasing drug-seeking behavior and locomotor activity induced by methylphenidate of males and females, respectively, while reducing dopamine striatal release and VTA content of DOPAC in females. In addition, antibiotics increased protein levels of DA type 1 receptor in prefrontal cortex and VTA of female rats, and tyrosine hydroxylase in VTA of adult male and female rats. Altogether, these results suggest that ELEA alters the development of the microbiota-gut-brain axis affecting the reward system and the response to abuse drugs in adulthood.

11.
Arch Endocrinol Metab ; 66(4): 506-511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35758837

RESUMO

Introduction: To evaluate the response to cabergoline (CBG) treatment in patients with non-functioning pituitary adenomas (NFPA). Subjects and methods: Retrospective, single tertiary care center study. A total of 44 patients were treated with 3 mg/week of CBG, 32 after surgical treatment (transsphenoidal surgery [TSS] in 27 and TC in 5 patients) and 12 as primary therapy. Mean age was 59.2 ± 12 years and 23 (52.2%) were women. Response to therapy was ascertained by serial magnetic resonance imaging. The median duration of CBG therapy was 30 months (IQR 24-48). Response to CBG therapy was defined as a greater than 20% reduction in tumor size and volume. Results: A significant reduction in tumor size was documented in 29 patients (66%), whereas in 11 patients (25%) the tumor increased in size and in 4 (9%), it remained stable. Significant tumor shrinkage was documented in 4 (33.3%) of 12 patients treated primarily and in 23 (71.8%) of those treated secondarily. The three-year progression-free survival was 0.61. Conclusion: Cabergoline therapy is effective in reducing tumor growth in over two thirds of patients with NFPA, however 16% of patients will escape to this beneficial effect and will require alternative forms of treatment to halt tumor progression.


Assuntos
Adenoma , Neoplasias Hipofisárias , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adenoma/tratamento farmacológico , Adenoma/patologia , Cabergolina/uso terapêutico , Ergolinas/uso terapêutico , Neoplasias Hipofisárias/tratamento farmacológico , Estudos Retrospectivos
12.
Curr Med Chem ; 29(29): 4896-4922, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35301942

RESUMO

Major Depressive Disorder is a chronic, recurring, and potentially fatal disease, affecting up to 20% of the global population. Since the monoamine hypothesis was proposed more than 60 years ago, only a few relevant advances have been made, with very little disease course changing from a pharmacological perspective. Moreover, since the negative efficacy of novel molecules is frequently reported in studies, many pharmaceutical companies have put new studies on hold. Fortunately, relevant clinical studies are currently being performed extensively, developing immense interest among universities, research centers, and other public and private institutions. Depression is no longer considered a simple disease but a multifactorial one. New research fields are emerging, occurring a paradigm shift, such as the multi-target approach beyond monoamines. In this review, we summarize antidepressant drug discovery aiming to shed some light on the current state-of-the-art clinical and preclinical advances to face this increasingly devastating disease.


Assuntos
Transtorno Depressivo Maior , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Humanos , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico
13.
J Endocrinol ; 253(3): 85-96, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35302951

RESUMO

Obesogenic diets are known to induce obesity and changes in food intake in experimental animals. Obesity negatively affects the peripheral metabolism and neural aspects, such as changes in eating behavior. In obese animals, dopamine (DA) receptor levels are reduced. DA is one of the main peptides involved in the motivation and pleasure of eating. A combination of naltrexone/bupropion (NB) has shown promise in controlling metabolic alterations, but there are few studies on how they modulate dopaminergic expression. NB, in addition to reducing food intake and body weight, can modify tyrosine hydroxylase (Th) and DA receptor D2 (Drd2) levels in the mesolimbic areas of rats submitted to a high-fat diet (HF). The study evaluated the effect of NB on food intake, body weight, and expression levels of Th, Drd1a, and Drd2, in the nucleus accumbens and striatum of rats fed on HF diet. Wistar rats were grouped according to diet: standard (n = 20) and HF diet (n = 20). The food intake and body weight were analyzed. The gene expression of Th, Drd1a, and Drd2 was evaluated using real-time PCR. NB combination of 1 mg/kg and 20 mg/kg reduced food intake and body weight, increased Drd2 expression in rats on HF diet, and increased Th in rats on both experimental diets. The level of Drd1a was unchanged. We concluded that bodyweight reduction may be associated with decreased food intake in response to the increased Drd2 expression in the mesolimbic areas of rats that received an HF diet.


Assuntos
Bupropiona , Naltrexona , Animais , Peso Corporal , Bupropiona/farmacologia , Dieta Hiperlipídica , Ingestão de Alimentos , Expressão Gênica , Naltrexona/farmacologia , Obesidade/genética , Obesidade/metabolismo , Ratos , Ratos Wistar , Receptores de Dopamina D2/genética , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
14.
Neurochem Res ; 47(5): 1317-1328, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35147850

RESUMO

Prenatal exposure to amphetamine induces changes in dopamine receptors in mesolimbic areas and alters locomotor response to amphetamine during adulthood. Sex differences have been reported in amphetamine-induced brain activity and stress sensitivity. We evaluated the effects of prenatal amphetamine exposure on locomotor activity, dopamine receptors and tyrosine hydroxylase mRNA expression in nucleus accumbens and caudate-putamen in response to amphetamine challenge in adult female and male rats. The role of estrogen in the response to restraint stress was analyzed in ovariectomized, prenatally amphetamine-exposed rats. Pregnant rats were treated with D-amphetamine during days 15-21 of gestation. Nucleus accumbens and caudate-putamen were processed for mRNA determination by real-time PCR. In nucleus accumbens, higher mRNA dopamine (D3) receptor expression was found in basal and D-amphetamine-challenge conditions in female than male, and prenatal amphetamine increased the difference. No sex differences were observed in caudate-putamen. Basal saline-treated females showed higher locomotor activity than males. Amphetamine challenge in prenatally amphetamine-exposed rats increased locomotor activity in males and reduced it in females. In nucleus accumbens, estrogen diminished mRNA D1, D2 and D3 receptor expression in basal, and D1 and D3 in ovariectomized stressed rats. Estrogen prevented the increase in tyrosine hydroxylase expression induced by stress in ovariectomized prenatally exposed rats. In conclusion, estrogen modulates mRNA levels of D1, D2 and D3 receptors and tyrosine hydroxylase expression in nucleus accumbens; prenatal amphetamine-exposure effects on D3 receptors and behavioral responses were gender dependent.


Assuntos
Anfetamina , Dopamina , Anfetamina/farmacologia , Animais , Dopamina/metabolismo , Estrogênios/farmacologia , Feminino , Masculino , Núcleo Accumbens/metabolismo , Gravidez , Ratos , Receptores Dopaminérgicos , Receptores de Dopamina D3/metabolismo
15.
Cell Mol Neurobiol ; 42(7): 2109-2120, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34057683

RESUMO

Addiction is a chronic and potentially deadly disease considered a global health problem. Nevertheless, there is still no ideal treatment for its management. The alterations in the reward system are the most known pathophysiological mechanisms. Dopamine is the pivotal neurotransmitter involved in neuronal drug reward mechanisms and its neuronal mechanisms have been intensely investigated in recent years. However, neuroglial interactions and their relation to drug addiction development and maintenance of drug addiction have been understudied. Many reports have found that most neuroglial cells express dopamine receptors and that dopamine activity may induce neuroimmunomodulatory effects. Furthermore, current research has also shown that pro- and anti-inflammatory molecules modulate dopaminergic neuron activity. Thus, studying the immune mechanisms of dopamine associated with drug abuse is vital in researching new pathophysiological mechanisms and new therapeutic targets for addiction management.


Assuntos
Comportamento Aditivo , Transtornos Relacionados ao Uso de Substâncias , Dopamina , Neurônios Dopaminérgicos , Humanos , Neuroglia , Recompensa
16.
Neurotoxicol Teratol ; 88: 107034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34600099

RESUMO

The human brain matures into a complex structure, and to reach its complete development, connections must occur along exact paths. If at any stage, the processes are altered, interrupted, or inhibited, the consequences can be permanent. Dopaminergic signaling participates in the control of physiological functions and behavioral processes, and alterations in this signaling pathway are related to the pathogenesis of several neurological disorders. For this reason, the use of pharmacological agents able to interact with the dopaminergic signaling may elucidate the biological bases of such disorders. We investigated the long-lasting behavioral effects on adult zebrafish after quinpirole (a dopamine D2/D3 receptor agonist) exposure during early life stages of development (24 h exposure at 5 days post-fertilization, dpf) to better understand the mechanisms underlying neurological disorders related to the dopaminergic system. Quinpirole exposure at the early life stages of zebrafish led to late behavioral alterations. When evaluated at 120 dpf, zebrafish presented increased anxiety-like behaviors. At the open tank test, fish remained longer at the bottom of the tank, indicating anxiety-like behavior. Furthermore, quinpirole-treated fish exhibited increased absolute turn angle, likely an indication of elevated erratic movements and a sign of increased fear or anxiety. Quinpirole-treated fish also showed altered swimming patterns, characterized by stereotypic swimming. During the open tank test, exposed zebrafish swims from corner to corner in a repetitive manner at the bottom of the tank. Moreover, quinpirole exposure led to memory impairment compared to control fish. However, quinpirole administration had no effects on social and aggressive behavior. These findings demonstrate that dopaminergic signaling altered by quinpirole administration in the early life stages of development led to late alterations in behavioral parameters of adult zebrafish.


Assuntos
Agonistas de Dopamina/farmacologia , Dopamina/metabolismo , Quimpirol/farmacologia , Comportamento Estereotipado/efeitos dos fármacos , Animais , Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Atividade Motora/efeitos dos fármacos , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , Tempo , Peixe-Zebra/metabolismo
17.
Front Neurosci ; 15: 693404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248494

RESUMO

Disabilities are estimated to occur in approximately 2% of survivors of traumatic brain injury (TBI) worldwide, and disability may persist even decades after brain injury. Facilitation or modulation of functional recovery is an important goal of rehabilitation in all patients who survive severe TBI. However, this recovery tends to vary among patients because it is affected by the biological and physical characteristics of the patients; the types, doses, and application regimens of the drugs used; and clinical indications. In clinical practice, diverse dopaminergic drugs with various dosing and application procedures are used for TBI. Previous studies have shown that dopamine (DA) neurotransmission is disrupted following moderate to severe TBI and have reported beneficial effects of drugs that affect the dopaminergic system. However, the mechanisms of action of dopaminergic drugs have not been completely clarified, partly because dopaminergic receptor activation can lead to restoration of the pathway of the corticobasal ganglia after injury in brain structures with high densities of these receptors. This review aims to provide an overview of the functionality of the dopaminergic system in the striatum and its roles in functional recovery or rehabilitation after TBI.

18.
Braz. J. Pharm. Sci. (Online) ; 57: e18104, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1350241

RESUMO

Malt is the mature fruit of Hordeum vulgare L. after germination and drying and has been applied for treatment female abnormal galactorrhea. Previous studies have showed total alkaloids in malt have anti-HPRL effect. However, total alkaloids of malt change with the growth cycle, and the specified levels of total alkaloids in different bud length of malt have not been decided. To determine the definitive level of total alkaloids in different buds of malt and the most suitable bud length for clinical application by comparing effects on hyperprolactinemia rat. During the budding of malt, the content of total alkaloids first increased and then decreased, and it peaked at a bud length of 0.75 cm. Treated the HPRL model rats with different buds of malt, the PRL level was decreased, the number of PRLpositive cells and the mRNA expression level in the pituitary were significantly declined, and the number of dopamine D1 and D2 receptors in the hypothalamus was increased. The above changes were most significant in 0.75 cm bud. These results suggest that in terms of the content of effective substance and the effects on HPRL model rats, a malt bud length of 0.75 cm is optimal for clinical application.


Assuntos
Animais , Feminino , Ratos , Hordeum/classificação , Benchmarking/métodos , Plântula/efeitos adversos , Hiperprolactinemia/classificação , Dopamina , Germinação , Alcaloides/efeitos adversos , Sistema Endócrino/anormalidades , Frutas
19.
Mol Biol Rep ; 47(12): 9689-9697, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33170427

RESUMO

Orexins-A (OrxA) and -B (OrxB) neuropeptides are synthesized by a group of neurons located in the lateral hypothalamus and adjacent perifornical area, which send their projections to the mesolimbic dopaminergic (DAergic) system including ventral tegmental area and nucleus accumbens (NAc), where orexin receptors are expressed. NAc plays a central role in reward-seeking behavior and drug abuse. NAc-neurons express dopamine-1 (D1R) and dopamine-2 (D2R) receptors. Orexins bind to their two cognate G-protein-coupled receptors, orexin-receptor type-1 (Orx1R) and type-2 (Orx2R). Orexin receptor signaling is involved in behaviors such as motivation and addiction. Orexin-containing neurons modulate DAergic activity that is key in synaptic plasticity induced by addictive drugs. However, the effect of OrxA on expression and content of DAergic receptors in NAc is unknown. The purpose of this study was to investigate whether OrxA can alter gene expression and protein levels of D1R/D2R in NAc. Gene expression was evaluated by real-time PCR analysis and protein levels by western blot in rats. The results show that intracerebroventricular (i.c.v.) injection of OrxA increases both gene transcription and protein content of D2R but fails to modify D1R. This effect was also confirmed with OrxA infusion in NAc/Shell. Our results demonstrate for the first time that OrxA induces up-regulation of gene and protein of D2R in NAc. These findings support the hypothesis that OrxA modulates the DAergic transmission and this may serve to understand how orexin signaling enhances DA responses at baseline conditions and in response to psychostimulants.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Orexinas/farmacologia , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Animais , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica , Injeções Intraventriculares , Masculino , Núcleo Accumbens/citologia , Núcleo Accumbens/metabolismo , Orexinas/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Transdução de Sinais , Técnicas Estereotáxicas
20.
Front Pharmacol ; 11: 394, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296337

RESUMO

Dopamine is one of the neurotransmitters whose transmission is altered in a number of neural pathways in the brain of schizophrenic patients. Current evidence indicates that these alterations involve hyperactive dopaminergic transmission in mesolimbic areas, striatum, and hippocampus, whereas hypoactive dopaminergic transmission has been reported in the prefrontal cortex of schizophrenic patients. Consequently, schizophrenia is associated with several cognitive and behavioral alterations. Of note, the immune system has been found to collaborate with the central nervous system in a number of cognitive and behavioral functions, which are dysregulated in schizophrenia. Moreover, emerging evidence has associated schizophrenia and inflammation. Importantly, different lines of evidence have shown dopamine as a major regulator of inflammation. In this regard, dopamine might exert strong regulation in the activity, migration, differentiation, and proliferation of immune cells that have been shown to contribute to cognitive functions, including T-cells, microglial cells, and peripheral monocytes. Thereby, alterations in dopamine levels associated to schizophrenia might affect inflammatory response of immune cells and consequently some behavioral functions, including reference memory, learning, social behavior, and stress resilience. Altogether these findings support the involvement of an active cross-talk between the dopaminergic and immune systems in the physiopathology of schizophrenia. In this review we summarize, integrate, and discuss the current evidence indicating the involvement of an altered dopaminergic regulation of immunity in schizophrenia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA