Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.951
Filtrar
1.
Chin Med ; 19(1): 93, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956680

RESUMO

Cardiovascular disease (CVD) remains the predominant cause of mortality and disability worldwide. Against this backdrop, finding effective drugs for the pharmacological treatment of CVD has become one of the most urgent and challenging issues in medical research. Garlic (Allium sativum L.) is one of the oldest plants and is world-renowned for its dietary and medicinal values. Allicin (diallyl thiosulfinate) is one of the primary natural active ingredients in garlic, which has been proven to have powerful cardioprotective effects and mediate various pathological processes related to CVD, such as inflammatory factor secretion, myocardial cell apoptosis, oxidative stress, and more. Therefore, allicin holds a promising application prospect in the treatment of CVD. This review summarized the biological functions of allicin and its potential mechanisms in CVD, including antioxidation, anti-inflammation, and anti-apoptosis effects. Reckoning with these, we delved into recent studies on allicin's cardioprotective effects concerning various CVDs, such as atherosclerosis, hypertension, myocardial infarction, arrhythmia, cardiac hypertrophy, heart failure, and cardiotoxicity. Further, considering the tremendous advancement in nanomedicine, nanotechnology-based drug delivery systems show promise in addressing limitations of allicin's clinical applications, including improving its solubility, stability, and bioavailability. Through this review, we hope to provide a reference for further research on allicin in cardioprotection and drug development.

2.
Curr Med Chem ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38963104

RESUMO

BACKGROUND: Neglected Tropical Diseases (NTD) are chronic infectious conditions that primarily affect marginalized populations. The chemotherapeutic arsenal available for treating NTD is limited and outdated, which poses a challenge in controlling and eradicating these diseases. This is exacerbated by the pharmaceutical industry's lack of interest in funding the development of new therapeutic alternatives. In addition, a considerable number of drugs used in NTD therapy have low aqueous solubility. To address this issue, solubility enhancement strategies, such as the use of inclusion complexes with cyclodextrins (CD) can be employed. OBJECTIVE: Therefore, this systematic review aims to present the application of CD in complexing with drugs and chemotherapeutic compounds used in the therapy of some of the most prevalent NTD worldwide and how these complexes can enhance the treatment of these diseases. METHODS: Two bibliographic databases, Science Direct and PubMed, were used to conduct the search. The selection of studies and the writing of this systematic review followed the criteria outlined by the PRISMA guidelines. RESULTS: From a total of 978 articles, 23 were selected after applying the exclusion criteria. All the studies selected were consistent with the use of CD as a strategy to increase the solubility of therapeutic agents used in NTD. CONCLUSION: The results indicate that CD can enhance the solubility of chemotherapeutic agents for the treatment of Neglected Tropical Diseases (NTD). This review presents data that clearly highlights the potential use of CD in the development of new treatments for neglected tropical diseases. It can assist in the formulation of future treatments that are more effective and safer.

3.
Heliyon ; 10(12): e32844, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975183

RESUMO

The most prevalent paediatric vision-threatening medical condition, retinoblastoma (RB), has been a global concern for a long time. Several conventional therapies, such as systemic chemotherapy and focal therapy, have been used for curative purposes; however, the search for tumour eradication with the least impact on surrounding tissues is still ongoing. This review focuses on the genetic origin, classification, conventional treatment modalities, and their combination with nano-scale delivery systems for active tumour targeting. In addition, the review also delves into ongoing clinical trials and patents, as well as emerging therapies such as gene therapy and immunotherapy for the treatment of RB. Understanding the role of genetics in the development of RB has refined its treatment strategy according to the genetic type. New approaches such as nanostructured drug delivery systems, galenic preparations, nutlin-3a, histone deacetylase inhibitors, N-MYC inhibitors, pentoxifylline, immunotherapy, gene therapy, etc. discussed in this review, have the potential to circumvent the limitations of conventional therapies and improve treatment outcomes for RB. In summary, this review highlights the importance and need for novel approaches as alternative therapies that would ultimately displace the shortcomings associated with conventional therapies and reduce the enucleation rate, thereby preserving global vision in the affected paediatric population.

4.
J Control Release ; 372: 810-828, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968969

RESUMO

Cancer is a serious threat to human health because of its high annual mortality rate. It has attracted significant attention in healthcare, and identifying effective strategies for the treatment and relief of cancer pain requires urgency. Drug delivery systems (DDSs) offer the advantages of excellent efficacy, low cost, and low toxicity for targeting drugs to tumor sites. In recent decades, copolymer carriers based on poly(phenylalanine) (PPhe) and poly(3,4-dihydroxy-L-phenylalanine) (PDopa) have been extensively investigated owing to their good biocompatibility, biodegradability, and controllable stimulus responsiveness, which have resulted in DDSs with loading and targeted delivery capabilities. In this review, we introduce the synthesis of PPhe and PDopa, highlighting the latest proposed synthetic routes and comparing the differences in drug delivery between PPhe and PDopa. Subsequently, we summarize the various applications of PPhe and PDopa in nanoscale-targeted DDSs, providing a comprehensive analysis of the drug release behavior based on different stimulus-responsive carriers using these two materials. In the end, we discuss the challenges and prospects of polypeptide-based DDSs in the field of cancer therapy, aiming to promote their further development to meet the growing demands for treatment.

5.
Adv Drug Deliv Rev ; : 115386, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971180

RESUMO

To maximize therapeutic effects and minimize unwanted effects, the interest in drug targeting to the endoplasmic reticulum (ER) or Golgi apparatus (GA) has been recently growing because two organelles are distributing hubs of cellular building/signaling components (e.g., proteins, lipids, Ca2+) to other organelles and the plasma membrane. Their structural or functional damages induce organelle stress (i.e., ER or GA stress), and their aggravation is strongly related to diseases (e.g., cancers, liver diseases, brain diseases). Many efforts have been developed to image (patho)physiological functions (e.g., oxidative stress, protein/lipid-related processing) and characteristics (e.g., pH, temperature, biothiols, reactive oxygen species) in the target organelles and to deliver drugs for organelle disruption using organelle-targeting moieties. Therefore, this review will overview the structure, (patho)physiological functions/characteristics, and related diseases of the organelles of interest. Future direction on ER or GA targeting will be discussed by understanding current strategies and investigations on targeting, imaging/sensing, and therapeutic strategies.

6.
Sci Rep ; 14(1): 15749, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977767

RESUMO

Although bone dehiscence may occur during orthodontic tooth movement into the narrow alveolar ridge, a non-invasive prevention method is yet to be fully established. We show for the first time prevention of bone dehiscence associated with orthodontic tooth movement by prophylactic injection of bone anabolic agents in mice. In this study, we established a bone dehiscence mouse model by applying force application and used the granular type of scaffold materials encapsulated with bone morphogenetic protein (BMP)-2 and OP3-4, the receptor activator of NF-κB ligand (RANKL)-binding peptide, for the prophylactic injection to the alveolar bone. In vivo micro-computed tomography revealed bone dehiscence with decreased buccal alveolar bone thickness and height after force application, whereas no bone dehiscence was observed with the prophylactic injection after force application, and alveolar bone thickness and height were kept at similar levels as those in the control group. Bone histomorphometry analyses revealed that both bone formation and resorption parameters were significantly higher in the injection with force application group than in the force application without the prophylactic injection group. These findings suggest that the prophylactic local delivery of bone anabolic reagents can prevent bone dehiscence with increased bone remodelling activity.


Assuntos
Anabolizantes , Proteína Morfogenética Óssea 2 , Técnicas de Movimentação Dentária , Microtomografia por Raio-X , Animais , Camundongos , Técnicas de Movimentação Dentária/efeitos adversos , Anabolizantes/farmacologia , Anabolizantes/administração & dosagem , Masculino , Osteogênese/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Ligante RANK/metabolismo , Processo Alveolar/efeitos dos fármacos , Processo Alveolar/diagnóstico por imagem , Processo Alveolar/patologia , Modelos Animais de Doenças
7.
Int J Pharm ; 661: 124440, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972521

RESUMO

Medicines remain ineffective for over 50% of patients due to conventional mass production methods with fixed drug dosages. Three-dimensional (3D) printing, specifically selective laser sintering (SLS), offers a potential solution to this challenge, allowing the manufacturing of small, personalized batches of medication. Despite its simplicity and suitability for upscaling to large-scale production, SLS was not designed for pharmaceutical manufacturing and necessitates a time-consuming, trial-and-error adaptation process. In response, this study introduces a deep learning model trained on a variety of features to identify the best feature set to represent drugs and polymeric materials for the prediction of the printability of drug-loaded formulations using SLS. The proposed model demonstrates success by achieving 90% accuracy in predicting printability. Furthermore, explainability analysis unveils materials that facilitate SLS printability, offering invaluable insights for scientists to optimize SLS formulations, which can be expanded to other disciplines. This represents the first study in the field to develop an interpretable, uncertainty-optimized deep learning model for predicting the printability of drug-loaded formulations. This paves the way for accelerating formulation development, propelling us into a future of personalized medicine with unprecedented manufacturing precision.

8.
J Med Virol ; 96(7): e29748, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38975633

RESUMO

Prostate cancer is a prevalent carcinoma among males, and conventional treatment options are often limited. Cytotoxic chemotherapy, despite its drawbacks, remains a mainstay. We propose a targeted co-delivery approach using nanoscale delivery units for Oncolytic measles virus (OMV) and vincristine (VC) to enhance treatment efficacy. The HA-coated OMV + VC-loaded TCs nanoformulation is designed for targeted oncolytic activity in prostate cancer. The CD44 expression analysis in prostate cancer cell lines indicates a significantly high expression in PC3 cells. The optimization of nanoformulations using Design of Expert (DOE) is performed, and the preparation and characterization of HA-coated OMV + VC-loaded TCs nanoformulations are detailed showing average particle size 397.2 ± 0.01 nm and polydispersity index 0.122 with zeta potential 19.7 + 0.01 mV. Results demonstrate successful encapsulation efficiency with 2.4 × 106 TCID50/Ml and sustained release of OMV and VC from the nanoformulation for up to 72 h. In vitro, assays reveal potent anticancer activity at 10 ± 0.71% cell viability in PC3 cells compared to 73 ± 0.66% in HPrEC and significant morphological changes at 90 µg/ml in dose and time-dependent manner. The co-formulation showed positive cell death 49.5 ± 0.02% at 50 µg PI/ml in PBS and 54.3% cell cycle arrest at the G2/M phase, 8.1% G0/G1 and 5.7% at S phase, with significant mitochondrial membrane potential (MMP) at 50 µg/ml, as assessed by flow cytometry (FACS). The surface-integrating ligand approach enhances the targeted delivery of the oncolytic virus and chemotherapeutic drug, presenting a potential alternative for prostate cancer treatment and suggested that co-administering VC and OMV in a nanoformulation could improve therapeutic outcomes while reducing chemotherapeutic drug doses.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias da Próstata , Vincristina , Humanos , Masculino , Neoplasias da Próstata/terapia , Neoplasias da Próstata/tratamento farmacológico , Vincristina/farmacologia , Vincristina/administração & dosagem , Terapia Viral Oncolítica/métodos , Linhagem Celular Tumoral , Vírus do Sarampo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Células PC-3
9.
Artigo em Inglês | MEDLINE | ID: mdl-38990305

RESUMO

Paclitaxel, a potent chemotherapeutic agent derived from the bark of the Pacific yew tree, has demonstrated significant efficacy in the treatment of various cancers, including colon cancer. This comprehensive review delves into the conventional treatments for colon cancer, emphasizing the crucial role of paclitaxel in contemporary management strategies. It explores the intricate process of sourcing and synthesizing paclitaxel, highlighting the importance of its structural properties in its anticancer activity. The review further elucidates the mechanism of action of paclitaxel, its pharmacological effects, and its integration into chemotherapy regimens for colon cancer. Additionally, novel drug delivery systems, such as nanocarriers, liposomes, nanoparticles, microspheres, micelles, microemulsions, and niosomes, are examined for their potential to enhance the therapeutic efficacy of paclitaxel. The discussion extends to recent clinical trials and patents, showcasing advancements in paclitaxel formulations aimed at improving treatment outcomes. The review concludes with prospects in the field underscoring the ongoing innovation and potential breakthroughs in colon cancer therapy.

10.
Int J Nanomedicine ; 19: 6731-6756, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979531

RESUMO

Osteoarthritis (OA) is the most common degenerative joint disease, affecting more than 595 million people worldwide. Nanomaterials possess superior physicochemical properties and can influence pathological processes due to their unique structural features, such as size, surface interface, and photoelectromagnetic thermal effects. Unlike traditional OA treatments, which suffer from short half-life, low stability, poor bioavailability, and high systemic toxicity, nanotherapeutic strategies for OA offer longer half-life, enhanced targeting, improved bioavailability, and reduced systemic toxicity. These advantages effectively address the limitations of traditional therapies. This review aims to inspire researchers to develop more multifunctional nanomaterials and promote their practical application in OA treatment.


Assuntos
Nanoestruturas , Osteoartrite , Osteoartrite/tratamento farmacológico , Osteoartrite/terapia , Humanos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Animais , Nanomedicina/métodos , Disponibilidade Biológica
11.
J Control Release ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986910

RESUMO

Several abdominal-located cancers develop metastasis within the peritoneum, what is called peritoneal carcinomatosis (PC), constituting a clinical challenge in their therapeutical management, often leading to poor prognoses. Current multidisciplinary strategies, including cytoreductive surgery (CRS), hyperthermic intraperitoneal chemotherapy (HIPEC), and pressurized intraperitoneal aerosol chemotherapy (PIPAC), demonstrate efficacy but have limitations. In response, alternative strategies are explored in the drug delivery field for intraperitoneal chemotherapy. Controlled drug delivery offers a promising avenue, maintaining localized drug concentrations for optimal PC management. Drug delivery systems (DDS), including hydrogels, implants, nanoparticles, and hybrid systems, show potential for sustained and region-specific drug release. The present review aims to offer an overview of the advances and current designs of DDS for PC chemotherapy administration, focusing on their composition, main characteristics, and principal experimental outcomes, highlighting the importance of biomaterial rationale design and in vitro/vivo models for their testing. Moreover, since clinical data for human subjects are scarce, we offer a critical discussion of the gap between bench and bedside in DDS translation, emphasizing the need for further research.

12.
Life Sci ; 352: 122897, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971366

RESUMO

The major reason for the failure of conventional therapies is the heterogeneity and complexity of tumor microenvironments (TMEs). Many malignant tumors reprogram their surface antigens to evade the immune surveillance, leading to reduced antigen-presenting cells and hindered T-cell activation. Bacteria-mediated cancer immunotherapy has been extensively investigated in recent years. Scientists have ingeniously modified bacteria using synthetic biology and nanotechnology to enhance their biosafety with high tumor specificity, resulting in robust anticancer immune responses. To enhance the antitumor efficacy, therapeutic proteins, cytokines, nanoparticles, and chemotherapeutic drugs have been efficiently delivered using engineered bacteria. This review provides a comprehensive understanding of oncolytic bacterial therapies, covering bacterial design and the intricate interactions within TMEs. Additionally, it offers an in-depth comparison of the current techniques used for bacterial modification, both internally and externally, to maximize their therapeutic effectiveness. Finally, we outlined the challenges and opportunities ahead in the clinical application of oncolytic bacterial therapies.

13.
J Microencapsul ; : 1-22, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967562

RESUMO

Osteoarthritis (OA), affecting around 240 million people globally is a major threat. Currently, available drugs only treat the symptoms of OA; they cannot reverse the disease's progression. The delivery of drugs to afflicted joints is challenging because of poor vasculature of articular cartilage results in their less bioavailability and quick elimination from the joints. Recently approved drugs such as KGN and IL-1 receptor antagonists also encounter challenges because of inadequate formulations. Therefore, microspheres could be a potential player for the intervention of OA owing to its excellent physicochemical properties. This review primarily focuses on microspheres of distinct biomaterials acting as cargo for drugs and biologicals via different delivery routes in the effective management of OA. Microspheres can improve the efficacy of therapeutics by targeting strategies at specific body locations. This review also highlights clinical trials conducted in the last few decades.

14.
Carbohydr Res ; 542: 109199, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944980

RESUMO

The second and most often utilized natural polymer is chitosan (CS), a naturally existing amino polysaccharide that is produced by deacetylating chitin. Numerous applications have been the subject of in-depth investigation due to its non-hazardous, biologically compatible, and biodegradable qualities. Chitosan's characteristics, such as mucoadhesion, improved permeability, controlled release of drugs, in situ gelation process, and antibacterial activity, depend on its amino (-NH2) and hydroxyl groups (-OH). This study examines the latest findings in chitosan research, including its characteristics, derivatives, preliminary research, toxic effects, pharmaceutical kinetics and chitosan nanoparticles (CS-NPs) based for non-parenteral delivery of drugs. Chitosan and its derivatives have a wide range of physical and chemical properties that make them highly promising for use in the medicinal and pharmaceutical industries. The characteristics and biological activities of chitosan and its derivative-based nanomaterials for the delivery of drugs, therapeutic gene transfer, delivery of vaccine, engineering tissues, evaluations, and other applications in medicine are highlighted in detail in the current review. Together with the techniques for binding medications to nanoparticles, the application of the nanoparticles was also dictated by their physical properties that were classified and specified. The most recent research investigations on delivery of drugs chitosan nanoparticle-based medication delivery methods applied topically, through the skin, and through the eyes were considered.

15.
Int J Pharm ; 660: 124345, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885775

RESUMO

Advancements in nanotechnology were vastly applied in medicine and pharmacy, especially in the field of nano-delivery systems. It took a long time for these systems to ensure precise delivery of very delicate molecules, such as RNA, to cells at concentrations that yield remarkable efficiency, with success rates reaching 95.0% and 94.5%. These days, there are several advantages of using nanotechnological solutions in the prevention and treatment of cancer and viral infections. Its interventions improve treatment outcomes both due to increased effectiveness of the drug at target location and by reducing adverse reactions, thereby increasing patient adherence to the therapy. Based on the current knowledge an updated review was made, and perspective, opportunities and challenges in nanomedicine were discussed. The methods employed include comprehensive examination of existing literature and studies on nanoparticles and nano-delivery systems including both in vitro tests performed on cell cultures and in vivo assessments carried out on appropriate animal models, with a specific emphasis on their applications in oncology and virology. This brings together various aspects including both structure and formation as well as its association with characteristic behaviour in organisms, providing a novel perspective. Furthermore, the practical application of these systems in medicine and pharmacy with a focus on viral diseases and malignancies was explored. This review can serve as a valuable guide for fellow researchers, helping them navigate the abundance of findings in this field. The results indicate that applications of nanotechnological solutions for the delivery of medicinal products improving therapeutic outcomes will continue to expand.

16.
Int J Pharm ; : 124403, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944167

RESUMO

Nanotechnology-based drug delivery systems, including siRNA, present an innovative approach to treating breast cancer, which disproportionately affects women. These systems enable personalized and targeted therapies, adept at managing drug resistance and minimizing off-target effects. This review delves into the current landscape of nanotechnology-derived siRNA transport systems for breast cancer treatment, discussing their mechanisms of action, preclinical and clinical research, therapeutic applications, challenges, and future prospects. Emphasis is placed on the importance of targeted delivery and precise gene silencing in improving therapeutic efficacy and patient outcomes. The review addresses specific hurdles such as specificity, biodistribution, immunological reactions, and regulatory approval, offering potential solutions and avenues for future research. SiRNA drug delivery systems hold promise in revolutionizing cancer care and improving patient outcomes, but realizing their full potential necessitates ongoing research, innovation, and collaboration. Understanding the intricacies of siRNA delivery mechanisms is pivotal for designing effective cancer treatments, overcoming challenges, and advancing siRNA-based therapies for various diseases, including cancer. The article provides a comprehensive review of the methods involved in siRNA transport for therapeutic applications, particularly in cancer treatment, elucidating the complex journey of siRNA molecules from extracellular space to intracellular targets. Key mechanisms such as endocytosis, receptor-mediated uptake, and membrane fusion are explored, alongside innovative delivery vehicles and technologies that enhance siRNA delivery efficiency. Moreover, the article discusses challenges and opportunities in the field, including issues related to specificity, biodistribution, immune response, and clinical translation. By comprehending the mechanisms of siRNA delivery, researchers can design and develop more effective siRNA-based therapies for various diseases, including cancer.

17.
Molecules ; 29(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38930939

RESUMO

Atherosclerosis continues to be a leading cause of morbidity and mortality globally. The precise evaluation of the extent of an atherosclerotic plaque is essential for forecasting its likelihood of causing health concerns and tracking treatment outcomes. When compared to conventional methods used, nanoparticles offer clear benefits and excellent development opportunities for the detection and characterisation of susceptible atherosclerotic plaques. In this review, we analyse the recent advancements of nanoparticles as theranostics in the management of atherosclerosis, with an emphasis on applications in drug delivery. Furthermore, the main issues that must be resolved in order to advance clinical utility and future developments of NP research are discussed. It is anticipated that medical NPs will develop into complex and advanced next-generation nanobotics that can carry out a variety of functions in the bloodstream.


Assuntos
Aterosclerose , Sistemas de Liberação de Medicamentos , Nanopartículas , Humanos , Aterosclerose/tratamento farmacológico , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Animais , Nanomedicina Teranóstica/métodos , Placa Aterosclerótica/tratamento farmacológico , Portadores de Fármacos/química
18.
Expert Opin Drug Deliv ; 21(5): 751-766, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38841752

RESUMO

INTRODUCTION: The dramatic effects caused by viral diseases have prompted the search for effective therapeutic and preventive agents. In this context, 2D graphene-based nanomaterials (GBNs) have shown great potential for antiviral therapy, enabling the functionalization and/or decoration with biomolecules, metals and polymers, able to improve their interaction with viral nanoparticles. AREAS COVERED: This review summarizes the most recent advances of the antiviral research related to 2D GBNs, based on their antiviral mechanism of action. Their ability to inactivate viruses by inhibiting the entry inside cells, or through drug/gene delivery, or by stimulating the host immune response are here discussed. As reported, biological studies performed in vitro and/or in vivo allowed to demonstrate the antiviral activity of the developed GBNs, at different stages of the virus life cycle and the evaluation of their long-term toxicity. Other mechanisms closely related to the physicochemical properties of GBNs are also reported, demonstrating the potential of these materials for antiviral prophylaxis. EXPERT OPINION: GBNs represent valuable tools to fight emerging or reemerging viral infections. However, their translation into the clinic requires standardized scale-up procedures leading to the reliable and reproducible synthesis of these nanomaterials with suitable physicochemical properties, as well as more in-depth pharmacological and toxicological investigations. We believe that multidisciplinary approaches will give valuable solutions to overcome the encountered limitations in the application of GBNs in biomedical and clinical field.


Assuntos
Antivirais , Sistemas de Liberação de Medicamentos , Grafite , Nanoestruturas , Viroses , Grafite/química , Antivirais/administração & dosagem , Antivirais/farmacologia , Antivirais/química , Antivirais/uso terapêutico , Humanos , Nanoestruturas/química , Animais , Viroses/prevenção & controle , Viroses/tratamento farmacológico , Vírus/efeitos dos fármacos , Técnicas de Transferência de Genes
19.
J Nanobiotechnology ; 22(1): 359, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907216

RESUMO

Periodontitis is a chronic inflammation caused by a bacterial infection and is intimately associated with an overactive immune response. Biomaterials are being utilized more frequently in periodontal therapy due to their designability and unique drug delivery system. However, local and systemic immune response reactions driven by the implantation of biomaterials could result in inflammation, tissue damage, and fibrosis, which could end up with the failure of the implantation. Therefore, immunological adjustment of biomaterials through precise design can reduce the host reaction while eliminating the periodontal tissue's long-term chronic inflammation response. It is important to note that macrophages are an active immune system component that can participate in the progression of periodontal disease through intricate polarization mechanisms. And modulating macrophage polarization by designing biomaterials has emerged as a new periodontal therapy technique. In this review, we discuss the role of macrophages in periodontitis and typical strategies for polarizing macrophages with biomaterials. Subsequently, we discuss the challenges and potential opportunities of using biomaterials to manipulate periodontal macrophages to facilitate periodontal regeneration.


Assuntos
Materiais Biocompatíveis , Imunoterapia , Macrófagos , Periodontite , Humanos , Periodontite/tratamento farmacológico , Periodontite/terapia , Materiais Biocompatíveis/química , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Animais , Imunoterapia/métodos , Sistemas de Liberação de Medicamentos/métodos
20.
Pharm Nanotechnol ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38910488

RESUMO

Cubosomes, a novel drug delivery system, have gained significant attention in recent years due to their unique self-assembled structures and enhanced drug encapsulation capabilities. They are administered by oral, ophthalmic, transdermal, and chemotherapeutic routes, to name a few. Due to their many potential benefits-which include high drug dispersal due to the cubic structure, a large surface area, a relatively simple manufacturing process, biodegradability, the capacity to encapsulate hydrophobic, hydrophilic, and amphiphilic compounds, targeted and controlled release of bioactive agents, and the biodegradability of lipids-cubosomes show enormous promise in drug nanoformulations for cancer therapeutics. The most common preparation method involves emulsifying a monoglyceride with a polymer, homogenizing, and then sonicating the mixture. Two distinct approaches to preparing are top-down and bottom-up. This evaluation will examine the materials, methods of preparation, cubosome-related drug encapsulating techniques, drug loading, release mechanism, and their uses. The following databases were used for literature searches: PubMed, Frontiers, Science Direct, Springer, Wiley, and MDPI. For the purpose of finding pertinent articles and contents (2015-2024), the keywords "cubosome; drug delivery systems, nano-carrier, theranostic, drug release mechanism" and others of a similar nature were utilized. This review will conduct a comprehensive analysis of the cubosome-related composition, production methods, drug encapsulating strategies, drug release mechanisms, and applications. Moreover, the difficulties encountered in fine-tuning different parameters to improve loading capabilities and prospects are also discussed. Innovation in pharmaceutical research and development can be stimulated by the knowledge gathered about cubosomal drug delivery methods. Through the clarification of the mechanisms involved in drug release from cubosomes and the investigation of innovative fabrication procedures, scientists can enhance the cubosomal formulation design for targeted therapeutic uses.

.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...