Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Immunol ; 15: 1379471, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055712

RESUMO

Since the discovery of specific immune memory in invertebrates, researchers have investigated its immune response to diverse microbial and environmental stimuli. Nevertheless, the extent of the immune system's interaction with metabolism, remains relatively enigmatic. In this mini review, we propose a comprehensive investigation into the intricate interplay between metabolism and specific immune memory. Our hypothesis is that cellular endocycles and epigenetic modifications play pivotal roles in shaping this relationship. Furthermore, we underscore the importance of the crosstalk between metabolism and specific immune memory for understanding the evolutionary costs. By evaluating these costs, we can gain deeper insights into the adaptive strategies employed by invertebrates in response to pathogenic challenges. Lastly, we outline future research directions aimed at unraveling the crosstalk between metabolism and specific immune memory. These avenues of inquiry promise to illuminate fundamental principles governing host-pathogen interactions and evolutionary trade-offs, thus advancing our understanding of invertebrate immunology.


Assuntos
Epigênese Genética , Interações Hospedeiro-Patógeno , Memória Imunológica , Invertebrados , Animais , Invertebrados/imunologia , Interações Hospedeiro-Patógeno/imunologia , Evolução Biológica , Imunidade Inata
2.
J Exp Biol ; 227(Suppl_1)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38449328

RESUMO

Whether specific immune protection after initial pathogen exposure (immune memory) occurs in invertebrates has long been uncertain. The absence of antibodies, B-cells and T-cells, and the short lifespans of invertebrates led to the hypothesis that immune memory does not occur in these organisms. However, research in the past two decades has supported the existence of immune memory in several invertebrate groups, including Ctenophora, Cnidaria, Nematoda, Mollusca and Arthropoda. Interestingly, some studies have demonstrated immune memory that is specific to the parasite strain. Nonetheless, other work does not provide support for immune memory in invertebrates or offers only partial support. Moreover, the expected biphasic immune response, a characteristic of adaptive immune memory in vertebrates, varies within and between invertebrate species. This variation may be attributed to the influence of biotic or abiotic factors, particularly parasites, on the outcome of immune memory. Despite its critical importance for survival, the role of phenotypic plasticity in immune memory has not been systematically examined in the past two decades. Additionally, the features of immune responses occurring in diverse environments have yet to be fully characterized.


Assuntos
Artrópodes , Memória Imunológica , Animais , Invertebrados , Adaptação Fisiológica , Anticorpos
3.
Conserv Physiol ; 12(1): coad106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38293639

RESUMO

The Pace-of-Life syndrome proposes that behavioural, physiological and immune characteristics vary along a slow-fast gradient. Urbanization poses several physiological challenges to organisms. However, little is known about how the health status of frogs is affected by urbanization in the Tropics, which have a faster and more recent urbanization than the northern hemisphere. Here, we analysed a suite of physiological variables that reflect whole organism health, reproduction, metabolic and circulatory physiology and leukocyte responses in Leptodactylus podicipinus. Specifically, we tested how leukocyte profile, erythrocyte morphometrics and germ cell density, as well as somatic indices and erythrocyte nuclear abnormalities differ throughout the adult life span between urban and rural populations. We used Phenotypic Trajectory Analysis to test the effect of age and site on each of the multivariate data sets; and a Generalised Linear Model to test the effect of site and age on nuclear abnormalities. Somatic indices, erythrocyte nuclear abnormalities, erythrocyte morphometrics and leukocyte profile differed between populations, but less so for germ cell density. We found a large effect of site on nuclear abnormalities, with urban frogs having twice as many abnormalities as rural frogs. Our results suggest that urban frogs have a faster pace of life, but the response of phenotypic compartments is not fully concerted.

4.
Glob Chang Biol ; 30(1): e17145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273516

RESUMO

Human activity changes multiple factors in the environment, which can have positive or negative synergistic effects on organisms. However, few studies have explored the causal effects of multiple anthropogenic factors, such as urbanization and invasive species, on animals and the mechanisms that mediate these interactions. This study examines the influence of urbanization on the detrimental effect of invasive avian vampire flies (Philornis downsi) on endemic Darwin's finches in the Galápagos Islands. We experimentally manipulated nest fly abundance in urban and non-urban locations and then characterized nestling health, fledging success, diet, and gene expression patterns related to host defense. Fledging success of non-parasitized nestlings from urban (79%) and non-urban (75%) nests did not differ significantly. However, parasitized, non-urban nestlings lost more blood, and fewer nestlings survived (8%) compared to urban nestlings (50%). Stable isotopic values (δ15 N) from urban nestling feces were higher than those from non-urban nestlings, suggesting that urban nestlings are consuming more protein. δ15 N values correlated negatively with parasite abundance, which suggests that diet might influence host defenses (e.g., tolerance and resistance). Parasitized, urban nestlings differentially expressed genes within pathways associated with red blood cell production (tolerance) and pro-inflammatory response (innate immunological resistance), compared to parasitized, non-urban nestlings. In contrast, parasitized non-urban nestlings differentially expressed genes within pathways associated with immunoglobulin production (adaptive immunological resistance). Our results suggest that urban nestlings are investing more in pro-inflammatory responses to resist parasites but also recovering more blood cells to tolerate blood loss. Although non-urban nestlings are mounting an adaptive immune response, it is likely a last effort by the immune system rather than an effective defense against avian vampire flies since few nestlings survived.


Assuntos
Tentilhões , Muscidae , Parasitos , Animais , Humanos , Tentilhões/parasitologia , Equador
5.
Philos Trans R Soc Lond B Biol Sci ; 378(1882): 20220118, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37305916

RESUMO

Testosterone (T) regulates immune function, with both immunostimulatory and immunosuppressive effects on several vertebrates. We investigated the covariation between plasma T and corticosterone (CORT) levels and immunity (plasma bacterial killing ability (BKA), and neutrophil to lymphocyte ratio (NLR)) in free-living Rhinella icterica male toads inside and outside the reproductive season. We found an overall positive correlation between steroids and immune traits, with toads during the reproductive season displaying increased T, CORT and BKA. We also investigated the T transdermal application effects on T, CORT, phagocytosis of blood cells, BKA and NLR in captive toads. Toads were treated with T (1, 10 or 100 µg) or vehicle (sesame oil) for eight consecutive days. Animals were bled on the first and eighth days of treatment. Increased plasma T was observed on the first and last day of T-treatment, while increased BKA was observed following all T doses on the last day, with a positive correlation between T and BKA. Plasma CORT, NLR and phagocytosis increased on the last day for all T-treated and vehicle groups. Overall, we demonstrated a positive covariation between T and immune traits in the field and T-induced augmented BKA in captive toads, indicating a T immunoenhancing effect in R. icterica males. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.


Assuntos
Imunomodulação , Testosterona , Masculino , Animais , Imunização , Corticosterona , Fagocitose
6.
Philos Trans R Soc Lond B Biol Sci ; 378(1882): 20220119, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37305919

RESUMO

Glucocorticoid (GC) release is triggered by adverse stimuli that activate the hypothalamus-pituitary-adrenal/interrenal axis. Glucocorticoids may enhance or suppress immune functions depending on the level of elevation. In this study, we investigated the effects of transient and chronic increase of corticosterone (CORT) on the wound healing of the American bullfrog. Frogs were submitted to a daily transdermal hormonal application that acutely elevated CORT plasma levels, or vehicle as a control. Other frogs were surgically implanted with a silastic tube filled with CORT that resulted in chronic elevation of CORT plasma levels or received empty implants as a control. A dermal biopsy was performed to create a wound and was photographed every 3 days. Individuals treated with transdermal CORT started healing faster than their control 32 days after the biopsy. Frogs that received CORT implants tended to heal slower than control subjects. Plasma bacterial killing ability was not affected by treatment, which reinforces the constitutive nature of this innate immune trait. By the end of the experiment, frogs from the acute CORT treatment had smaller wounds compared with those receiving the CORT-filled implants, highlighting the differential effects of acute (immunoenhancing) and chronic (immunosuppressive) elevation of CORT plasma levels. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.


Assuntos
Corticosterona , Glucocorticoides , Humanos , Estados Unidos , Animais , Corticosterona/farmacologia , Rana catesbeiana , Anuros , Sistema Hipotálamo-Hipofisário
7.
Sci Total Environ ; 870: 161915, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36736413

RESUMO

Accumulating reports of negative impacts of tourist activities on wildlife emphasize the importance of closely monitoring focal populations. Although some effects are readily noticed, more subtle ones such as changes in physiological functions of individuals might go overlooked. Based on evidence of altered physiology associated with ecotourism on Magellanic penguins Spheniscus magellanicus, here we performed an integrated assessment using a diverse physiological toolkit together with more traditional fitness-related measures to better understand mechanisms and potential consequences. Chicks exposed to tourism showed altered immune parameters and elevated flea prevalence, reinforcing previous findings. Tourism-exposed female, but not male, chicks also showed relatively lower hematocrit and plasma protein levels, providing evidence consistent with a sex-specific response to tourist visitation. Physiological alterations detected in tourism-exposed young chicks (week 1-2) were maintained and the effect on flea infestation increased during the study period (week 4-5 of post-hatch). Despite the effects on physiology, these did not seem to translate into immediate fitness costs. No detectable tourism effects were found on brood sex ratios, chick growth and body condition, and survival until week 5-6 post-hatch. We detected no effects on reproductive output and only a marginal effect on nest survival during incubation despite previous reports of tourism-associated alterations in stress indices of adults. This disconnection could result if the physiological changes are not strong enough to impact fitness, if effects balance each other out, or if changes are part of a copying strategy. Alternatively, the physiological alterations might only show impacts later in the brooding cycle or even after chick emancipation from their parents. Our results suggest that integrative monitoring of potential anthropogenic impacts on wildlife should include evaluation of physiological mechanisms and individual-level responses in populations exposed to human activities.


Assuntos
Spheniscidae , Animais , Masculino , Humanos , Feminino , Spheniscidae/fisiologia , Animais Selvagens/fisiologia , Reprodução , Proteínas Sanguíneas , Turismo
8.
Dev Comp Immunol ; 138: 104528, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36067906

RESUMO

Invertebrates' immune priming or innate immune memory is an analogous response to the vertebrates' adaptive memory. We investigated if honey bees have immune memory. We compared survival and immune response between bees that were: 1) manipulated (Naïve), 2) challenged twice with the same pathogen Escherichia coli (Memory), 3) challenged twice with different pathogens (Staphylococcus aureus versus E. coli, Micrococcus lysodeikticus versus E. coli), or 4) with PBS (the diluent of bacteria) versus E. coli (heterologous challenge; Control). Results indicate better survival in the Memory than the Control group, and the Memory group showed a similar survival than Naïve insects. The Memory group had higher lytic activity but lower prophenoloxidase, phenoloxidase activity, and hemocyte count than the Control and Naïve groups. No differences were found in relative expression of defensin-1. This first demonstration of immune memory opens the questions about its molecular mechanisms and whether, immune memory could be used against natural parasites that affect honey bees, hence, if they could be "vaccinated" against some natural parasites.


Assuntos
Escherichia coli , Monofenol Mono-Oxigenase , Animais , Abelhas , Defensinas , Escherichia coli/metabolismo , Hemócitos/metabolismo , Memória Imunológica , Monofenol Mono-Oxigenase/metabolismo
9.
Biol Trace Elem Res ; 200(2): 800-811, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33840055

RESUMO

Mining is one of the main activities that drive the economy of Brazil. Mining activity is associated with risk of contamination of environment and local fauna by metals. Amphibians have a life cycle that requires a transition between aquatic and terrestrial environments, increasing their vulnerability to metal contamination in the water and substrate. Metals are ubiquitous, with high bioaccumulative and biomagnifying potential, and may lead to immune and endocrine disruption. In this study, we analyzed two different components of the innate immune response, bacterial killing ability (BKA) and phytohemagglutinin edema (PHA), and two stress biomarkers, corticosterone plasma levels (CORT) and the neutrophil to lymphocyte ratio (N:L), of toads (Rhinella diptycha) living in places contaminated by metals. Blood samples were collected pre- and post-restraint (1h), followed by an immune challenge with PHA and tissue collection (liver, spleen, and kidneys). Toads liver metal bioaccumulation did not correlate with the immune response or stress biomarkers. Post-restraint, animals had increased CORT and reduced BKA, independently of the collection site, and these variables were not correlated with liver metal bioaccumulation. Interestingly, toads with the larger spleen (immune organ) showed increased N:L post-restraint and greater edema after the PHA challenge. Our results indicate that toads living in metal-contaminated environments responded to acute stressor, activating the hypothalamic-pituitary-interrenal axis and the immune response. Keep tracking the physiological variables of these animals and the presence of metals in the environment and tissues should provide valuable health status indicators for the population, which is vital for proposing amphibian conservation strategies in these areas.


Assuntos
Bufonidae , Corticosterona , Animais , Linfócitos , Neutrófilos , Restrição Física , Estresse Fisiológico
10.
Brain Behav Immun Health ; 13: 100230, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34589745

RESUMO

In the last decades, it is growing the idea that stress-induced immunomodulation is bimodal: with acute stress associated with enhancing effects while chronic stress with suppressive effects. However, the immune-endocrine interactions and its implications are often overlooked in ectotherms. We investigated the impact of corticosterone (CORT) treatment and short-term stressors on CORT plasma levels and the immunity of male toads (Rhinella icterica), using three distinct protocols: restraint, immune challenge (with lipopolysaccharide, LPS), and CORT transdermal application (TA). Our results showed increased CORT and neutrophil: lymphocyte ratio (NLR) regardless of the stress input (restraint, LPS challenge) or CORT TA. In the meantime, the bacterial killing ability (BKA) was not affected by any treatment, suggesting this immune parameter might be a more constitutive and robust response. Interestingly, the cellular immune response showed distinct patterns. Increased phagocytosis of blood leukocytes and phytohemagglutinin edema followed LPS and CORT TA (15 â€‹µg), respectively. In contrast, the phagocytosis of peritoneal leukocytes decreased after CORT TA (1 and 10 â€‹µg), indicating that short-term increases in CORT levels might impair local immune function. Such differences in cellular immunity might also be associated with CORT doses or the interaction between CORT and other immune mediators, such as melatonin, testosterone, and cytokines. Overall, our results highlight the immune-enhancing effects of the acute stress response and CORT TA, and the complexity of the immune-endocrine interaction in anurans. It also highlights the relevance of investigating distinct contexts for CORT increase arising from different situations, as well as diverse immune components for a better understanding of the stress-induced immunomodulation.

11.
J Exp Zool A Ecol Integr Physiol ; 335(6): 541-551, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018702

RESUMO

The inflammatory response is a complex process that relies on interactions among multiple endocrine and immune modulators. Studies incorporating time-related and integrative endocrine and immune responses to an immune challenge might shed light on the characterization of the phases of the inflammatory response in anurans. The present study investigated time-related changes (1, 3, 6, and 18 h post-challenge) in plasma corticosterone (CORT), melatonin (MEL) and testosterone (T) levels, phagocytosis percentage (PP), plasma bacterial killing ability (BKA), and neutrophil to lymphocyte ratio (NLR) following a lipopolysaccharide (LPS) immune challenge in Rhinella diptycha toads. Our results showed the response to LPS injection was characterized by increased CORT, PP, BKA, and NLR, with a concomitant decrease in plasma MEL and T. Increased CORT was more pronounced at 6 and 18 h, while increased NLR was observed only 18 h post-LPS injection. Meanwhile, plasma MEL and T decreased independently of the time post-LPS injection. Additionally, toads in better body condition showed higher BKA and PP in the LPS-treated group, regardless of the time postinjection. Our results show that toads (R. diptycha) were sensitive to the LPS challenge, mounting an inflammatory response, which started quickly (after 1 h) and developed over time and was influenced by body condition. These results demonstrate a time-related hormonal and immune variation as a consistent pattern of activation of the immune system, as well as of hypothalamic-pituitary-adrenal/interrenal and immune-pineal axes following an immune challenge more deeply studied in mammals, suggesting the evolutionary conservation of the regulatory mechanisms for tetrapod vertebrates.


Assuntos
Bufonidae/imunologia , Corticosterona/sangue , Imunomodulação/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Melatonina/sangue , Animais , Atividade Bactericida do Sangue , Inflamação/induzido quimicamente , Inflamação/imunologia , Linfócitos/fisiologia , Masculino , Neutrófilos/fisiologia , Fagocitose , Testosterona/sangue
12.
J Exp Zool A Ecol Integr Physiol ; 335(2): 239-249, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33184965

RESUMO

Environmental conditions experienced by developing animals have an impact on the development and maturity of the immune system. Specifically, the diet experienced during early development influences the maintenance and function of the immune system in young and adult animals. It is well known that exposure to low-protein diets during early development are related to an attenuation of immunocompetence in adulthood. While this functional linkage has been widely studied in altricial models' mammals, it has been little explored how the nutritional history modulates the immune function in precocial animals. We evaluated the effect of dietary protein consumed during early development on the immune function and the oxidative costs in the precocial Caviomorph rodent Octodon degus, or degu. We evaluated components of the acute phase response (APR) and oxidative parameters before and after immune challenge. We found that after the immune challenge, the juveniles on the low-protein dietary treatment exhibited an attenuation of body temperature but showed higher levels of lipid peroxidation than juvenile degus on the high-protein diet. We did not find a significant effect of the interaction between diet and immune challenge on body mass, levels of inflammatory proteins, nor in the total antioxidant capacity. Our results suggest that some components of the immune function and the oxidative status in the degu can be modulated by diet during development. However, the modulation would depend on the immune variables analyzed, and the characteristics of the immune system of precocial rodents.


Assuntos
Ração Animal/análise , Dieta/veterinária , Proteínas Alimentares/administração & dosagem , Octodon/imunologia , Octodon/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Comportamento Alimentar , Octodon/crescimento & desenvolvimento , Estresse Oxidativo
13.
Front Insect Sci ; 1: 754571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38468892

RESUMO

The immune system is considered a functional trait in life-history theory and its modulation is predicted to be costly and highly dependent on the host's nutrition. Therefore, the nutritional status of an individual has a great impact on an animal's immune ecology. Herbivorous insects are commonly used as model organisms in eco-immunology studies and the use of an artificial diet is the predominant rearing procedure to test them. However, this diet differs from what herbivores experience in nature and it is unclear to what degree this distinction might impact on the relevance of these studies for the real world. Here, we compared plant-based vs. artificial diet in a set of three experiments to investigate the interaction of both diets with a plastic immune strategy known as Density-Dependent Prophylaxis (DDP). We used as a model organism the velvetbean caterpillar Anticarsia gemmatalis, which is known to adjust its immune defense in line with the DDP hypothesis. Our main results showed that larvae fed with artificial diet had 20.5% more hemocytes circulating in the hemolymph and died 20% more slowly when infected with an obligate (viral) pathogen. Crucially, however, we did not find any indication of fitness costs related to DDP. The use of artificial diet did not interact with that of DDP except in the case of host survival after infection, where the DDP effect was only observable in this diet. Our findings suggest the use of an artificial diet does not mask resource allocation conflicts between immune investment and fitness related traits, but to some extent it might lead to an overestimation of immune parameters and host survival time after infection. We believe that this is the first study to compare an artificial diet and a host plant covering all these aspects: immune parameters, life-history traits, and host survival after infection. Here we provide evidence that, besides the quantitative effects in immune parameters and host survival time, the use of artificial diet interacts only marginally with a density-dependent immune response. This provides support for the use of artificial diets in eco-immunology studies with insects.

14.
J Exp Zool A Ecol Integr Physiol ; 333(10): 767-778, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33369285

RESUMO

Climate change and emerging infectious diseases are often described as the main factors associated with the worldwide amphibian population decline. In this context, rising temperatures due to global warming might act as a chronic stressor for many amphibians, leading to immunosuppression. This study aimed to characterize the thermal sensitivity of the Bullfrog's (Lithobates catesbeianus) immune response and the effect of acclimation at different temperatures on it. Plasma bacterial killing ability (BKA) and phagocytosis activity of blood leukocytes were measured at different incubation temperatures (5-40°C) in individuals kept at 28°C and 34°C. First, all individuals were held under 28°C and sampled on the 16th day. Subsequently, one group was kept at 28°, and the other one was transferred to 34°C. Both groups were sampled at 83 and 106 days of maintenance. Plasma corticosterone (CORT) and testosterone (T) were assessed to evidence thermal stress and possible endocrine correlates of immune changes over time. The incubation temperature affected BKA both on animals kept at 28°C and 34°C, with maximum values at lower temperatures (5-20°C). Phagocytosis activity was constant over the range of assay temperatures. Immune and endocrine variables decreased over time in both thermal regimes, but frogs maintained at 34°C showed lower T and immunosuppression, evidencing stress response. Therefore, exposure to high temperatures might decrease immune function in bullfrogs due to chronic stress response and by exposition to temperatures of lower performance according to the thermal sensitivity curve, which might increase vulnerability to diseases in this anuran species.


Assuntos
Rana catesbeiana/imunologia , Animais , Atividade Bactericida do Sangue , Corticosterona/sangue , Citometria de Fluxo , Masculino , Fagocitose , Rana catesbeiana/fisiologia , Temperatura , Testosterona/sangue
15.
J Exp Zool A Ecol Integr Physiol ; 333(10): 779-791, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32488987

RESUMO

Cane toads (Rhinella marina) were introduced worldwide and have become invasive in multiple locations, representing a major driver of biodiversity loss through competition (food, shelter, territory), predation, and the poisoning of native species. These toads have been used in Australia as a model for studies concerning invasion biology and ecoimmunology, as longer-established (core) and invasion front (edge) populations show altered stress and immune response profiles. Although cane toads were also introduced into the United States in the 1950s, these patterns have yet to be evaluated for the populations spanning Florida. Toads introduced into Florida have dispersed primarily northward along a latitudinal gradient, where they encounter cooler temperatures that may further impact stress and immune differences between core and edge populations. In this study, we sampled cane toads from nine different locations spanning their invasion in Florida. Cane toads from southern populations showed higher plasma bacterial killing ability and natural antibody titers than the toads from the northern populations, indicating they have a better immune surveillance system. Also, southern toads were more responsive to a novel stressor (1 hr restraint), showing a higher increase in corticosterone levels. These results indicate that possible trade-offs have occurred between immune and stress responses as these toads have become established in northern cooler areas in Florida.


Assuntos
Bufo marinus/imunologia , Estresse Fisiológico/imunologia , Animais , Atividade Bactericida do Sangue , Bufo marinus/sangue , Bufo marinus/fisiologia , Corticosterona/sangue , Feminino , Florida , Testes de Hemaglutinação , Espécies Introduzidas , Linfócitos/fisiologia , Masculino , Neutrófilos/fisiologia , Estresse Fisiológico/fisiologia , Temperatura
16.
Sci Total Environ ; 726: 138303, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32305751

RESUMO

There are increasing global concerns of the alarming pollution impacts on marine life, thus it is becoming essential to generate reliable tools to monitor and understand the effects of these impacts on aquatic organisms. We performed a field study assessing how exposure to anthropogenic pollution impacts immunological and health-state parameters and parasite infection of a wild marine fish, the Brazilian sandperch Pinguipes brasilianus. Then we compared this information to previously published data of a sympatric species, the Patagonian rockfish Sebastes oculatus inhabiting the same polluted and pristine areas. The field study revealed that exposed P. brasilianus showed chronic stress, poor immune condition and higher prevalence and abundance of acanthocephalan parasites. By comparing these former results with already published in S. oculatus, we concluded that, although both species exhibited physiological alterations associate to inhabiting sites exposed to pollution, their specific immunological and health-state responses differed. Our results demonstrate that Patagonian reef-fish assemblages inhabiting sites exposed to pollutant are being affected in their immune and heath condition, which could potentially result in higher susceptibility to disease and in turn population decline. These findings highlight the necessity of more studies incorporating interspecific comparisons to assess variation in fish susceptibility in an ecoimmunotoxicological context and get a more profound understanding of anthropogenic impacts on wildlife.


Assuntos
Bass , Parasitos , Perciformes , Animais , Brasil , Poluição Ambiental , Peixes
17.
Front Physiol ; 10: 739, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293433

RESUMO

Octopus maya is a valuable endemic species of the Yucatán Peninsula (YP). This area can be divided into distinct regions depending on the presence of cold waters associated to upwelling events during spring and summer. This study was designed to determine if the physiological and immunological condition of O. maya show a relationship with variation of the sea surface temperature associated with the seasonal upwelling. A total of 117 organisms were collected from February to July in three fishing zones: Ría Lagartos located in the upwelling zone; Seybaplaya corresponding to the non-upwelling zone, and Sisal, the transitional zone. The organisms were examined in terms of physiological (total weight, the weight of the gonad and digestive gland, osmotic pressure, hemocyanin, protein, glucose, and cholesterol concentrations in plasma), and immunological variables (total hemocyte count, hemagglutination, phenoloxidase system activity, total phenoloxidase plasma activity, and lysozyme activity). Multivariate one-way ANOVA showed overall significant differences between groups of octopus by month/zone of capture, indicating that the physiological-immunological condition of O. maya is related to a temperature gradient. Wild octopuses captured at the upwelling zone and the transitional zone (Ría Lagartos and Sisal) in February, March, and April -with temperatures lower than 27°C- were in better conditions: larger size, high concentrations of hemocyanin, and low activity of the phenoloxidase system. Octopuses captured in the warmer waters (28-30°C) of the non-upwelling and transitional zones (Seybaplaya and Sisal) during June and July, could be reflecting the metabolic stress through immunological compensation mechanisms with higher activity of the phenoloxidase system, despite having a lower concentration of hemocytes, hemocyanin, and proteins. Although the movement of individual O. maya along the YP throughout their life cycle has not yet been determined, direct development and benthic behavior could limit the mobility of the organisms in such a way that their physiological and immunological condition might reflect adaptation to the regional environment. This information could help understand the performance of octopuses in their distribution area, which sustains an important fishery.

18.
Integr Zool ; 14(3): 235-247, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29851230

RESUMO

During vertebrate development, the immune function is inefficient and is mainly controlled by innate defense. While there have been detailed studies of various aspects of innate immune function, the effects of this function in the growth of vertebrates is still not well known. Similarly, there is little information regarding how early endotoxin exposure would affect juvenile phenotypes, specifically in a non-model mammal like a precocial rodent. We evaluated the response to an antigen and its cost in offspring of the rodent Octodon degus. We inoculated pups at 4 different ages (8, 15, 22 and 30 days after birth) with an antigen to determine the ontogeny and costs of the response to an endotoxin. We assessed changes in body mass, body temperature, sickness behavior and the levels of a key mediator of the inflammatory response, the cytokine interleukin-1ß. We also determined the effects of early endotoxin exposure on the resting metabolic rate of juvenile animals (i.e. 90 days after birth). The cytokine levels, body mass and body temperature were unaffected by time of inoculation and treatment. However, pups subjected to inoculation at 22 days after birth with the antigen showed reduced locomotion. Juvenile resting metabolic rate was not affected by early endotoxin exposure. These results suggest that the magnitude of O. degus responses would not change with age. We discuss whether the lack of effect of the response on body mass or body condition is caused by environmental variables or by the precocial characteristics of O. degus.


Assuntos
Envelhecimento , Comportamento Animal , Comportamento de Doença/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Octodon , Animais , Feminino , Masculino
19.
J Comp Physiol B ; 189(1): 143-152, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30488104

RESUMO

The relationships between immunity, oxidative stress, and diet have not often been studied together. Despite this, it has been shown that dietary proteins can have effects on the functioning of the immune system and the oxidative status of animals. Here we evaluated the effects of dietary proteins on the response to an antigen and oxidative status of Octodon degus (Rodentia). We acclimated adult individuals to high-protein and low-protein diets and evaluated several aspects of the acute phase response and variables associated with oxidative status. After the immune challenge, animals acclimated to the high-protein diet had more inflammatory proteins and body mass losses than the group acclimated to a low-protein diet. Overall, the immune challenge increased the production of inflammatory proteins, total antioxidant capacity, lipid peroxidation, and duration of rest periods. In contrast, we did not find an interaction between diet and the challenge with the antigen. Overall, our results do not reveal an enhanced response to an antigen nor effects on the oxidative status of degus individuals subjected to a high-protein diet.


Assuntos
Antígenos/farmacologia , Proteínas Alimentares/farmacologia , Lipopolissacarídeos/farmacologia , Octodon/fisiologia , Ração Animal , Animais , Comportamento Animal , Dieta Rica em Proteínas , Ingestão de Alimentos , Peroxidação de Lipídeos , Masculino , Octodon/imunologia , Estresse Oxidativo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
20.
Physiol Biochem Zool ; 92(1): 24-36, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30452332

RESUMO

Seasonal fluctuation in environmental parameters can influence immune responses of vertebrates and consequently influence their health and disease resistance. Although seasonality of immune function is well documented in a broad range of vertebrate taxa, this information remains virtually unexplored in cartilaginous fish. Here we examine seasonal variation in immune and general-health parameters of free-living adult broadnose sevengill sharks, Notorynchus cepedianus, along an annual cycle. We sampled sharks during autumn/winter (i.e., coolest temperatures and nonreproductive period) and spring/summer (i.e., warmest temperatures and active reproductive period) and assessed aspects of immunity, general condition, and reproductive hormone levels. A seasonal influence was observed in some, but not all, parameters evaluated. Lower lymphocyte counts and higher heterophil counts and granulocyte to lymphocyte (G∶L) ratios were observed in sharks sampled during autumn/winter than in those sampled during spring/summer. On the other hand, total leukocyte counts, eosinophil counts, bacterial agglutination mediated by natural antibodies, and hematocrit did not vary seasonally. The observed seasonal patterns could be explained as (1) greater levels of stress based on the G∶L ratio, (2) a sign of immunosuppression or depressed immune investment based on the low lymphocyte counts, and/or (3) a sign of ongoing infection based on the higher heterophil counts in the colder seasons with respect to the warmer ones. In addition, the pattern is in line with the notion that while acquired components are usually depressed by lower temperatures, some innate components might increase to offset that reduction. Immune and health-state parameters were mostly independent of reproductive hormone levels, providing little support for a trade-off with reproduction. Overall, the observed seasonal pattern in immunity of broadnose sevengill sharks could be related to changes in abiotic environmental condition, such as water temperature and photoperiod, although other factors such as availability of high-quality food may play a part.


Assuntos
Estações do Ano , Tubarões/imunologia , Testes de Aglutinação , Animais , Argentina , Escherichia coli/imunologia , Feminino , Hormônios Gonadais/sangue , Hematócrito , Contagem de Leucócitos , Masculino , Reprodução/fisiologia , Tubarões/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA