Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Drug Des Devel Ther ; 18: 3811-3824, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39219694

RESUMO

Purpose: Tuberculosis (TB) remains a major health threat worldwide, and the spread of drug-resistant (DR) TB impedes the reduction of the global disease burden. Ebselen (EbSe) targets bacterial thioredoxin reductase (bTrxR) and causes an imbalance in the redox status of bacteria. Previous work has shown that the synergistic action of bTrxR and sensitization to common antibiotics by EbSe is a promising strategy for the treatment of DR pathogens. Thus, we aimed to evaluate whether EbSe could enhance anti-TB drugs against Mycobacterium marinum (M. marinum) which is genetically related to Mycobacterium tuberculosis (Mtb) and resistant to many antituberculosis drugs. Methods: Minimum inhibitory concentrations (MIC) of isoniazid (INH), rifampicin (RFP), and streptomycin (SM) against M. marinum were determined by microdilution. The Bliss Independence Model was used to determine the adjuvant effects of EbSe over the anti-TB drugs. Thioredoxin reductase activity was measured using the DTNB assay, and its effects on bacterial redox homeostasis were verified by the elevation of intracellular ROS levels and intracellular GSH levels. The adjuvant efficacy of EbSe as an anti-TB drug was further evaluated in a mouse model of M. marinum infection. Cytotoxicity was observed in the macrophage cells Raw264.7 and mice model. Results: The results reveal that EbSe acts as an antibiotic adjuvant over SM on M. marinum. EbSe + SM disrupted the intracellular redox microenvironment of M. marinum by inhibiting bTrxR activity, which could rescue mice from the high bacterial load, and accelerated recovery from tail injury with low mammalian toxicity. Conclusion: The above studies suggest that EbSe significantly enhanced the anti-Mtb effect of SM, and its synergistic combination showed low mammalian toxicity in vitro and in vivo. Further efforts are required to study the underlying mechanisms of EbSe as an antibiotic adjuvant in combination with anti-TB drug MS.


Assuntos
Homeostase , Isoindóis , Testes de Sensibilidade Microbiana , Compostos Organosselênicos , Oxirredução , Estreptomicina , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/química , Isoindóis/farmacologia , Animais , Camundongos , Homeostase/efeitos dos fármacos , Estreptomicina/farmacologia , Antituberculosos/farmacologia , Antituberculosos/química , Mycobacterium marinum/efeitos dos fármacos , Azóis/farmacologia , Azóis/química , Relação Dose-Resposta a Droga , Antibacterianos/farmacologia , Antibacterianos/química , Relação Estrutura-Atividade , Estrutura Molecular , Camundongos Endogâmicos BALB C
2.
Cytokine ; 181: 156671, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38943739

RESUMO

Nonalcoholic fatty liver disease (NAFLD), a metabolic disease associated with obesity and type 2 diabetes. Due to its complex pathogenesis, there are still limitations in the knowledge of the disease. To date, no drug has been approved to treat NAFLD. This study aims to explore the role and mechanism of Ebselen (EbSe) in NAFLD. A high-fat diet-induced mouse model of NAFLD was employed to investigate EbSe function in NAFLD mice by EbSe gavage and to regularly monitor the mouse body weight. HE and oil red O staining were performed, respectively, to detect the pathological damage and lipid accumulation in mouse liver tissues. The biochemical and ELISA kits were employed to measure the levels of ALT, AST, TG, TC, LDL-C, HDL-C and pro-inflammatory cytokines within mouse serum or liver tissue. The expression of key proteins of PPARα, fatty acid ß oxidation-related protein, PI3K/Akt and TLR4/JNK signaling pathway was detected by western blot. EbSe significantly downregulated body weight, liver weight and liver lipid accumulation in NAFLD mice and downregulated ALT, AST, TG, TC, LDL-C and increased HDL-C serum levels. EbSe upregulated the expression levels of PPARα and fatty acid ß oxidation-associated proteins CPT1α, ACOX1, UCP2 and PGC1α. EbSe promoted Akt and PI3K phosphorylation, and inhibited TLR4 expression and JNK phosphorylation. EbSe can upregulate PPARα to promote fatty acid ß-oxidation and improve hepatic lipid metabolism. Meanwhile, EbSe also activated PI3K/Akt and inhibited TLR4/JNK signaling pathway. EbSe is predicted to be an effective therapeutic drug for treating NAFLD.


Assuntos
Isoindóis , Metabolismo dos Lipídeos , Fígado , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Compostos Organosselênicos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptor 4 Toll-Like , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptor 4 Toll-Like/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Camundongos , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico , Isoindóis/farmacologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Azóis/farmacologia , Azóis/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Dieta Hiperlipídica , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças
3.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891954

RESUMO

While research has identified several inhibitors of the main protease (Mpro) of SARS-CoV-2, a significant portion of these compounds exhibit reduced activity in the presence of reducing agents, raising concerns about their effectiveness in vivo. Furthermore, the conventional biosafety level 3 (BSL-3) for cellular assays using viral particles poses a limitation for the widespread evaluation of Mpro inhibitor efficacy in a cell-based assay. Here, we established a BSL-1 compatible cellular assay to evaluate the in vivo potential of Mpro inhibitors. This assay utilizes mammalian cells expressing a tagged Mpro construct containing N-terminal glutathione S-transferase (GST) and C-terminal hemagglutinin (HA) tags and monitors Mpro autodigestion. Using this method, GC376 and boceprevir effectively inhibited Mpro autodigestion, suggesting their potential in vivo activity. Conversely, carmofur and ebselen did not exhibit significant inhibitory effects in this assay. We further investigated the inhibitory potential of selenoneine on Mpro using this approach. Computational analyses of binding energies suggest that noncovalent interactions play a critical role in facilitating the covalent modification of the C145 residue, leading to Mpro inhibition. Our method is straightforward, cost-effective, and readily applicable in standard laboratories, making it accessible to researchers with varying levels of expertise in infectious diseases.


Assuntos
Antivirais , Azóis , Proteases 3C de Coronavírus , Isoindóis , Compostos Organosselênicos , Prolina , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/química , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/química , Isoindóis/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Azóis/farmacologia , Azóis/química , Prolina/análogos & derivados , Prolina/farmacologia , Prolina/química , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Células HEK293 , Lactamas , Leucina/análogos & derivados , Ácidos Sulfônicos
4.
Redox Biol ; 73: 103206, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38796864

RESUMO

Fungal keratitis is a severely vision-threatening corneal infection, where the prognosis depends on both fungal virulence and host immune defense. Inappropriate host responses can induce substantial inflammatory damage to the cornea. Therefore, in the treatment of fungal keratitis, it is important to concurrently regulate the immune response while efforts are made to eliminate the pathogen. Ebselen is a widely studied organo-selenium compound and has been demonstrated to have antifungal, antibacterial, anti-inflammatory, and oxidative stress-regulatory properties. The effectiveness of ebselen for the treatment of fungal keratitis remains unknown. In this study, ebselen was demonstrated to produce a marked inhibitory effect on Aspergillus fumigatus (A. fumigatus), including spore germination inhibition, mycelial growth reduction, and fungal biofilm disruption. The antifungal activity of ebselen was related to the cell membrane damage caused by thioredoxin (Trx) system inhibition-mediated oxidative stress. On the contrary, ebselen enhanced the antioxidation of Trx system in mammalian cells. Further, ebselen was proven to suppress the expressions of inflammatory mediators (IL-1ß, IL-6, TNF-α, COX-2, iNOS, and CCL2) and reduce the production of oxidative stress-associated indicators (ROS, NO, and MDA) in fungi-stimulated RAW264.7 cells. In addition, ebselen regulated PI3K/Akt/Nrf2 and p38 MAPK signaling pathways, which contributed to the improvement of inflammation and oxidative stress. Finally, we verified the therapeutic effect of ebselen on mouse fungal keratitis. Ebselen improved the prognosis and reduced the fungal burden in mouse corneas. Expressions of inflammatory mediators, as well as the infiltration of macrophages and neutrophils in the cornea were also obviously decreased by ebselen. In summary, ebselen exerted therapeutic effects by reducing fungal load and protecting host tissues in fungal keratitis, making it a promising treatment for fungal infections.


Assuntos
Anti-Inflamatórios , Antifúngicos , Azóis , Isoindóis , Ceratite , Compostos Organosselênicos , Estresse Oxidativo , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico , Animais , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Azóis/farmacologia , Azóis/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células RAW 264.7 , Antioxidantes/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Infecções Oculares Fúngicas/tratamento farmacológico , Infecções Oculares Fúngicas/microbiologia , Infecções Oculares Fúngicas/metabolismo , Modelos Animais de Doenças
5.
ChemMedChem ; 19(17): e202400063, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38778500

RESUMO

The chemical and biological interest in this element and the molecules bearing selenium has been exponentially growing over the years. Selenium, formerly designated as a toxin, becomes a vital trace element for life that appears as selenocysteine and its dimeric form, selenocystine, in the active sites of selenoproteins, which catalyze a wide variety of reactions, including the detoxification of reactive oxygen species and modulation of redox activities. From the point of view of drug developments, organoselenium drugs are isosteres of sulfur-containing and oxygen-containing drugs with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. This statement is the paramount relevance considering the big number of clinically employed compounds bearing sulfur or oxygen atoms in their structures including nucleosides and carbohydrates. Thus, in this article we have focused on the relevant features of the application of selenium in medicinal chemistry. With the increasing interest in selenium chemistry, we have attempted to highlight the most significant published data on this subject, mainly concentrating the analysis on the last years. In consequence, the recent advances of relevant pharmacological organoselenium compounds are discussed.


Assuntos
Compostos Organosselênicos , Compostos Organosselênicos/química , Compostos Organosselênicos/farmacologia , Humanos , Química Farmacêutica , Estrutura Molecular , Animais , Antioxidantes/química , Antioxidantes/farmacologia
6.
Sci Rep ; 14(1): 12118, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802492

RESUMO

Amyotrophic lateral sclerosis (ALS) selectively affects motor neurons. SOD1 is the first causative gene to be identified for ALS and accounts for at least 20% of the familial (fALS) and up to 4% of sporadic (sALS) cases globally with some geographical variability. The destabilisation of the SOD1 dimer is a key driving force in fALS and sALS. Protein aggregation resulting from the destabilised SOD1 is arrested by the clinical drug ebselen and its analogues (MR6-8-2 and MR6-26-2) by redeeming the stability of the SOD1 dimer. The in vitro target engagement of these compounds is demonstrated using the bimolecular fluorescence complementation assay with protein-ligand binding directly visualised by co-crystallography in G93A SOD1. MR6-26-2 offers neuroprotection slowing disease onset of SOD1G93A mice by approximately 15 days. It also protected neuromuscular junction from muscle denervation in SOD1G93A mice clearly indicating functional improvement.


Assuntos
Esclerose Lateral Amiotrófica , Azóis , Isoindóis , Compostos Organosselênicos , Superóxido Dismutase-1 , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Animais , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Isoindóis/farmacologia , Camundongos , Azóis/farmacologia , Humanos , Camundongos Transgênicos , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
7.
Curr Issues Mol Biol ; 46(3): 2480-2496, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534773

RESUMO

In the present work, we evaluated the antifungal activities of two novel ebselen analogs, N-allyl-benzisoselenazol-3(2H)-one (N-allyl-bs) and N-3-methylbutylbenzisoselenazol-3(2H)-one (N-3mb-bs). Colorimetric and turbidity assays were performed to determine the minimum inhibitory concentration (MIC) of these compounds in S1 (fluconazole-sensitive) and S2 (fluconazole-resistant) strains of C. albicans. N-3mb-bs was more active than the N-allyl-bs compound. It is noteworthy that the concentration of N-3mb-bs observed to inhibit fungal growth by 50% (18.2 µM) was similar to the concentration observed to inhibit the activity of the yeast plasma membrane H+-ATPase (Pma1p) by 50% (19.6 µM). We next implemented a mouse model of vulvovaginal candidiasis (VVC) using the S1 strain and examined the mouse and yeast proteins present in the vaginal lavage fluid using proteomics. The yeast proteins detected were predominately glycolytic enzymes or virulence factors associated with C. albicans while the mouse proteins present in the lavage fluid included eosinophil peroxidase, desmocollin-1, and gasdermin-A. We then utilized the N-3mb-bs compound (12.5 mg/kg) in the mouse VVC model and observed that it significantly reduced the vaginal fungal burden, histopathological changes in vagina tissue, and expression of myeloperoxidase (MPO). All in all, the present work has identified a potentially promising drug candidate for VVC treatment.

8.
Toxicol Mech Methods ; 34(1): 1-12, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37731353

RESUMO

Mercury is a ubiquitous environmental contaminant and can be found in inorganic (Hg0, Hg+ and Hg2+) and organic forms (chiefly CH3Hg+ or MeHg+). The main route of human, mammals and bird exposure occurs via predatory fish ingestion. Occupational exposure to Hg0 (and Hg2+) can also occur; furthermore, in gold mining areas the exposure to inorganic Hg can also be high. The toxicity of electrophilic forms of Hg (E+Hg) is mediated by disruption of thiol (-SH)- or selenol (-SeH)-containing proteins. The therapeutic approaches to treat methylmercury (MeHg+), Hg0 and Hg2+ are limited. Here we discuss the potential use of ebselen as a potential therapeutic agent to lower the body burden of Hg in man. Ebselen is a safe drug for humans and has been tested in clinical trials (for instance, brain ischemia, noise-induce hearing loss, diabetes complications, bipolar disorders) at doses varying from 400 to 3600 mg per day. Two clinical trials with ebselen in moderate and severe COVID are also approved. Ebselen can be metabolized to an intermediate with -SeH (selenol) functional group, which has a greater affinity to electrophilic Hg (E+Hg) forms than the available thiol-containing therapeutic agents. Accordingly, as observed in vitro and rodent models in vivo, Ebselen exhibited protective effects against MeHg+, indicating its potential as a therapeutic agent to treat MeHg+ overexposure. The combined use of ebselen with thiol-containing molecules (e.g. N-acetylcysteine and enaramide)) is also commented, because they can have synergistic protective effects against MeHg+.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Animais , Humanos , Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade , Compostos de Metilmercúrio/metabolismo , Azóis/uso terapêutico , Compostos de Sulfidrila , Mamíferos/metabolismo
9.
Eur J Pharm Biopharm ; 195: 114170, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128743

RESUMO

Respiratory tract infections (RTIs) are one of the leading causes of death globally, lately exacerbated by the increasing prevalence of antimicrobial resistance. While antimicrobial resistance could be overcome by developing new antimicrobial agents, the use of a safe repurposed agent having potent antimicrobial activity against various RTIs can be an efficient and cost-effective alternative to overcome the long and complex process of developing and testing new drugs. Ebselen, a synthetic organoselenium drug originally developed to treat noise-inducing hearing problems, has shown promising antimicrobial activity in vitro against several respiratory pathogens including viruses (e.g., SARS-CoV-2, influenza A virus) and bacteria (e.g., Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). Inhaled drug delivery is considered a promising approach for treating RTIs, as it can ensure effective drug concentrations at a lower dose, thereby minimizing the side effects that are often encountered by using oral or injectable drugs. In this study, we developed inhalable ebselen dry powder formulations using a spray-drying technique. The amino acids leucine, methionine, and tryptophan were incorporated with ebselen to enhance the yield and aerosolization of the dry powders. The amino acid-containing ebselen dry powders showed a better yield (37-56.4 %) than the amino acid-free formulation (30.9 %). All dry powders were crystalline in nature. The mass median aerodynamic diameter (MMAD) was less than 5 µm for amino acids containing dry powders (3-4 µm) and slightly higher (5.4 µm) for amino acid free dry powder indicating their suitability for inhalation. The aerosol performance was higher when amino acids were used, and the leucine-containing ebselen dry powder showed the highest emitted dose (84 %) and fine particle fraction (68 %). All amino acid formulations had similar cytotoxicity as raw ebselen, tested in respiratory cell line (A549 cells), with half-maximal inhibitory concentrations (IC50) between 100 and 250 µg/mL. Raw ebselen and amino acid-containing dry powders showed similar potent antibacterial activity against the Gram-positive bacteria S. aureus and S. pneumoniae with minimum inhibitory concentrations of 0.31 µg/mL and 0.16 µg/mL, respectively. On the other hand, raw ebselen and the formulations showed limited antimicrobial activity against the Gram-negative pathogens Pseudomonas aeruginosa and Klebsiella pneumoniae. In summary, in this study we were able to develop amino-acid-containing inhalable dry powders of ebselen that could be used against different respiratory pathogens, especially Gram-positive bacteria, which could ensure more drug deposition in the respiratory tract, including the lungs. DPIs are generally used to treat lung (lower respiratory tract) diseases. However, DPIs can also be used to treat both upper and lower RTIs. The deposition of the dry powder in the respiratory tract is dependent on its physicochemical properties and this properties can be modulated to target the intended site of infection (upper and/or lower respiratory tract). Further studies will allow the development of similar formulations of individual and/or combination of antimicrobials that could be used to inhibit a number of respiratory pathogens.


Assuntos
Anti-Infecciosos , Isoindóis , Compostos Organosselênicos , Infecções Respiratórias , Humanos , Pós/química , Leucina , Staphylococcus aureus , Reposicionamento de Medicamentos , Inaladores de Pó Seco/métodos , Aerossóis e Gotículas Respiratórios , Administração por Inalação , Infecções Respiratórias/tratamento farmacológico , Anti-Infecciosos/uso terapêutico , Tamanho da Partícula
10.
Amino Acids ; 55(12): 1981-1989, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37971575

RESUMO

The conjugation of active biomolecules provides insight into their bioreactivity, leading to many applications in biotechnology and materials science. Herein, we report L-selenocystine (SeC) bioconjugates of lipoic acid (universal antioxidant) and biotin (Vitamin-H). The SeC-bioconjugates, SeC-Biotin (1) and SeC-Lipoic acid (2) were synthesized using solid phase peptide synthesis (SPPS) method and were characterized by multinuclear 1D (1H, 13C, 77Se) and 2D (1H-1H COSY and 1H-13C TOCSY) NMR spectroscopy, ESI-MS spectrometry, and RP-HPLC. The GPx-like enzyme mimicking activity of the SeC-bioconjugates 1 and 2 has been investigated through the coupled reductase assay method for the catalytic reductions of hydrogen peroxide into water. A significant enhancement in GPx-like enzymatic activity was observed for both novel bioconjugates SeC-Biotin (1) and SeC-Lipoic acid (2) as compared to diphenyl diselenide (Ph2Se2), L-selenocystine (SeC), biotin, lipoic acid, and ebselen.


Assuntos
Compostos Organosselênicos , Ácido Tióctico , Ácido Tióctico/química , Biotina , Glutationa Peroxidase , Compostos Organosselênicos/química , Antioxidantes/química , Glutationa/química
11.
Bioorg Med Chem ; 96: 117531, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972434

RESUMO

The main protease (Mpro) represents one of the most effective and attractive targets for designing anti-SARS-CoV-2 drugs. In this study, we designed and synthesized a novel series of Ebselen derivatives by incorporating privileged fragments from different pockets of the Mpro active site. Among these compounds, 11 compounds showed submicromolar activity in the FRET-based SARS-CoV-2 Mpro inhibition assay, with IC50 values ranging from 233 nM to 550 nM. Notably, compound 3a displayed submicromolar Mpro activity (IC50 = 364 nM) and low micromolar antiviral activity (EC50 = 8.01 µM), comparable to that of Ebselen (IC50 = 339 nM, EC50 = 3.78 µM). Time-dependent inhibition assay confirmed that these compounds acted as covalent inhibitors. Taken together, our optimization campaigns thoroughly explored the structural diversity of Ebselen and verified the impact of specific modifications on potency against Mpro.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Azóis/farmacologia , Relação Estrutura-Atividade , Inibidores de Proteases/farmacologia , Antivirais/farmacologia , Simulação de Acoplamento Molecular
12.
Int. microbiol ; 26(4): 693-704, Nov. 2023. graf, ilus
Artigo em Inglês | IBECS | ID: ibc-227463

RESUMO

Aim of the study: The rising instances of multidrug-resistant pathogens are rapidly evolving into a global healthcare crisis. Identifying new ways of synthesis of antibiotics is both time-consuming and expensive. Repurposing existing drugs for the treatment of such antimicrobial-resistant pathogens has also been explored. Methods and results: In the current study, ebselen was screened for antibacterial and antibiofilm activity against Serratia marcescens. Various antibacterial studies such as minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill curves, intracellular reactive oxygen species (ROS) quantification, and colony-forming unit assays were performed. The antibiofilm potential was assayed by biofilm inhibition, cell surface hydrophobicity assay, eradication, quantification of extracellular DNA (eDNA), and extracellular polymeric substance (EPS) layer and scanning electron microscopy (SEM) analysis were performed. Anti-quorum sensing assay was validated by quantifying the virulence factors production. Further molecular docking of ebselen with two quorum sensing (QS) specific proteins was also carried out. Antibacterial susceptibility tests showed potent antimicrobial activity of ebselen against S. marcescens with MIC50 of 14 μg/mL. Ebselen’s ability to disturb the redox environment by inducing significant ROS generation led to bacterial death. It also showed concentration-dependent bactericidal activity as indicated by reduced bacterial growth and colony-forming unit propagation. Ebselen was also found to prevent biofilm attachment by altering the cell surface hydrophobicity while also being effective against preformed biofilms as validated by scanning electron microscopy (SEM) analysis. Additionally, ebselen showed reduced virulence factors like urease enzyme activity and prodigiosin pigment production indicating its promising anti-quorum sensing potential...(AU)


Assuntos
Humanos , Masculino , Feminino , Serratia marcescens , Biofilmes , Antibacterianos , Microbiologia , Técnicas Microbiológicas , Infecções Bacterianas/tratamento farmacológico
13.
Biol Trace Elem Res ; 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37803188

RESUMO

Selenium (Se) is an essential trace element for human health and plays an important role in the development and maintenance of central nervous system functions. Se deficiency has been associated with cognitive decline and increased oxidative stress. The increase in oxidative stress is one of the hypotheses for the emergence and worsening of neurodegenerative diseases, such as Alzheimer's disease (AD). To investigate the neuroprotective effects of organic Se compounds in human neuroblastoma cells (SH-SY5Y) differentiated into cholinergic neurons-like. The SH-SY5Y cells were differentiated into cholinergic neuron-like with retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). AD was mimicked exposing the cells to okadaic acid (OA) and beta-amyloid protein (Aß). The neuroprotective effect of organic Se compounds, selenomethionine (SeMet) and Ebselen, was evaluated through cell viability tests, acetylcholinesterase and antioxidant enzyme activities, and detection of reactive oxygen species (ROS). None of the SeMet concentrations tested protected against the toxic effect of OA + Aß. On the other hand, previous exposure to 0.1 and 1 µM Ebselen protected cells from the toxic effect of OA + Aß. Cell differentiation induced by RA and BDNF exposure was effective, showing characteristics of neuronal cells, and pointing to a promising model of AD. Ebselen showed a protective effect, but more studies are needed to identify the mechanism of action.

14.
Comput Biol Chem ; 107: 107956, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37748316

RESUMO

The main protease (Mpro) of the novel coronavirus SARS-CoV-2 is a key target for developing antiviral drugs. Ebselen (EbSe) is a selenium-containing compound that has been shown to inhibit Mpro in vitro by forming a covalent bond with the cysteine (Cys) residue in the active site of the enzyme. However, EbSe can also bind to other proteins, like albumin, and low molecular weight compounds that have free thiol groups, such as Cys and glutathione (GSH), which may affect its availability and activity. In this study, we analyzed the Mpro interaction with EbSe, its analogues, and its metabolites with Cys, GSH, and albumin by molecular docking. We also simulated the electronic structure of the generated molecules by density functional theory (DFT) and explored the stability of EbSe and one of its best derivatives, EbSe-2,5-MeClPh, in the catalytic pocket of Mpro through covalent docking and molecular dynamics. Our results show that EbSe and its analogues bound to GSH/albumin have larger distance between the selenium atom of the ligands and the sulfur atom of Cys145 of Mpro than the other compounds. This suggests that EbSe and its GSH/albumin-analogues may have less affinity for the active site of Mpro. EbSe-2,5-MeClPh was found one of the best molecules, and in molecular dynamics simulations, it showed to undergo more conformational changes in the active site of Mpro, in relation to EbSe, which remained stable in the catalytic pocket. Moreover, this study also reveals that all compounds have the potential to interact closely with the active site of Mpro, providing us with a concept of which derivatives may be promising for in vitro analysis in the future. We propose that these compounds are potential covalent inhibitors of Mpro and that organoselenium compounds are molecules that should be studied for their antiviral properties.


Assuntos
COVID-19 , Compostos Organosselênicos , Selênio , Humanos , Domínio Catalítico , Simulação de Acoplamento Molecular , SARS-CoV-2 , Albuminas , Azóis/farmacologia , Cisteína , Glutationa , Simulação de Dinâmica Molecular , Compostos Organosselênicos/farmacologia , Peptídeo Hidrolases , Inibidores de Proteases , Antivirais/farmacologia
15.
Pharmaceutics ; 15(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37765198

RESUMO

There is a continuous effort to develop efficient treatments for coronavirus disease 2019 (COVID-19) and other viral respiratory diseases. Among the different strategies, inhaled treatment is considered one of the most logical and efficient approaches to treating COVID-19, as the causative "SARS-CoV-2 virus RNA" predominantly infects the respiratory tract. COVID-19 treatments initially relied on repurposed drugs, with a few additional strategies developed during the last two years, and all of them are based on monotherapy. However, drug combinations have been found to be more effective than monotherapy in other viral diseases such as HIV, influenza, and hepatitis C virus. In the case of SARS-CoV-2 infection, in vitro studies have shown synergistic antiviral activity combining remdesivir with ebselen, an organoselenium compound. Therefore, these drug combinations could ensure better therapeutic outcomes than the individual agents. In this study, we developed a dry powder formulation containing remdesivir and ebselen using a spray-drying technique and used L-leucine as an aerosolization enhancer. The prepared dry powders were spherical and crystalline, with a mean particle size between 1 and 3 µm, indicating their suitability for inhalation. The emitted dose (ED) and fine particle fraction (FPF) of remdesivir- and ebselen-containing dry powders were ~80% and ~57% when prepared without L-leucine. The ED as well as the FPF significantly increased with values of >86% and >67%, respectively, when L-leucine was incorporated. More importantly, the single and combinational dry powder of remdesivir and ebselen showed minimal cytotoxicity (CC50 > 100 µM) in Calu-3 cells, retaining their anti-SARS-CoV-2 properties (EC50 2.77 to 18.64 µM). In summary, we developed an inhalable dry powder combination of remdesivir and ebselen using a spray-drying technique. The spray-dried inhalable microparticles retained their limited cytotoxicity and specific antiviral properties. Future in vivo studies are needed to verify the potential use of these remdesivir/ebselen combinational spray-dried inhalable microparticles to block the SARS-CoV-2 replication in the respiratory tract.

16.
Molecules ; 28(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764247

RESUMO

Ebselen is a glutathione (GSH) peroxidase (GPx) mimic originally developed to reduce reactive oxygen species (ROS). However, little is known about its cytotoxicological effects on lung cells. Therefore, this study aimed to investigate the effects of Ebselen on the cell growth and cell death of A549 lung cancer cells, Calu-6 lung cancer cells, and primary normal human pulmonary fibroblast (HPF) cells in relation to redox status. The results showed that Ebselen inhibited the growth of A549, Calu-6, and HPF cells with IC50 values of approximately 12.5 µM, 10 µM, and 20 µM, respectively, at 24 h. After exposure to 15 µM Ebselen, the proportions of annexin V-positive cells were approximately 25%, 65%, and 10% in A549, Calu-6, and HPF cells, respectively. In addition, Ebselen induced arrest at the S phase of the cell cycle in A549 cells and induced G2/M phase arrest in Calu-6 cells. Treatment with Ebselen induced mitochondrial membrane potential (MMP; ΔΨm) loss in A549 and Calu-6 cells. Z-VAD, a pan-caspase inhibitor, did not decrease the number of annexin V-positive cells in Ebselen-treated A549 and Calu-6 cells. Intracellular ROS levels were not significantly changed in the Ebselen-treated cancer cells at 24 h, but GSH depletion was efficiently induced in these cells. Z-VAD did not affect ROS levels or GSH depletion in Ebselen-treated A549 or Ebselen-treated Calu-6 cells. In conclusion, Ebselen inhibited the growth of lung cancer and normal fibroblast cells and induced cell cycle arrest and cell death in lung cancer cells with GSH depletion.


Assuntos
Apoptose , Neoplasias Pulmonares , Humanos , Espécies Reativas de Oxigênio/metabolismo , Anexina A5 , Linhagem Celular Tumoral , Morte Celular , Glutationa/metabolismo , Pontos de Checagem do Ciclo Celular , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Pulmão/metabolismo , Proliferação de Células
17.
Mini Rev Med Chem ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37711004

RESUMO

Ebselen is a selenoorganic chiral compound with antioxidant properties comparable to glutathione peroxidase. It is also known as 2-phenyl-1,2-benzisoselenazol-3(2H)-one. In studies examining its numerous pharmacological activities, including antioxidant, anticancer, antiviral, and anti-Alzheimer's, ebselen has demonstrated promising results. This review's primary objective was to emphasize the numerous synthesis pathways of ebselen and their efficacy in fighting cancer. The data were collected from multiple sources, including Scopus, PubMed, Google Scholar, Web of Science, and Publons. The starting reagents for the synthesis of ebselen are 2-aminobenzoic acid and N-phenyl benzamide. It was discovered that ebselen has the ability to initiate apoptosis in malignant cells and prevent the formation of new cancer cells by scavenging free radicals. In addition, ebselen increases tumor cell susceptibility to apoptosis by inhibiting TNF-α mediated NF-jB activation. Ebselen can inhibit both doxorubicin and daunorubicin-induced cardiotoxicity. Allopurinol and ebselen administered orally can be used to suppress renal ototoxicity and nephrotoxicity. Due to excessive administration, diclofenac can induce malignancy of the gastrointestinal tract, which ebselen can effectively suppress. Recent research has demonstrated ebselen to inhibit viral function by binding to cysteine-containing catalytic domains of various viral proteases. It was discovered that ebselen could inhibit the catalytic dyad function of Mpro by forming an irreversible covalent bond between Se and Cys145, thereby altering protease function and inhibiting SARS-CoV-2. Ebselen may also inhibit the activation of endosomal NADPH oxidase of vascular endothelial cells, which is believed to be required for thrombotic complications in COVID-19. In this review, we have included various studies conducted on the anticancer effect of ebselen as well as its inhibition of SARS-CoV-2.

18.
Nanomedicine (Lond) ; 18(18): 1195-1206, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37724540

RESUMO

Background: Vulvovaginal candidiasis is primarily caused by Candida albicans (C. albicans). Here, a novel organoselenium compound (G20) was synthesized and evaluated for anti-Candida activity. Methods: Growth-inhibition studies and medium acidification assays to assess the inhibition of the yeast plasma membrane H+-ATPase (Pma1p) were carried out in vitro using G20. A self-nanoemulsifying formulation (SNEP) of G20 was prepared and evaluated for antimycotic activity in a mouse model. Results: G20 inhibited the growth of C. albicans through a mechanism that, at least in part, involves the inhibition of Pma1p. The G20-SNEP formulation significantly reduced vaginal colonization and vaginal inflammation relative to yeast-infected but untreated control mice. Conclusion: G20-SNEP exhibits potent antimycotic activity in a mouse model of vulvovaginal candidiasis.


Assuntos
Candidíase Vulvovaginal , Feminino , Humanos , Camundongos , Animais , Candidíase Vulvovaginal/tratamento farmacológico , Isoindóis , Azóis/farmacologia , Azóis/uso terapêutico , Candida albicans , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico
19.
Front Pharmacol ; 14: 1233184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37767398

RESUMO

Antioxidants have been proposed as a treatment for diseases of the central nervous system. However, few studies actually studied their effects in the brain. To test central actions of antioxidants, we used the lithium-pilocarpine (Li-Pilo) model of status epilepticus (SE) in the rat in which seizures are accompanied by significant oxidative stress. We used in vivo microdialysis to determine isoprostane levels during SE in real time and brain homogenates for other measures of oxidative stress. Six different antioxidants were tested in acute and preventive experiments (vitamin C, vitamin E, ebselen, resveratrol, n-tert-butyl-α-phenylnitrone and coenzyme Q10). None of the antioxidants had an effect when given acutely during SE. In contrast, when antioxidants were given for 3 days prior to seizure induction, vitamins C and E reduced isoprostane formation by 58% and 65%, respectively. Pretreatment with the other antioxidants was ineffective. In brain homogenates prepared after 90 min of seizures, SE decreased the ratio of reduced vs. oxidized glutathione (GSH/GSSG ratio) from 60.8 to 7.50 and caused a twofold increase of 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels and protein carbonyls. Pretreatment with vitamin C or vitamin E mitigated these effects and increased the GSH/GSSG ratio to 23.9 and 28.3, respectively. Again, the other antioxidants were not effective. We conclude that preventive treatment with vitamin C or vitamin E ameliorates seizure-induced oxidative damage in the brain. Several well-studied antioxidants were inactive, possibly due to limited brain permeability or a lack of chain-breaking antioxidant activity in hydrophilic compounds.

20.
Vaccines (Basel) ; 11(7)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37515038

RESUMO

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was the causative agent of the COVID-19 pandemic, a global public health problem. Despite the numerous studies for drug repurposing, there are only two FDA-approved antiviral agents (Remdesivir and Nirmatrelvir) for non-hospitalized patients with mild-to-moderate COVID-19 symptoms. Consequently, it is pivotal to search for new molecules with anti-SARS-CoV-2 activity and to study their effects in the human immune system. Ebselen (Eb) is an organoselenium compound that is safe for humans and has antioxidant, anti-inflammatory, and antimicrobial properties. Diphenyl diselenide ((PhSe)2) shares several pharmacological properties with Eb and is of low toxicity to mammals. Herein, we investigated Eb and (PhSe)2 anti-SARS-CoV-2 activity in a human pneumocytes cell model (Calu-3) and analyzed their toxic effects on human peripheral blood mononuclear cells (PBMCs). Both compounds significantly inhibited the SARS-CoV-2 replication in Calu-3 cells. The EC50 values for Eb and (PhSe)2 after 24 h post-infection (hpi) were 3.8 µM and 3.9 µM, respectively, and after 48 hpi were 2.6 µM and 3.4 µM. These concentrations are safe for non-infected cells, since the CC50 values found for Eb and (PhSe)2 on Calu-3 were greater than 200 µM. Importantly, the concentration rates tested on viral replication were not toxic to human PBMCs. Therefore, our findings reinforce the efficacy of Eb and demonstrate (PhSe)2 as a new candidate to be tested in future trials against SARS-CoV-2 infection/inflammation conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA