Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 670
Filtrar
1.
J Prosthodont ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39185809

RESUMO

PURPOSE: To investigate the effects of the elemental composition and the manufacturing process of cobalt chromium-molybdenum (CoCr-Mo), cobalt chromium-tungsten (CoCr-W), and CoCr-Mo-W alloys on metal-ceramic bond strength. MATERIALS AND METHODS: Six CoCr-based alloys were included in this study, a were classified into three different groups depending on their elemental composition (Ν = 10, for each group). The first group had molybdenum (Mo) as the third alloying element, the second group contained tungsten (W) (without Mo), and the third group included both alloying elements. The groups were further divided by the manufacturing process (casting or selective laser melting, SLM). Interfacial analysis was carried out using backscattered electron imaging (BEI) and energy-dispersive X-ray microanalysis (EDX) operating in line scan mode. The metal-ceramic bond strength was tested by a 3-point bending test according to the ISO 9693 requirements. The fracture mode of all specimens was examined under a stereomicroscope. The bond strength results were statistically analyzed by 2-way ANOVA and Tukey's multiple comparison post hoc test (a = 0.05). RESULTS: A continuous interface with the porcelain was found without pores, debonding areas, or other defects. Of the major elements found at the interface, Co showed the highest diffusion rate, while titanium (Ti) had the lowest diffusion rate. No statistically significant differences were identified in metal-ceramic bond strength either among materials or between manufacturing processes. The fracture mode was found to be cohesive for all specimens. CONCLUSIONS: The metal-ceramic bond strength is independent of the current CoCr alloy type and manufacturing process when comparing conventional casting and SLM. Interfacial analysis revealed no differences between the tested groups.

2.
Sci Rep ; 14(1): 19059, 2024 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154086

RESUMO

A modified carbon paste sensor based on N,N'-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(methanylylidene))bis(pyridine-2-amine; BPA Schiff base as Cr(III) selective carrier was fabricated and studied in this work. The proposed sensor homogenization and mechanism of action was studied by infra-red (IR) and scanning electron microscope (SEM) with energy dispersive X-ray (EDX) tools. The sensor covered 1.0 × 10-7-1.0 × 10-1 mol L-1 linear range and a detection limit of 7.22 × 10-8 mol L-1 for Cr(III) with 20.17 ± 0.13 mV decade-1 Nernstian slope. 5 s was the response time of the prepared sensor and it was reproducible and stable for 3 months. The working pH range was 3.3-6.0 and it also works well to determine Cr(III) ion in presence of water miscible solvents up to 12.5% content of the methanol and 17.5% of ethanol. The electrode's selectivity was studied using separate and mixed solution methods for selectivity coefficients determination and the sensor showed good selectivity relative to a variety of metal ions (selectivity coefficients = 1.01 × 10-5-8.57 × 10-3). In addition, the practical analysis value of the sensor was demonstrated by measurement of Cr(III) quantitatively in mineral water, supplement and also as an indicator electrode in Cr(III) against EDTA potentiometric titration with good reproducibility (RSDs of 0.91-2.15%).


Assuntos
Carbono , Cromo , Cromo/análise , Cromo/química , Carbono/química , Água/química , Suplementos Nutricionais/análise , Bases de Schiff/química , Limite de Detecção , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Eletrodos , Reprodutibilidade dos Testes , Íons/análise , Técnicas Eletroquímicas/métodos
3.
Cureus ; 16(7): e63925, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39105038

RESUMO

Background In recent years, significant advancements have been made in various scientific sectors, particularly in healthcare and pharmaceutical research. This progress has been driven by the development of enhanced sensing materials and methodologies. Electrochemical sensing has become an important tool in detecting and analyzing drug molecules due to its high sensitivity, specificity, and rapid response times. Among various drugs, paracetamol, also known as acetaminophen, is widely used for its analgesic and antipyretic properties. Accurate detection of paracetamol is crucial due to its widespread use and potential for overdose, which can lead to severe liver damage. Copper molybdate (CuMoO4) is a transition metal oxide that has garnered attention for its excellent electrical conductivity and electrochemical stability. These properties make it a promising candidate for use in electrochemical sensors. The ability of CuMoO4 to act as a sensor material is enhanced by its unique structural and morphological characteristics, which can be tailored during synthesis. Aim This study aimed to synthesize CuMoO4 and investigate its electrochemical sensing capability for the detection of drug molecules, specifically paracetamol. Materials and method CuMoO4 was synthesized using a precipitation method that did not involve any surfactants. This approach was chosen to simplify the synthesis process and avoid potential contamination from surfactants. The morphology of the synthesized CuMoO4 nanoparticles was investigated using a field emission scanning electron microscope (FE-SEM). Energy-dispersive X-ray spectroscopy (EDX) confirmed the purity of the CuMoO4 nanomaterial. Structural analysis was performed using X-ray diffraction (XRD). To evaluate the electrochemical sensing capability of CuMoO4 for paracetamol, Differential pulse voltammetry (DPV) was employed. DPV is a sensitive electrochemical technique that can detect changes in current response corresponding to the presence of analytes. Results The synthesized CuMoO4 exhibited a rock-like structure, as revealed by FE-SEM imaging. This morphology is advantageous for electrochemical applications due to the increased surface area available for interaction with analytes. EDX confirmed the purity of the CuMoO4 nanomaterial, showing no significant impurities. XRD analysis indicated that the CuMoO4 nanoparticles were crystalline in nature, which is beneficial for consistent and reproducible electrochemical behavior. The DPV analysis demonstrated that the CuMoO4 sensor exhibited a linear increase in current response with increasing concentrations of paracetamol. This linear relationship indicates that CuMoO4 is capable of detecting paracetamol effectively, with a strong and quantifiable signal response. Conclusion The CuMoO4 nanomaterial was successfully synthesized using a simple precipitation method and was characterized by its rock-like morphology and crystalline structure. Electrochemical testing using DPV showed that CuMoO4 has excellent sensing capabilities for detecting paracetamol, with a clear and linear current response. These findings suggest that CuMoO4 is a promising electrochemical sensing material for drug detection, potentially offering a reliable and efficient method for monitoring paracetamol and possibly other pharmaceuticals in various settings.

4.
Sci Total Environ ; : 175427, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128512

RESUMO

Particulate Matter (PM) dramatically affects the well-being of a growing global population, particularly in urban areas. While air quality control is an important and pressing issue, particulate matter analysis typically focuses on size distribution and concentration, offering limited insights into chemical composition and pollutant sources. This study analyzes PM10 samples collected from five air quality monitoring stations across the Piedmont region. Specifically, the two of the stations are located in the urban environment of Turin, a city known as one of Europe's most polluted cities. The analysis has been carried out using primarily Raman Spectroscopy (RS) to identify the main PM components, investigate the different PM compositions, and evaluate the chemical and seasonal variations. Scanning Electron Microscopy (SEM) equipped with an Energy Dispersion X-ray spectrophotometer (EDX) has also been used to obtain further information about the elemental composition and the size distribution. Amorphous carbon, nitrate salt, sulfate salt, iron oxides, and quartz are the main compounds found. The results of our study highlight significant differences in the chemical composition of PM10, indicating variations in the sources and characteristics of PM. Notably, higher levels of nitrate and sulfate particles are linked respectively to cold and warm seasons. Whereas, amorphous carbon and iron oxides are associated with distinct geographic features at the sampling sites, such as traffic conditions. These findings emphasize the importance of understanding the different sources and characteristics of PM10 to develop effective air pollution mitigation strategies in the Piedmont region.

5.
Heliyon ; 10(15): e35597, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170301

RESUMO

In 2020, 500th anniversary of Raffaello Sanzio death, his Deposition (1507), -the altarpiece known also as the Pala Baglioni, today located at the Borghese Gallery in Rome-has been subjected to conservative revision and preventive conservation project. This included in-depth diagnostic campaigns through most modern non-invasive techniques, together with the analysis of old cross sections from the same Pala. These latters, prepared between 1966 and 1972, preserved in ICR laboratory of chemistry and testing materials archive, have been used to deepen the knowledge of Raffaello painting techniques. The use of such cross sections was fundamental to verify the original pictorial film and restoration re-paintings before the conservation intervention in the same years. In this paper, the results of analytical insights on Raffaello pictorial palette are presented. The information is obtained by the analysis of the old ICR stratigraphic sections, through the use of Scanning Electron Microscope with Energy Dispersive X-Ray analysis (SEM-EDX) and micro-Raman (632.8 nm), while Surface Enhanced Raman Scattering (SERS) analysis through colloidal paste has been tested for the identification of organic lake-pigments present in low concentration and for the successful recognition of copper resinate, whose SERS spectrum is here reported for the first time, according to our knowledge. This combined diagnostic approach has made it possible to recognize the pigments employed in the different pictorial layers, such species in traces and those from organic materials, responding to open questions arising previous non-invasive analyses and highlighting further aspects of the illustrious master refined painting technique.

6.
Nano Lett ; 24(33): 10177-10185, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39106344

RESUMO

Energy dispersive X-ray (EDX) spectroscopy in the transmission electron microscope is a key tool for nanomaterials analysis, providing a direct link between spatial and chemical information. However, using it for precisely determining chemical compositions presents challenges of noisy data from low X-ray yields and mixed signals from phases that overlap along the electron beam trajectory. Here, we introduce a novel method, non-negative matrix factorization based pan-sharpening (PSNMF), to address these limitations. Leveraging the Poisson nature of EDX spectral noise and binning operations, PSNMF retrieves high-quality phase spectral and spatial signatures via consecutive factorizations. After validating PSNMF with synthetic data sets of different noise levels, we illustrate its effectiveness on two distinct experimental cases: a nanomineralogical lamella, and supported catalytic nanoparticles. Not only does PSNMF obtain accurate phase signatures, but data sets reconstructed from the outputs have demonstrably lower noise and better fidelity than from the benchmark denoising method of principle component analysis.

7.
Small Methods ; : e2400200, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992994

RESUMO

A carbon paper-based gas diffusion electrode (GDE) is used with a bismuth(III) subcarbonate active catalyst phase for the electrochemical reduction of CO2 in a gas/electrolyte flow-by configuration electrolyser at high current density. It is demonstrated that in this configuration, the gas and catholyte phases recombine to form K2CO3/KHCO3 precipitates to an extent that after electrolyses, vast amount of K+ ions is found by EDX mapping in the entire GDE structure. The fact that the entirety of the GDE gets wetted during electrolysis should, however, not be interpreted as a sign of flooding of the catalyst layer, since electrolyte perspiring through the GDE can largely be removed with the outflow gas, and the efficiency of electrolysis (toward the selective production of formate) can thus be maintained high for several hours. For a full spatial scale quantitative monitoring of electrolyte penetration into the GDE, (relying on K+ ions as tracer) the method of inductively coupled plasma-mass spectrometry (ICP-MS) assisted energy dispersive X-ray (EDX) tomography is introduced. This new, cheap and robust tomography of non-uniform aspect ratio has a large planar span that comprises the entire GDE surface area and a submicrometer depth resolution, hence it can provide quantitative information about the amount and distribution of K+ remnants inside the GDE structure, in three dimensions.

8.
Forensic Sci Int ; 361: 112135, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38972145

RESUMO

Understanding the presence, transfer dynamics and depletion of gunshot residues (GSR) on various surfaces is crucial for preserving evidence, reconstructing shooting incidents, and linking suspects to crime scenes. This study aims to explore the transfer and loss of GSR on commonly encountered surfaces such as ceramic, glass, metal, paper, and plastic, as well as the influence of different common hand cleaning methods on secondary transfer. Using scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDX) and automated detection software, we quantified highly indicative three-component characteristic particles (lead, barium, and antimony) on cups made from ceramic, glass, metal, paper, and plastic. Furthermore, we evaluated the amount of secondary transferred particles on these surfaces following various post-discharge hand cleaning methods: washing with water and soap, washing with only water, wiping with wet wipes, or using paper towels. The results demonstrate that counts of secondarily transferred GSR particles vary significantly among surfaces. Specifically, the transferred GSR count was highest on paper, followed by plastic, ceramic, metal, and glass respectively. Post-discharge hand cleaning methods, including washing with water and soap, washing with only water, cleaning with wet wipes, or with paper towel, resulted in substantial loss of GSR count on transferred surfaces. Among these methods, washing with water and soap showed the highest depletion. The empirical evidence provided by our results underscores the importance of considering surface properties, post-shooting activities, and the methods of sample collection and analysis when interpreting transferred GSR analysis. Despite challenges, these insights enhance our ability to link suspects to shooting crimes through careful consideration of the entire context.

9.
Arch Oral Biol ; 167: 106053, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39029289

RESUMO

OBJECTIVE: To investigate the accumulation of cerium-nitrate and samarium-nitrate on dentin without or with smear-layer and to test their antibacterial activity. DESIGN: 24 dentin-enamel slices were cut from 24 extracted molars. 12 slices underwent smear-layer creation (320 grit, 200 g, 5 s), the other 12 smear-layer removal (20 % EDTA, 300 s). Slices were halved to 48 semilunar-shaped specimens. One specimen per tooth was treated with either Ce(NO3)3 (50 wt% aqueous solution; pH = 1.29; n = 6) or Sm(NO3)3 (50 wt% aqueous solution; pH = 1.88; n = 6). The other specimen served as control (A. demin). After water rinsing, elemental composition (Ce, Sm, Ca, P, O, N, Na, Mg, C) was measured (EDX; EDAX Octane-Elect, APEX v2.5, low-vacuum) in dentin. Atomic percent (At%), Ca/P- and Ca/N-ratios were calculated and analyzed non-parametrically (α = 0.05, error rates method). Additionally, antibacterial activity (2 min exposure) of Ce(NO3)3 and Sm(NO3)3 against Streptococcus mutans, Actinomyces naeslundii, Schaalia odontolytica, and Enterococcus faecalis was determined (colony forming units) after anaerobic incubation at 37 °C for 24 h (control: 0.2 % CHX). RESULTS: At% (median) of Ce and Sm were as follows: Ce(NO3)3 3.4 and 0.9 At%Ce with and without smear-layer, respectively; Sm(NO3)3 2.4 and 1.3 At%Sm with and without smear-layer, respectively. Ce(NO3)3 and Sm(NO3)3-application significantly decreased Ca/P-ratios (1.22 - 1.45; p ≤ 0.02) compared to controls (1.47 - 1.63). With smear-layer, significantly higher Ca/N-ratios (5.1 - 29.3) could be detected across all groups (p ≤ 0.004) compared to specimens without smear-layer (0.37 - 0.48). Ce(NO3)3 and Sm(NO3)3 showed reduction rates of up to ≥ 5 log10 steps for S. mutans, A. naeslundii, and S. odontolytica. CONCLUSIONS: Cerium and samarium nitrate showed accumulation on dentin and certain antibacterial activity and could therefore be identified as potential compounds to treat and prevent dentin and root caries and dentin hypersensitivity.


Assuntos
Cério , Dentina , Nitratos , Samário , Cério/farmacologia , Dentina/efeitos dos fármacos , Humanos , Nitratos/farmacologia , Samário/farmacologia , Camada de Esfregaço , Streptococcus mutans/efeitos dos fármacos , Antibacterianos/farmacologia , Técnicas In Vitro , Dente Molar
10.
BMC Oral Health ; 24(1): 868, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080605

RESUMO

AIM: This study aimed to evaluate the effect of the use of remineralization agents before the application of resin infiltration on the treatment of initial enamel lesions. MATERIALS AND METHODS: Eighty buccal enamel samples were prepared from human molars, and artificial initial lesions were formed after 96 h of incubation with a demineralizing solution. The samples were randomly divided into 8 groups (n = 10) including a remineralizing agent (Tooth Mousse, Medical Mineral Gel, Remin Pro), resin infiltration (ICON), and a combined treatment of both. Remineralizing agents were applied in pH cycle for 7 days. Baseline, demineralization, and after-treatment fluorescence (FluoreCam and DIAGNOdent Pen), surface microhardness (HMV-2T), surface roughness (M300C), OCT (Maestro-2) and ultrasonic system (Novascope 4500) data were obtained for all groups. The sample surfaces were examined under SEM/EDX (SU3500) at x1000. Data were statistically analyzed using the Two-Way Robust ANOVA and Bonferroni tests (p < 0.05). RESULTS: There was no statistically significant difference between the groups for microhardness, roughness, OCT, DIAGNOdent Pen, ultrasound, and FluoreCam size/intensity values (p = 0.582; p = 0.963; p = 0.884; p = 0.923; p = 0.051; p = 0.268; p = 0.793 respectively). The effect of the treatment procedure showed a significant difference (p < 0.001), except for the roughness values (p = 0.984). The lowest Calcium (Ca) ratio (%atomic) was observed in the RI group in the EDX analysis. CONCLUSION: Remineralizing agents and resin infiltration methods may be used in combination or alone in the treatment of initial enamel lesions. Combining remineralizing agents with resin infiltration does not alter the efficacy of the treatment.


Assuntos
Esmalte Dentário , Dureza , Resinas Sintéticas , Remineralização Dentária , Humanos , Remineralização Dentária/métodos , Esmalte Dentário/efeitos dos fármacos , Técnicas In Vitro , Resinas Sintéticas/uso terapêutico , Desmineralização do Dente/tratamento farmacológico , Propriedades de Superfície , Cariostáticos/uso terapêutico , Cariostáticos/farmacologia , Microscopia Eletrônica de Varredura , Concentração de Íons de Hidrogênio , Espectrometria por Raios X
11.
Microsc Res Tech ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38988203

RESUMO

The aim of this study was to compare of four different nickel-titanium (Ni-Ti) endodontic files and evaluate in terms of cyclic fatigue resistance and metallurgical properties. Four different type Ni-Ti root canal files Protaper Next X2 (PTN) (Dentsply Maillefer, Ballaigues, Switzerland), One Curve (OC) #25.06 (Micro Mega, Besancon, France), EndoPlus Flex Plus Gold X2 (EPG) (Turkuaz Dental, Denizli, Turkey), and EndoPlus Flex Plus Blue #25.06 (EPB) (Turkuaz Dental, Denizli, Turkey) files were tested for cyclic fatigue resistance (n = 20). During experiments artificial zirconia block canal was used. The artificial canal designed with curvature 60° and 5-mm radius. The number of cyclic to fracture (NCF) was noted. Fractured length (FL) parts of Ni-Ti files were recorded to assessment of fracture volumetric point. All fractured surfaces of Ni-Ti files were assessed by scanning electron microscope (SEM) to confirm the type of fractures. Descriptive evaluation become accomplished for the fundamental composition of units with the aid of using energy-dispersive x-ray spectroscopy (EDX). NCF data were evaluated via Bonferroni test with post hoc multiple comparison method. OC showed the highest NCF values (p < .05). The standardization of the study was confirmed as the FL of files was statistically similar in length (p > .05). SEM analysis confirmed that all scanned samples were fractured due to cyclic fatigue. EDX analysis confirmed that EPB established the poorest Ni content file. RESEARCH HIGHLIGHTS: The cyclic fatigue-related failure of One Curve was significantly more resistant than Protaper Next and EndoPlus files. Scanning electron microscopy images showed that One Curve and Protaper Next have round tips Energy dispersive x-ray spectroscopy showed that all four endodontic instruments mainly have Nickel and Titanium elements.

12.
Sci Rep ; 14(1): 16857, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039087

RESUMO

The study was designed to explore the corrosion prevention capabilities of Citrullus colocynthis seeds alkaloid-rich extract (CSEA) on MS in a 1 M HCl environment by use of electrochemical and theoretical methods. Notably, Electrochemical Impedance Spectroscopy (EIS) and potentiodynamic polarization were used to probe the impact of immersion time and temperature. Energy-dispersive X-ray spectroscopy (EDX) and spanning electron microscopy (SEM) were used to confirm the presence of a protective layer on the substrate surface. Density functional theory (DFT) method was used to optimize the investigated species by use of B3LYP/6-31 + G(d, p) level of theory. The global and local quantum chemical reactivity descriptors were calculated to explore the inhibition corrosion efficiency and to identify the most favorable sites for electrophilic and nucleophilic attacks. Monte Carlo (MC) and molecular dynamics simulation (MDS) methods were used to study the interactions between corrosion inhibitor and metal surface. Noteworthy, results showed that CSEA exhibited an impressive inhibition efficiency, which reached 94.3% with a concentration of 2 g/L at 298 K. Potentiodynamic polarization revealed that the extract acted as a mixed-type inhibitor. Nyquist graphs showed that charge-transfer resistance and dæouble-layer capacitance both rised with increasing CSEA concentration, suggesting better inhibition efficiency. Notably, the Langmuir adsorption isotherm is well-aligned with the adsorption of inhibitor compounds. Importantly, all aforementioned theoretical methods were in agreement with the experimental findings. The outcome of the present work supported using Citrullus colocynthis seeds alkaloid-rich extract as ecofriendly agents to prevent corrosion.

13.
BMC Zool ; 9(1): 17, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010185

RESUMO

BACKGROUND: Hair characterization is critical for determining animal individuality throughout life. This study aimed to assess the morphological features of dromedary camel hair in relation to age. MATERIALS AND METHODS: Hair samples were obtained from the camel humps of 30 dromedary camels separated into three groups: G1 (n:10) aged one-year, G2 (n:10) aged 3-5 years, and G3 (n:10) at the age of 8-10 years. The hair was examined using light microscopy, SEM, and SEM-EDX. RESULTS: The Maghrebi camel had varied medulla patterns and structures across the ages. In the G1 group 75% had continuous medulla patterns and amorphous medulla structures, compared to 70% in G2, and 90% in G3. The medulla index increased with age, rising from 0.3 to 0.77%. The shaft width grew in size from G1 to G2, then fell to approximately one-third of the G2 size at G3. The cortex and cuticle widths were also determined by age, and they increased in the G1 compared to G3 camels. The shape of the cuticle scales in G1 camels was wavy, like mountain tops with irregular edges, within G2 camels the scales were particularly long, oval-shaped scales with smooth, wavy borders. The scales of the older G3 camels were quite long and rectangular. SEM-EDX spectra recognized carbon, oxygen, nitrogen, sulfur, calcium, aluminum, silicon, and potassium at the medulla and cortex. Sulfur levels were highest in the G2 samples but lowest in the G1 samples. CONCLUSION: The dromedary camel's hair structure and mineral content, particularly carbon and nitrogen, differed as camels aged.

14.
Int. j. morphol ; 42(3): 698-708, jun. 2024. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1564638

RESUMO

SUMMARY: Tissue engineering aims to fabricate a scaffold that exhibits a suitable surface topography for a desired cellular response. Therefore, a study analyzing the characteristics of bone grafts is important for future research directions. This work aims to analyze the physical-chemical characteristics of commercially available bone grafts of human and bovine origin for dental use, using morphological analysis of the surface and chemical composition by variable pressure scanning electron microscope (VP-SEM) and energy-dispersive x-ray (EDX) spectrometry. In addition, pore diameter and surface area were analyzed by degassing method using a porosimeter, and particle size by laser diffraction. The analyzed allograft and xenograft particles differ in morphological characteristics and chemical composition. The allograft particles present a cuboidal and prismatic geometric morphology with angled edges and the absence of macropores. On the contrary, the xenograft particles present an irregular morphology with macropores in their structure. There is a statistically significant difference in C, P, and Ca between the xenograft and allografts (p < 0,05). The analyzed composition of allografts showed mainly the presence of C and O. In contrast, the composition of the xenograft was mainly Ca. These differences could influence the osteogenic properties of allografts and xenografts. This analysis provides basic information to understand the physicochemical properties of allografts and xenografts that facilitate cell-graft interaction.


La ingeniería de tejidos tiene como objetivo fabricar un andamio que muestre una topografía de superficie adecuada para una respuesta celular deseada. Por tanto, un estudio que analice las características de los injertos óseos es importante para futuros enfoques de investigación. Este trabajo tiene como objetivo analizar las características físico-químicas de injertos óseos de origen humano y bovino disponibles comercialmente para uso odontológico, mediante análisis morfológico de la superficie y composición química mediante microscopio electrónico de barrido de presión variable (VP-SEM) y x-dispersivo de energía. espectrometría de rayos (EDX). Además, el diámetro de los poros y el área superficial se analizaron mediante el método de desgasificación utilizando un porosímetro y el tamaño de las partículas mediante difracción láser. Las partículas de aloinjerto y xenoinjerto analizadas difieren en características morfológicas y composición química. Las partículas del aloinjerto presentan una morfología geométrica cúbica y prismática con bordes angulados y ausencia de macroporos. Por el contrario, las partículas de xenoinjerto presentan una morfología irregular con macroporos en su estructura. Existe una diferencia estadísticamente significativa en C, P y Ca entre el xenoinjerto y los aloinjertos (p < 0,05). La composición analizada de los aloinjertos mostró principalmente la presencia de C y O. Por el contrario, la composición del xenoinjerto fue principalmente Ca. Estas diferencias podrían influir en las propiedades osteogénicas de los aloinjertos y xenoinjertos. Este análisis proporciona información básica para comprender las propiedades fisicoquímicas de aloinjertos y xenoinjertos que facilitan la interacción célula-injerto.


Assuntos
Humanos , Animais , Bovinos , Aloenxertos/anatomia & histologia , Aloenxertos/química , Espectrometria por Raios X , Regeneração Óssea , Microscopia Eletrônica de Varredura , Porosidade , Transplante Ósseo , Xenoenxertos/anatomia & histologia , Xenoenxertos/química
15.
Int Endod J ; 57(9): 1264-1278, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38943551

RESUMO

AIM: The osteogenic potential of new premixed calcium-silicate-containing bioceramic sealers (Ca-Si sealers) was tested with porcine vascular wall-mesenchymal stem cells (pVW-MSCs). METHODOLOGY: Two Ca-Si-containing sealers: Ceraseal (MetaBiomed, Cheong-si, South Korea) and AH Plus Bioceramic (Maruchi, Wonju-si, South Korea), and an epoxy resin sealer (AH Plus; Dentsply, Konstanz, Germany) as a control, were prepared according to the manufacturers' indications. All samples were allowed to set for 100% of their setting time in a sterile humid cabinet at 37°C and 95% relative humidity. pVW-MSC seeding efficiency and osteogenic differentiation were analysed as marker of gene/protein expression for up to 12 days. Mineralization assay and immunofluorescence staining were performed and evaluated over a period of 21 days. Statistical analyses were conducted using one-way analysis of variance (p < .05). Additional samples were prepared and stored under the same conditions and inspected using an environmental scanning electron microscope equipped with an energy dispersive X-ray spectroscopy system. RESULTS: Significantly higher cell seeding efficiency (p < .05) was observed for both Ca-Si sealers from day 8. pVW-MSCs showed a significant shift towards the osteogenic lineage only when seeded in contact with Ca-Si sealers. Gene expression of osteopontin was upregulated significantly. Collagen I and osteocalcin were clearly expressed by cells in contact with Ca-Si sealers. Mineralization granules were observed in Alizarin red assays and confocal laser scanning microscopy analysis of both Ca-Si sealers. No gene expression or granule mineralization were observed on the epoxy resin sealer. CONCLUSIONS: Premixed Ca-Si sealers displayed a higher potential for osteogenic activity on pVW-MSCs. Epoxy resin sealer was unable to induce any osteogenic activity. The properties of both Ca-Si sealers suggest their potential as osteoinductive platforms for vascular MSCs in periapical bone.


Assuntos
Compostos de Cálcio , Células-Tronco Mesenquimais , Osteogênese , Materiais Restauradores do Canal Radicular , Silicatos , Células-Tronco Mesenquimais/efeitos dos fármacos , Compostos de Cálcio/farmacologia , Silicatos/farmacologia , Animais , Materiais Restauradores do Canal Radicular/farmacologia , Osteogênese/efeitos dos fármacos , Suínos , Diferenciação Celular/efeitos dos fármacos , Cerâmica/farmacologia , Células Cultivadas , Materiais Biocompatíveis/farmacologia , Microscopia Eletrônica de Varredura , Teste de Materiais
16.
Micromachines (Basel) ; 15(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38930677

RESUMO

Tungsten carbide (WC) and its composites are typically associated with high hardness and high wear resistance, posing challenges in conventional machining processes like turning. To address the machining difficulties of WC-Co, electrical discharge turning (EDT) was proposed. The rotational speed in EDT is a key factor influencing the machining results; however, conflicting reports exist about its impact on the EDT process. Therefore, the effect of rotational speed on three different machining regimes, including roughing, semi-finishing, and finishing, was investigated using energy-dispersive X-ray spectroscopy (EDX), SEM, and roughness tests. Additionally, elemental mapping was applied to illustrate the element distribution on the machined surface. The results indicated that increasing the rotational speed led to a 10% to 17% decrease in the recast layer thickness and a 14% to 54% reduction in the surface roughness (Ra).

17.
Cureus ; 16(5): e60040, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38854283

RESUMO

INTRODUCTION: Dental caries in primary teeth remains a critical public health challenge globally. Although fluoride toothpaste is the standard care for remineralization, its efficacy is limited by the requirement for bioavailable calcium and phosphate ions and its diminished performance on irregular dental surfaces. This study evaluates natural alternatives for dental care, focusing on their mineralizing potential compared to fluoride. AIM: This study aims to assess and compare the efficacy of remineralization by flaxseed paste and chicken eggshell paste to that of standard fluoride toothpaste on artificially demineralized primary teeth. MATERIALS AND METHODS: We utilized an in vitro model, creating standardized white spot lesions on extracted primary teeth to simulate early carious lesions. The teeth were treated with preparations of flaxseed paste, chicken eggshell paste, and fluoride toothpaste. Remineralization was quantitatively analyzed using scanning electron microscopy-energy dispersive x-ray analysis (SEM-EDX) conducted with a high-resolution scanning electron microscope (HRSEM) from Thermoscientific Apreo S at Sir C V Raman Research Park, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu. RESULTS: Quantitative analysis revealed that both flaxseed and chicken eggshell pastes not only met but, in some cases, exceeded the remineralization performance of fluoride toothpaste. Significant differences were observed in the deposition of calcium and phosphate ions on the lesion surfaces. CONCLUSION: The study conducted at the Department of Pediatric and Preventive Dentistry at SRM Dental College, Kattankulathur, confirms the potential of flaxseed and chicken eggshell pastes as viable, cost-effective, and accessible alternatives to fluoride toothpaste for the remineralization of enamel in primary teeth. These findings support the inclusion of these natural agents in oral hygiene regimens and underscore the importance of further research into holistic approaches for the prevention and treatment of dental caries in children.

18.
Mar Pollut Bull ; 205: 116625, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925025

RESUMO

Quantifying microplastics (MPs) in marine environments is challenging due to the complexities of differentiation from other materials. This study aims to distinguish petro-sourced plastic microfilaments from organic ones in environmental samples using scanning electron microscope coupled with energy dispersive X-ray (SEM-EDX) analysis. Therefore, 38 particles resembling MPs (PRMPs) from sediments and organisms in Madagascar were analyzed. MPs identification thresholds were determined from SEM-EDX analysis of macroplastics and seaweed, the primary sources of microfilaments. SEM-EDX results of the 38 PRMPs were compared with identification/misidentification made by five MPs observation experts. Results indicated that a carbon/oxygen (C/O) ratio >1 distinguished macroplastics and MPs from other sources (seaweed and organic microfilaments). SEM-EDX analysis identified 81.58% of PRMPs as MPs. The average error made by one observer was 36.32%. These findings highlight the need for a method to assess identification error in MPs quantification and recommend SEM-EDX analysis of microfilaments to gauge observer error.


Assuntos
Monitoramento Ambiental , Microscopia Eletrônica de Varredura , Plásticos , Monitoramento Ambiental/métodos , Plásticos/análise , Poluentes Químicos da Água/análise , Microplásticos/análise , Madagáscar , Espectrometria por Raios X , Sedimentos Geológicos/química , Alga Marinha
19.
Diagnostics (Basel) ; 14(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928673

RESUMO

(1) Background: The diagnosis of lumbosacral radiculopathy involves anamnesis, an assessment of sensitivity and strength, diagnostic imaging-usually magnetic resonance imaging (MRI)-and electrodiagnostic testing (EDX), typically electromyography (EMG), and electroneurography (ENG). MRI evaluates the structures supporting the spinal cord, while EDX evaluates root functionality. The present study aimed to analyze the concordance of MRI and EDX findings in patients with clinically suspected radiculopathy. Additionally, we investigated the comparison between these two reference tests and various clinical variables and questionnaires. (2) Methods: We designed a prospective epidemiological study of consecutive cases with an observational, descriptive, cross-sectional, and double-blind nature following the STROBE guidelines, encompassing 142 patients with clinical suspicion of lumbosacral radiculopathy. (3) Results: Of the sample, 58.5% tested positive for radiculopathy using EDX as the reference test, while 45.8% tested positive using MRI. The comparison between MRI and EDX in the diagnosis of radiculopathy in patients with clinical suspicion was not significant; the overall agreement was 40.8%. Only the years with symptoms were comparatively significant between the positive and negative radiculopathy groups as determined by EDX. (4) Conclusion: The comparison between lumbar radiculopathy diagnoses in patients with clinically suspected pathology using MRI and EDX as diagnostic modalities did not yield statistically significant findings. MRI and EDX are complementary tests assessing different aspects in patients with suspected radiculopathy; degeneration of the structures supporting the spinal cord does not necessarily imply root dysfunction.

20.
Insects ; 15(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38921118

RESUMO

The mandibles are among the most important appendages of insects' mouthparts. Their morpho-functional organization is correlated with the variation in dietary preferences. In this study, we investigated the ultrastructural organization and metal composition of the mandibles of two ladybird species with different dietary habits: Harmonia axyridis (an entomophagous species) and Subcoccinella vigintiquatuorpunctata (a phytophagous species). The ultrastructural organization was studied using Scanning and Transmission Electron Microscopy, whereas the metal composition was investigated using Energy-Dispersive X-ray spectroscopy (EDX). Significant differences were observed in the general organization and metal enrichment pattern between the two species. The mandibles of H. axyridis are large and present a molar part with two teeth, with the apical one showing a bifid apex. In contrast, S. vigintiquatuorpunctata exhibited a molar region with several teeth on its apical part. The study revealed significant differences in metal content between the teeth and the prostheca of H. axyridis. Mn was the most abundant element in teeth, whereas Cl was more abundant in the prostheca. In the case of S. vigintiquatuorpunctata, Si was the most abundant element in the prostheca, while Mn was more present in the teeth. A comparison between the two species revealed that both teeth and prostheca showed significant variation in the elemental composition. These findings underscore the role of dietary preferences in shaping the structural and metal composition variations in the mandibles of these two ladybird species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...