Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 429
Filtrar
1.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948777

RESUMO

The protein alpha-synuclein (αSyn) plays a critical role in the pathogenesis of synucleinopathy, which includes Parkinson's disease and multiple system atrophy, and mounting evidence suggests that lipid dyshomeostasis is a critical phenotype in these neurodegenerative conditions. Previously, we identified that αSyn localizes to mitochondria-associated endoplasmic reticulum membranes (MAMs), temporary functional domains containing proteins that regulate lipid metabolism, including the de novo synthesis of phosphatidylserine. In the present study, we have analyzed the lipid composition of postmortem human samples, focusing on the substantia nigra pars compacta of Parkinson's disease and controls, as well as three less affected brain regions of Parkinson's donors. To further assess synucleinopathy-related lipidome alterations, similar analyses were performed on the striatum of multiple system atrophy cases. Our data show region-and disease-specific changes in the levels of lipid species. Specifically, our data revealed alterations in the levels of specific phosphatidylserine species in brain areas most affected in Parkinson's disease. Some of these alterations, albeit to a lesser degree, are also observed multiples system atrophy. Using induced pluripotent stem cell-derived neurons, we show that αSyn contributes to regulating phosphatidylserine metabolism at MAM domains, and that αSyn dosage parallels the perturbation in phosphatidylserine levels. Our results support the notion that αSyn pathophysiology is linked to the dysregulation of lipid homeostasis, which may contribute to the vulnerability of specific brain regions in synucleinopathy. These findings have significant therapeutic implications.

2.
Elife ; 122024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856715

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD). However, whether LRRK2 mutations cause PD and degeneration of dopaminergic (DA) neurons via a toxic gain-of-function or a loss-of-function mechanism is unresolved and has pivotal implications for LRRK2-based PD therapies. In this study, we investigate whether Lrrk2 and its functional homolog Lrrk1 play a cell-intrinsic role in DA neuron survival through the development of DA neuron-specific Lrrk conditional double knockout (cDKO) mice. Unlike Lrrk germline DKO mice, DA neuron-restricted Lrrk cDKO mice exhibit normal mortality but develop age-dependent loss of DA neurons, as shown by the progressive reduction of DA neurons in the substantia nigra pars compacta (SNpc) at the ages of 20 and 24 months. Moreover, DA neurodegeneration is accompanied with increases in apoptosis and elevated microgliosis in the SNpc as well as decreases in DA terminals in the striatum, and is preceded by impaired motor coordination. Taken together, these findings provide the unequivocal evidence for the cell-intrinsic requirement of LRRK in DA neurons and raise the possibility that LRRK2 mutations may impair its protection of DA neurons, leading to DA neurodegeneration in PD.


Assuntos
Sobrevivência Celular , Neurônios Dopaminérgicos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos Knockout , Animais , Neurônios Dopaminérgicos/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Apoptose
3.
Biomedicines ; 12(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38927430

RESUMO

Abnormal aggregation of α-synuclein is the hallmark of neurodegenerative diseases, classified as α-synucleinopathies, primarily occurring sporadically. Their onset is associated with an interaction between genetic susceptibility and environmental factors such as neurotoxins, oxidative stress, inflammation, and viral infections. Recently, evidence has suggested an association between neurological complications in long COVID (sometimes referred to as 'post-acute sequelae of COVID-19') and α-synucleinopathies, but its underlying mechanisms are not completely understood. In this study, we first showed that SARS-CoV-2 Spike protein 1 (S1) induces α-synuclein aggregation associated with activation of microglial cells in the rodent model. In vitro, we demonstrated that S1 increases aggregation of α-synuclein in BE(2)M-17 dopaminergic neurons via BV-2 microglia-mediated inflammatory responses. We also identified that S1 directly affects aggregation of α-synuclein in dopaminergic neurons through increasing mitochondrial ROS, though only under conditions of sufficient α-Syn accumulation. In addition, we observed a synergistic effect between S1 and the neurotoxin MPP+ S1 treatment. Combined with a low dose of MPP+, it boosted α-synuclein aggregation and mitochondrial ROS production compared to S1 or the MPP+ treatment group. Furthermore, we evaluated the therapeutic effects of metformin. The treatment of metformin suppressed the S1-induced inflammatory response and α-synucleinopathy. Our findings demonstrate that S1 promotes α-synucleinopathy via both microglia-mediated inflammation and mitochondrial ROS, and they provide pathological insights, as well as a foundation for the clinical management of α-synucleinopathies and the onset of neurological symptoms after the COVID-19 outbreak.

4.
Behav Brain Res ; 468: 115040, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38723675

RESUMO

Neurotoxins have been extensively investigated, particularly in the field of neuroscience. They induce toxic damage, oxidative stress, and inflammation on neurons, triggering neuronal dysfunction and neurodegenerative diseases. Here we demonstrate the neuroprotective effect of a silicon (Si)-based hydrogen-producing agent (Si-based agent) in a juvenile neurotoxic mouse model induced by 6-hydroxydopamine (6-OHDA). The Si-based agent produces hydrogen in bowels and functions as an antioxidant and anti-inflammatory agent. However, the effects of the Si-based agent on neural degeneration in areas other than the lesion and behavioral alterations caused by it are largely unknown. Moreover, the neuroprotective effects of Si-based agent in the context of lactation and use during infancy have not been explored in prior studies. In this study, we show the neuroprotective effect of the Si-based agent on 6-OHDA during lactation period and infancy using the mouse model. The Si-based agent safeguards against the degradation and neuronal cell death of dopaminergic neurons and loss of dopaminergic fibers in the striatum (STR) and ventral tegmental area (VTA) caused by 6-OHDA. Furthermore, the Si-based agent exhibits a neuroprotective effect on the length of axon initial segment (AIS) in the layer 2/3 (L2/3) neurons of the medial prefrontal cortex (mPFC). As a result, the Si-based agent mitigates hyperactive behavior in a juvenile neurotoxic mouse model induced by 6-OHDA. These results suggest that the Si-based agent serves as an effective neuroprotectant and antioxidant against neurotoxic effects in the brain, offering the possibility of the Si-based agent as a neuroprotectant for nervous system diseases.


Assuntos
Modelos Animais de Doenças , Neurônios Dopaminérgicos , Hidrogênio , Fármacos Neuroprotetores , Oxidopamina , Silício , Animais , Fármacos Neuroprotetores/farmacologia , Oxidopamina/farmacologia , Camundongos , Silício/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Hidrogênio/farmacologia , Hidrogênio/administração & dosagem , Masculino , Síndromes Neurotóxicas/tratamento farmacológico , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Camundongos Endogâmicos C57BL
5.
Neurochem Res ; 49(8): 2060-2074, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38814359

RESUMO

Since the clinical introduction of general anesthesia, its underlying mechanisms have not been fully elucidated. The ventral tegmental area (VTA) and parabrachial nucleus (PBN) play pivotal roles in the mechanisms underlying general anesthesia. However, whether dopaminergic (DA) projections from the VTA to the PBN play a role in mediating the effects of general anesthesia is unclear. We microinjected 6-hydroxydopamine into the PBN to damage tyrosine hydroxylase positive (TH+) neurons and found a prolonged recovery time from propofol anesthesia. We used calcium fiber photometry recording to explore the activity of TH + neurons in the PBN. Then, we used chemogenetic and optogenetic approaches either activate the VTADA-PBN pathway, shortening the propofol anesthesia emergence time, or inhibit this pathway, prolonging the emergence time. These data indicate the crucial involvement of TH + neurons in the PBN in regulating emergence from propofol anesthesia, while the activation of the VTADA-PBN pathway facilitates the emergence of propofol anesthesia.


Assuntos
Anestésicos Intravenosos , Neurônios Dopaminérgicos , Núcleos Parabraquiais , Propofol , Ratos Sprague-Dawley , Área Tegmentar Ventral , Propofol/farmacologia , Animais , Área Tegmentar Ventral/efeitos dos fármacos , Masculino , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Núcleos Parabraquiais/efeitos dos fármacos , Núcleos Parabraquiais/fisiologia , Anestésicos Intravenosos/farmacologia , Ratos , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Período de Recuperação da Anestesia , Oxidopamina/farmacologia
6.
Cell Rep Med ; 5(5): 101570, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38749422

RESUMO

While an association between Parkinson's disease (PD) and viral infections has been recognized, the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on PD progression remains unclear. Here, we demonstrate that SARS-CoV-2 infection heightens the risk of PD using human embryonic stem cell (hESC)-derived dopaminergic (DA) neurons and a human angiotensin-converting enzyme 2 (hACE2) transgenic (Tg) mouse model. Our findings reveal that SARS-CoV-2 infection exacerbates PD susceptibility and cellular toxicity in DA neurons pre-treated with human preformed fibrils (hPFFs). Additionally, nasally delivered SARS-CoV-2 infects DA neurons in hACE2 Tg mice, aggravating the damage initiated by hPFFs. Mice infected with SARS-CoV-2 display persisting neuroinflammation even after the virus is no longer detectable in the brain. A comprehensive analysis suggests that the inflammatory response mediated by astrocytes and microglia could contribute to increased PD susceptibility associated with SARS-CoV-2. These findings advance our understanding of the potential long-term effects of SARS-CoV-2 infection on the progression of PD.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Camundongos Transgênicos , Doença de Parkinson , SARS-CoV-2 , Animais , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/virologia , Humanos , COVID-19/patologia , COVID-19/virologia , Doença de Parkinson/patologia , Doença de Parkinson/virologia , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Microglia/patologia , Microglia/metabolismo , Microglia/virologia , Células-Tronco Embrionárias Humanas/metabolismo , Astrócitos/patologia , Astrócitos/virologia , Astrócitos/metabolismo , Encéfalo/patologia , Encéfalo/virologia
7.
Chem Biodivers ; : e202400836, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693058

RESUMO

Herein, we describe the synthesis of the proposed structure of the caffeamide alkaloid bassiamide A. The amide moiety of bassiamide A was readily formed via an amide coupling reaction between caffeic acid and the known N-(3-aminopropyl)-3-methylbutanamide. However, the spectral data of the synthesized bassiamide A did not agree with that of a previous study. The structure of the synthesized bassiamide A was confirmed using combined two-dimensional NMR analysis. Extended analyses of the bioactivity of the synthesized bassiamide A revealed its efficacy in protecting dopaminergic neurons from MPP+-induced neurotoxicity in Caenorhabditis elegans. Additionally, treatment with bassiamide A notably ameliorated the impaired food-sensing ability and locomotion of Caenorhabditis elegans, suggesting a protective effect on the functionality of dopaminergic neurons.

8.
Neuropharmacology ; 252: 109946, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599494

RESUMO

The spontaneous firing activity of nigral dopaminergic neurons is associated with some important roles including modulation of dopamine release, expression of tyrosine hydroxylase (TH), as well as neuronal survival. The decreased neuroactivity of nigral dopaminergic neurons has been revealed in Parkinson's disease. Central glucagon-like peptide-1 (GLP-1) functions as a neurotransmitter or neuromodulator to exert multiple brain functions. Although morphological studies revealed the expression of GLP-1 receptors (GLP-1Rs) in the substantia nigra pars compacta, the possible modulation of GLP-1 on spontaneous firing activity of nigral dopaminergic neurons is unknown. The present extracellular in vivo single unit recordings revealed that GLP-1R agonist exendin-4 significantly increased the spontaneous firing rate and decreased the firing regularity of partial nigral dopaminergic neurons of adult male C57BL/6 mice. Blockade of GLP-1Rs by exendin (9-39) decreased the firing rate of nigral dopaminergic neurons suggesting the involvement of endogenous GLP-1 in the modulation of firing activity. Furthermore, the PKA and the transient receptor potential canonical (TRPC) 4/5 channels are involved in activation of GLP-1Rs-induced excitatory effects of nigral dopaminergic neurons. Under parkinsonian state, both the exogenous and endogenous GLP-1 could still induce excitatory effects on the surviving nigral dopaminergic neurons. As the mild excitatory stimuli exert neuroprotective effects on nigral dopaminergic neurons, the present GLP-1-induced excitatory effects may partially contribute to its antiparkinsonian effects.


Assuntos
Potenciais de Ação , Neurônios Dopaminérgicos , Exenatida , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Camundongos Endogâmicos C57BL , Substância Negra , Animais , Masculino , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Exenatida/farmacologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Camundongos , Peçonhas/farmacologia , Peptídeos/farmacologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Fragmentos de Peptídeos/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
9.
Sci Rep ; 14(1): 8581, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615036

RESUMO

Parkinson's disease (PD) is the second most frequently diagnosed neurodegenerative disease, and it is characterized by the intracellular and extracellular accumulation of α-synuclein (α-syn) and Tau, which are major components of cytosolic protein inclusions called Lewy bodies, in the brain. Currently, there is a lack of effective methods that preventing PD progression. It has been suggested that the plasminogen activation system, which is a major extracellular proteolysis system, is involved in PD pathogenesis. We investigated the functional roles of plasminogen in vitro in an okadaic acid-induced Tau hyperphosphorylation NSC34 cell model, ex vivo using brains from normal controls and methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, and in vivo in a widely used MPTP-induced PD mouse model and an α-syn overexpression mouse model. The in vitro, ex vivo and in vivo results showed that the administered plasminogen crossed the blood‒brain barrier (BBB), entered cells, and migrated to the nucleus, increased plasmin activity intracellularly, bound to α-syn through lysine binding sites, significantly promoted α-syn, Tau and TDP-43 clearance intracellularly and even intranuclearly in the brain, decreased dopaminergic neurodegeneration and increased the tyrosine hydroxylase levels in the substantia nigra and striatum, and improved motor function in PD mouse models. These findings indicate that plasminogen plays a wide range of pivotal protective roles in PD and therefore may be a promising drug candidate for PD treatment.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Plasminogênio , Animais , Camundongos , alfa-Sinucleína , Modelos Animais de Doenças , Proteínas de Ligação a DNA/metabolismo , Dopamina , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Plasminogênio/metabolismo , Serina Proteases , Proteínas tau/metabolismo , Neurônios Dopaminérgicos/patologia
10.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585782

RESUMO

Mitochondrial dysfunction has been linked to both idiopathic and familial forms of Parkinson's disease (PD). We have previously identified RCC1-like (RCC1L) as a protein of the inner mitochondrial membrane important to mitochondrial fusion. Herein, to test whether deficits in RCC1L mitochondrial function might be involved in PD pathology, we have selectively ablated the Rcc1l gene in the dopaminergic (DA) neurons of mice. A PD-like phenotype resulted that includes progressive movement abnormalities, paralleled by progressive degeneration of the nigrostriatal tract. Experimental and control groups were examined at 2, 3-4, and 5-6 months of age. Animals were tested in the open field task to quantify anxiety, exploratory drive, locomotion, and immobility; and in the cylinder test to quantify rearing behavior. Beginning at 3-4 months, both female and male Rcc1l knockout mice show rigid muscles and resting tremor, kyphosis and a growth deficit compared with heterozygous or wild type littermate controls. Rcc1l knockout mice begin showing locomotor impairments at 3-4 months, which progress until 5-6 months of age, at which age the Rcc1l knockout mice die. The progressive motor impairments were associated with progressive and significantly reduced tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta (SNc), and dramatic loss of nigral DA projections in the striatum. Dystrophic spherical mitochondria are apparent in the soma of SNc neurons in Rcc1l knockout mice as early as 1.5-2.5 months of age and become progressively more pronounced until 5-6 months. Together, the results reveal the RCC1L protein to be essential to in vivo mitochondrial function in DA neurons. Further characterization of this mouse model will determine whether it represents a new model for in vivo study of PD, and the putative role of the human RCC1L gene as a risk factor that might increase PD occurrence and severity in humans.

11.
Heliyon ; 10(7): e28838, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596076

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder with motor symptoms like bradykinesia, tremors, and balance issues. The pathology is recognized by progressively degenerative nigrostriatal dopaminergic neurons (DANs) loss. Its exact pathogenesis is unclear. Numerous studies have shown that nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) contributes to the pathogenesis of PD. Previous studies have demonstrated that the over-activation of NLRP3 inflammasome in microglia indirectly leads to the loss of DANs, which can worsen PD. In recent years, autopsy analyses of PD patients and studies in PD models have revealed upregulation of NLRP3 expression within DANs and demonstrated that activation of NLRP3 inflammasome in neurons is sufficient to drive neuronal loss, whereas microglial activation occurs after neuronal death, and that inhibition of intraneuronal NLRP3 inflammasome prevents degeneration of DANs. In this review, we provide research evidence related to NLRP3 inflammasome in DANs in PD as well as focus on possible mechanisms of NLRP3 inflammasome activation in neurons, aiming to provide a new way of thinking about the pathogenesis and prevention of PD.

12.
Ageing Res Rev ; 97: 102288, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38580172

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disorder that affects 7-10 million individuals worldwide. A common early symptom of PD is olfactory dysfunction (OD), and more than 90% of PD patients suffer from OD. Recent studies have highlighted a high incidence of OD in patients with SARS-CoV-2 infection. This review investigates the potential convergence of OD in PD and COVID-19, particularly focusing on the mechanisms by which neuroinflammation contributes to OD and neurological events. Starting from our fundamental understanding of the olfactory bulb, we summarize the clinical features of OD and pathological features of the olfactory bulb from clinical cases and autopsy reports in PD patients. We then examine SARS-CoV-2-induced olfactory bulb neuropathology and OD and emphasize the SARS-CoV-2-induced neuroinflammatory cascades potentially leading to PD manifestations. By activating microglia and astrocytes, as well as facilitating the aggregation of α-synuclein, SARS-CoV-2 could contribute to the onset or exacerbation of PD. We also discuss the possible contributions of NF-κB, the NLRP3 inflammasome, and the JAK/STAT, p38 MAPK, TLR4, IL-6/JAK2/STAT3 and cGAS-STING signaling pathways. Although olfactory dysfunction in patients with COVID-19 may be reversible, it is challenging to restore OD in patients with PD. With the emergence of new SARS-CoV-2 variants and the recurrence of infections, we call for continued attention to the intersection between PD and SARS-CoV-2 infection, especially from the perspective of OD.


Assuntos
COVID-19 , Doenças Neuroinflamatórias , Transtornos do Olfato , Doença de Parkinson , SARS-CoV-2 , Humanos , COVID-19/complicações , COVID-19/fisiopatologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/complicações , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/fisiopatologia , Doenças Neuroinflamatórias/imunologia , Transtornos do Olfato/etiologia , Transtornos do Olfato/fisiopatologia , Transtornos do Olfato/virologia , Bulbo Olfatório/fisiopatologia , Bulbo Olfatório/virologia , Bulbo Olfatório/patologia
13.
Exp Ther Med ; 27(4): 135, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38476886

RESUMO

Dysregulation of autophagy has previously been associated with the formation of toxic proteins, such as α-synuclein, in patients with Parkinson's disease (PD). In addition, it has been indicated that programmed cell death 4 (PDCD4) can inhibit autophagy in certain conditions, such as diabetic nephropathy, atherosclerosis and cardiac hypertrophy. Therefore, the hypothesis that PDCD4 can promote dopaminergic neuron damage through autophagy was proposed. To explore this hypothesis, the present study treated human neuroblastoma SK-N-SH cells with 1-methyl-4-phenylpyridinium (MPP+) to establish an in vitro model of PD. The potential effects of PDCD4 knockdown on lactate dehydrogenase (LDH) release, cell apoptosis, inflammatory response, oxidative stress and autophagy were then evaluated in this model of PD using an LDH assay kit, flow cytometry, western blotting, ELISA and immunofluorescence. The autophagy inhibitor 3-methyladenine (3-MA) was also applied to treat these cells, and its effects on these aforementioned parameters following PDCD4 knockdown were assessed. MPP+ was shown to increase the expression levels of PDCD4 in SK-N-SH cells. PDCD4 knockdown was revealed to suppress LDH release, cell apoptosis, secretion of inflammatory factors and oxidative stress. In addition, PDCD4 knockdown was demonstrated to enhance autophagy in cells treated with MPP+. By contrast, 3-MA treatment reversed the aforementioned effects of PDCD4 knockdown on cells, suggesting autophagy to be among the processes regulated by PDCD4 in SK-N-SH cells. The results of the present study suggested the existence of regulatory effects mediated by PDCD4 on autophagy in MPP+-induced SK-N-SH cells, offering potential future targets for PD therapy.

14.
3 Biotech ; 14(4): 115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38524239

RESUMO

The dopaminergic neurons are responsible for the release of dopamine. Several diseases that affect motor function, including Parkinson's disease (PD), are rooted in inadequate dopamine (DA) neurotransmission. The study's goal was to create a quick way to make dopaminergic neuron-like cells from human fibroblasts (hNF) using only two small molecules: hedgehog pathway inhibitor 1 (HPI-1) and neurodazine (NZ). Two small compounds have been shown to induce the transdifferentiation of hNF cells into dopaminergic neuron-like cells. After 10 days of treatment, hNF cells had a big drop in fibroblastic markers (Col1A1, KRT18, and Elastin) and a rise in neuron marker genes (TUJ1, PAX6, and SOX1). Different proteins and factors related to dopaminergic neurons (TH, TUJ1, and dopamine) were significantly increased in cells that behave like dopaminergic neurons after treatment. A study of the autophagy signaling pathway showed that apoptotic genes were downregulated while autophagy genes (LC3, ATG5, and ATG12) were significantly upregulated. Our results showed that treating hNF cells with both HPI-1 and NZ together can quickly change them into mature neurons that have dopaminergic activity. However, the current understanding of the underlying mechanisms involved in nerve guidance remains unstable and complex. Ongoing research in this field must continue to advance for a more in-depth understanding. This is crucial for the safe and highly effective clinical application of the knowledge gained to promote neural regeneration in different neurological diseases.

15.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38529501

RESUMO

Inducible pluripotent stem cells (iPSCs) derived from patient samples have significantly enhanced our ability to model neurological diseases. Comparative studies of dopaminergic (DA) neurons differentiated from iPSCs derived from siblings with Gaucher disease discordant for parkinsonism provides a valuable avenue to explore genetic modifiers contributing to GBA1-associated parkinsonism in disease-relevant cells. However, such studies are often complicated by the inherent heterogeneity in differentiation efficiency among iPSC lines derived from different individuals. To address this technical challenge, we devised a selection strategy to enrich dopaminergic (DA) neurons expressing tyrosine hydroxylase (TH). A neomycin resistance gene (neo) was inserted at the C-terminus of the TH gene following a T2A self-cleavage peptide, placing its expression under the control of the TH promoter. This allows for TH+ DA neuron enrichment through geneticin selection. This method enabled us to generate comparable, high-purity DA neuron cultures from iPSC lines derived from three sisters that we followed for over a decade: one sibling is a healthy individual, and the other two have Gaucher disease (GD) with GBA1 genotype N370S/c.203delC+R257X (p.N409S/c.203delC+p.R296X). Notably, the younger sister with GD later developed Parkinson disease (PD). A comprehensive analysis of these high-purity DA neurons revealed that although GD DA neurons exhibited decreased levels of glucocerebrosidase (GCase), there was no substantial difference in GCase protein levels or lipid substrate accumulation between DA neurons from the GD and GD/PD sisters, suggesting that the PD discordance is related to of other genetic modifiers.

16.
Neurobiol Dis ; 194: 106474, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518837

RESUMO

A key pathological feature of Parkinson's Disease (PD) is the progressive degeneration of dopaminergic neurons (DAns) in the substantia nigra pars compacta. Considering the major role of EN1 in the development and maintenance of these DAns and the implications from En1 mouse models, it is highly interesting to study the molecular and protective effect of EN1 also in a human cellular model. Therefore, we generated EN1 knock-out (ko) human induced pluripotent stem cell (hiPSCs) lines and analyzed these during neuronal differentiation. Although the EN1 ko didn't interfere with neuronal differentiation and generation of tyrosine hydroxylase positive (TH+) neurons per se, the neurons exhibited shorter neurites. Furthermore, mitochondrial respiration, as well as mitochondrial complex I abundance was significantly reduced in fully differentiated neurons. To understand the implications of an EN1 ko during differentiation, we performed a transcriptome analysis of human neuronal precursor cells (hNPCs) which unveiled alterations in cilia-associated pathways. Further analysis of ciliary morphology revealed an elongation of primary cilia in EN1-deficient hNPCs. Besides, also Wnt signaling pathways were severely affected. Upon stimulating hNPCs with Wnt which drastically increased EN1 expression in WT lines, the phenotypes concerning mitochondrial function and cilia were exacerbated in EN1 ko hNPCs. They failed to enhance the expression of the complex I subunits NDUFS1 and 3, and now displayed a reduced mitochondrial respiration. Furthermore, Wnt stimulation decreased ciliogenesis in EN1 ko hNPCs but increased ciliary length even further. This further highlights the relevance of primary cilia next to mitochondria for the functionality and correct maintenance of human DAns and provides new possibilities to establish neuroprotective therapies for PD.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Camundongos , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/fisiologia , Doença de Parkinson/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mitocôndrias/metabolismo , Substância Negra/metabolismo
17.
Brain Behav Immun ; 119: 129-145, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552923

RESUMO

GSDMD-mediated pyroptosis occurs in the nigrostriatal pathway in Parkinson's disease animals, yet the role of GSDMD in neuroinflammation and death of dopaminergic neurons in Parkinson's disease remains elusive. Here, our in vivo and in vitro studies demonstrated that GSDMD, as a pyroptosis executor, contributed to glial reaction and death of dopaminergic neurons across different Parkinson's disease models. The ablation of the Gsdmd attenuated Parkinson's disease damage by reducing dopaminergic neuronal death, microglial activation, and detrimental transformation. Disulfiram, an inhibitor blocking GSDMD pore formation, efficiently curtailed pyroptosis, thereby lessening the pathology of Parkinson's disease. Additionally, a modification in GSDMD was identified in the blood of Parkinson's disease patients in contrast to healthy subjects. Therefore, the detected alteration in GSDMD within the blood of Parkinson's disease patients and the protective impact of disulfiram could be promising for the diagnostic and therapeutic approaches against Parkinson's disease.


Assuntos
Dissulfiram , Neurônios Dopaminérgicos , Microglia , Doença de Parkinson , Proteínas de Ligação a Fosfato , Piroptose , Piroptose/efeitos dos fármacos , Piroptose/fisiologia , Doença de Parkinson/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Microglia/metabolismo , Microglia/efeitos dos fármacos , Camundongos , Masculino , Humanos , Proteínas de Ligação a Fosfato/metabolismo , Dissulfiram/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Morte Celular/efeitos dos fármacos , Camundongos Knockout , Gasderminas
18.
Methods Mol Biol ; 2761: 491-498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427257

RESUMO

Robust preclinical models of Parkinson's disease (PD) are valuable tools for understanding the biology and treatment of this complex disease. 6-Hydroxydopamine (6-OHDA) is a selective catecholaminergic drug injected into the substantia nigra pars compacta (SNc), medial forebrain bundle (MFB), or striatum, which is then metabolized to induce parkinsonism. Unilateral injection of 6-OHDA produces loss of dopaminergic (DAergic) neurons on the injected side with a marked motor asymmetry known as hemiparkinsonism, typically characterized by a rotational behavior to the impaired side. The present work describes a stable unilateral 6-OHDA-lesioned rat model of PD. 6-OHDA was administered into the MFB, leading to the consistent loss of striatal dopamine (DA) and behavioral imbalance in unilateral 6-OHDA-lesioned rats to establish the model of PD. This model of PD is a valuable tool for understanding the mechanisms underlying the generation of parkinsonian symptoms.


Assuntos
Doença de Parkinson , Ratos , Masculino , Animais , Doença de Parkinson/metabolismo , Oxidopamina/farmacologia , Ratos Wistar , Dopamina/metabolismo , Feixe Prosencefálico Mediano/metabolismo , Corpo Estriado/metabolismo , Substância Negra/metabolismo , Modelos Animais de Doenças
19.
Development ; 151(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358799

RESUMO

The Wnt/ß-catenin signaling governs anterior-posterior neural patterning during development. Current human pluripotent stem cell (hPSC) differentiation protocols use a GSK3 inhibitor to activate Wnt signaling to promote posterior neural fate specification. However, GSK3 is a pleiotropic kinase involved in multiple signaling pathways and, as GSK3 inhibition occurs downstream in the signaling cascade, it bypasses potential opportunities for achieving specificity or regulation at the receptor level. Additionally, the specific roles of individual FZD receptors in anterior-posterior patterning are poorly understood. Here, we have characterized the cell surface expression of FZD receptors in neural progenitor cells with different regional identity. Our data reveal unique upregulation of FZD5 expression in anterior neural progenitors, and this expression is downregulated as cells adopt a posterior fate. This spatial regulation of FZD expression constitutes a previously unreported regulatory mechanism that adjusts the levels of ß-catenin signaling along the anterior-posterior axis and possibly contributes to midbrain-hindbrain boundary formation. Stimulation of Wnt/ß-catenin signaling in hPSCs, using a tetravalent antibody that selectively triggers FZD5 and LRP6 clustering, leads to midbrain progenitor differentiation and gives rise to functional dopaminergic neurons in vitro and in vivo.


Assuntos
Receptores Frizzled , Quinase 3 da Glicogênio Sintase , beta Catenina , Humanos , beta Catenina/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Mesencéfalo , Sistema Nervoso/metabolismo , Via de Sinalização Wnt , Animais , Ratos
20.
bioRxiv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38260421

RESUMO

The conserved mesencephalic astrocyte-derived neurotrophic factor (MANF) protects dopaminergic neurons but also functions in several other tissues. Previously, we showed that Caenorhabditis elegans manf-1 null mutants have increased ER stress, dopaminergic neurodegeneration, protein aggregation, slower growth, and a reduced lifespan. The multiple requirements of MANF in different systems suggest its essential role in regulating cellular processes. However, how intracellular and extracellular MANF regulates broader cellular function remains unknown. Here, we report a novel mechanism of action for manf-1 that involves the autophagy transcription factor HLH-30/TFEB-mediated signaling to regulate lysosomal function and aging. We generated multiple transgenic strains overexpressing MANF-1 and found that animals had extended lifespan, reduced protein aggregation, and improved neuronal health. Using a fluorescently tagged MANF-1, we observed different tissue localization of MANF-1 depending on the ER retention signal. Further subcellular analysis showed that MANF-1 localizes within cells to the lysosomes. These findings were consistent with our transcriptomic studies and, together with analysis of autophagy regulators, demonstrate that MANF-1 regulates protein homeostasis through increased autophagy and lysosomal activity. Collectively, our findings establish MANF as a critical regulator of the stress response, proteostasis, and aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...