Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; 20(40): e2401051, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38809083

RESUMO

Lead-free layered double perovskite nanocrystals (NCs), i.e., Cs4M(II)M(III)2Cl12, have recently attracted increasing attention for potential optoelectronic applications due to their low toxicity, direct bandgap nature, and high structural stability. However, the low photoluminescence quantum yield (PLQY, <1%) or even no observed emissions at room temperature have severely blocked the further development of this type of lead-free halide perovskites. Herein, two new layered perovskites, Cs4CoIn2Cl12 (CCoI) and Cs4ZnIn2Cl12 (CZnI), are successfully synthesized at the nanoscale based on previously reported Cs4CuIn2Cl12 (CCuI) NCs, by tuning the M(II) site with different transition metal ions for lattice tailoring. Benefiting from the formation of more self-trapped excitons (STEs) in the distorted lattices, CCoI and CZnI NCs exhibit significantly strengthened STE emissions toward white light compared to the case of almost non-emissive CCuI NCs, by achieving PLQYs of 4.3% and 11.4% respectively. The theoretical and experimental results hint that CCoI and CZnI NCs possess much lower lattice deformation energies than that of reference CCuI NCs, which are favorable for the recombination of as-formed STEs in a radiative way. This work proposes an effective strategy of lattice engineering to boost the photoluminescent properties of lead-free layered double perovskites for their future warm white light-emitting applications.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123683, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38006864

RESUMO

Detecting heavy metal copper ions in lubricating oil holds immense significance for assessing mechanical wear and predicting mechanical failure. While perovskite nanocrystals offer high sensitivity in detecting copper ions, traditional lead halide perovskites suffer from lead toxicity defects. Lead-free perovskites, like Cs2NaInCl6, avoid the issue of lead toxicity but display lower luminescence intensity due to the presence of forbidden optical transitions. To address these issues, this study synthesized Cs2NaInCl6 nanocrystals (NCs) co-doped with Sb3+ and Tb3+ ions for copper ions detection in lubricating oil. The introduction of Sb3+ effectively reduced the band gap of the Cs2NaInCl6 host, creating an energy transfer pathway for Tb3+ emission via self-trapped excitations (STEs). Moreover, the doping of Tb3+ ions resulted in the suppression of STEs emission due to electron transfer from STEs to Tb3+. The emission of Tb3+ increased initially and then decreased with the increasing Tb3+ concentration, peaking at 40 %. Finally, Cs2NaInCl6: 2.5 %Sb3+, 40 %Tb3+ NCs were employed as probes for copper ions detection, exhibiting superior sensitivity and selectivity compared to similar probes. The presence of copper ions introduced competition between copper and Tb3+ for electrons from STEs, consequently leading to the quenching of multiple emission intensities associated with STEs and Tb3+. This method shows promising potential in predicting mechanical failure.

3.
Adv Sci (Weinh) ; 10(20): e2207571, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37114798

RESUMO

Most lead-free halide double perovskite materials display low photoluminescence quantum yield (PLQY) due to the indirect bandgap or forbidden transition. Doping is an effective strategy to tailor the optical properties of materials. Herein, efficient blue-emitting Sb3+ -doped Cs2 NaInCl6 nanocrystals (NCs) are selected as host, rare-earth (RE) ions (Sm3+ , Eu3+ , Tb3+ , and Dy3+ ) are incorporated into the host, and excellent PLQY of 80.1% is obtained. Femtosecond transient absorption measurement found that RE ions not only served as the activator ions but also filled the deep vacancy defects. Anti-counterfeiting, optical thermometry, and white-light-emitting diodes (WLEDs) are exhibited using these RE ions-doped halide double perovskite NCs. For the optical thermometry based on Sm3+ -doped Cs2 NaInCl6 :Sb3+ NCs, the maximum relative sensitivity is 0.753% K-1 , which is higher than those of most temperature-sensing materials. Moreover, the WLED fabricated by Sm3+ -doped Cs2 NaInCl6 :Sb3+ NCs@PMMA displays CIE color coordinates of (0.30, 0.28), a luminous efficiency of 37.5 lm W-1 , a CCT of 8035 K, and a CRI over 80, which indicate that Sm3+ -doped Cs2 NaInCl6 :Sb3+ NCs are promising single-component white-light-emitting phosphors for next-generation lighting and display technologies.

4.
ACS Appl Mater Interfaces ; 14(37): 42215-42222, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36093569

RESUMO

Near-infrared (NIR) fluorescent materials show unique photophysical properties, which make them widely used in optical communication, night vision imaging, biomedicine, and other applications. However, the development of high-efficiency and wavelength-tunable NIR nanomaterials is still a challenge. Herein, a series of lanthanide ions doped Cs2AgIn0.99Bi0.01Cl6 double perovskite nanocrystals (DPNCs) with wavelength-tunable NIR light emission (800-1600 nm) have been synthesized. The optimal photoluminescence quantum yield (PLQY) of the DPNCs reaches 66.7%, which is a record value for DPNCs. It is mainly attributed to the contribution of NIR emission of lanthanide ions doped into DPNCs. More importantly, the series of NIR emission wavelengths of lanthanide ions doped Cs2AgIn0.99Bi0.01Cl6 DPNCs include not only shorter-wavelength NIR light (≤900 nm) but also longer-wavelength NIR light (>900 nm), which are more appropriate for foodstuff analysis and medical diagnosis applications. Furthermore, 11.2% Nd3+ doped Cs2AgIn0.99Bi0.01Cl6 DPNCs with the optimal PLQY were embedded in a polymethyl methacrylate (PMMA) polymer matrix (DPNCs@PMMA), and the stability of DPNCs modified by PMMA has been greatly improved. Finally, the 11.2% Nd3+ ions doped Cs2AgIn0.99Bi0.01Cl6 DPNCs@PMMA based NIR LEDs have demonstrated good night vision and human tissue penetration. This work indicates that lanthanide ions doped DPNCs have a potential in NIR light applications and could inspire future research to explore novel lanthanide ions doped semiconductor NCs based NIR LEDs.

5.
Nano Lett ; 22(1): 311-318, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34939808

RESUMO

Lead-based halide perovskite nanocrystals (NCs) are recognized as emerging emissive materials with superior photoluminescence (PL) properties. However, the toxicity of lead and the swift chemical decomposition under atmospheric moisture severely hinder their commercialization process. Herein, we report the first colloidal synthesis of lead-free Cs4CuIn2Cl12 layered double perovskite NCs via a facile moisture-assisted hot-injection method stemming from relatively nontoxic precursors. Although moisture is typically detrimental to NC synthesis, we demonstrate that the presence of water molecules in Cs4CuIn2Cl12 synthesis enhances the PL quantum yield (mainly in the near-UV range), induces a morphological transformation from 3D nanocubes to 2D nanoplatelets, and converts the dark transitions to radiative transitions for the observed self-trapped exciton relaxation. This work paves the way for further studies on the moisture-assisted synthesis of novel lead-free halide perovskite NCs for a wide range of applications.

6.
ACS Appl Mater Interfaces ; 13(40): 47845-47859, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34582162

RESUMO

Doping and compositional tuning of Cs2AInCl6 (A = Ag, Na) double perovskite nanocrystals (PNCs) is considered a promising strategy toward the development of light-emitting sources for applications in solution-processed optoelectronic devices. Oleic acid and oleylamine are by far the most often used surface capping ligands for PNCs. However, the undesirable desorption of these ligands due to proton-exchange reaction during isolation and purification processing results in colloidal and structural instabilities. Thus, the improvement of colloidal and optical stability of PNCs represents one of the greatest challenges in the field. Here, we report a trioctylphosphine-mediated synthesis and purification method toward Sb-alloyed Cs2NaInCl6 PNCs with excellent stability and optical features. Nuclear magnetic resonance spectroscopy enabled one to explain the role of trioctylphosphine and to reveal the reaction mechanism during crystal nucleation and growth. Under the optimized reaction conditions, in situ-generated trioctylphosphonium chloride and benzoyl trioctylphosphonium chloride serve as highly reactive halide sources, while benzoyl trioctylphosphonium and oleylammonium cations together with the oleate anion serve as surface capping ligands, which are bound strongly to the PNC surface. The tightly bound ionic pair of oleylammonium oleate and benzoyl trioctylphosphonium chloride/oleate ligands allows one to obtain monodispersed bright-blue-emitting PNCs with high photoluminescence quantum yields exceeding 50% at an optimum Sb content (0.5%), which also exhibit long-term colloidal stability. The approach based on dual cationic ligand passivation of double PNCs opens the doors for applications in other systems with a potential to achieve higher stability along with superior optical properties.

7.
Adv Sci (Weinh) ; 8(7): 2004118, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33854898

RESUMO

Lead-free halide double perovskite (HDP) nanocrystals are considered as one of the most promising alternatives to the lead halide perovskite nanocrystals due to their unique characteristics of nontoxicity, robust intrinsic thermodynamic stability, rich and tunable optoelectronic properties. Although lead-free HDP variants with highly efficient emission are synthesized and characterized, the photoluminescent (PL) properties of colloidal HDP nanocrystals still have enormous challenges for application in light-emitting diode (LED) devices due to their intrinsic and surface defects, indirect band, and disallowable optical transitions. Herein, recent progress on the synthetic strategies, ligands passivation, and metal doping/alloying for boosting efficiency and stability of HDP nanocrystals is comprehensive summarized. It begins by introducing the crystalline structure, electronic structure, and PL mechanism of lead-free HDPs. Next, the limiting factors on PL properties and origins of instability are analyzed, followed by highlighting the effects of synthesis strategies, ligands passivation, and metal doping/alloying on the PL properties and stability of the HDPs. Then, their preliminary applications for LED devices are emphasized. Finally, the challenges and prospects concerning the development of highly efficient and stable HDP nanocrystals-based LED devices in the future are proposed.

8.
ACS Nano ; 14(5): 5855-5861, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32298081

RESUMO

Lead-free halide double perovskites have emerged as a nontoxic alternative to the heavily researched lead-based halide perovskites. However, their optical properties and the initial charge carrier relaxation processes are under debate. In this study, we apply time-resolved photoluminescence and differential transmission spectroscopy to investigate the photoexcited charge carrier dynamics within the indirect band structure of Cs2AgBiBr6 nanocrystals. Interestingly, we observe a high energetic emission stemming from the direct band gap, besides the previously reported emission from the indirect band gap transition. We attribute this emission to the radiative recombination of direct bound excitons. This emission maximum redshifts nearly 1 eV within 10 ps due to electron intervalley scattering, which leads to a transfer of direct to indirect bound excitons. We conclude that these direct bound excitons possess a giant oscillator strength causing not only a pronounced absorption peak at the optical band gap energy but also luminescence to occur at the direct band gap transition in spite of the prevailing intervalley scattering process. These results expand the understanding of the optical properties and the charge carrier relaxation in double perovskites, thus, facilitating the further development of optoelectronic devices harnessing lead-free perovskites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA