Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(10): 633, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39342530

RESUMO

The development of a tailored filament is reported composed of reduced graphene oxide (rGO) and carbon black (CB) in a polylactic acid (PLA) matrix and its use in the production of electrochemical sensors. The electrodes containing rGO showed superior performance when compared with  those prepared in the absence of this material. Physicochemical and electrochemical characterizations of the electrodes showed the successful incorporation of both rGO and CB and an improved conductivity in the presence of rGO (lower resistance to charge transfer). As a proof-of-concept, the developed electrodes were applied to the detection of the forensic analytes TNT and cocaine. The electrodes containing rGO presented a superior analytical performance for both TNT and cocaine detection, showing the lower limit of detection values (0.22 and 2.1 µmol L-1, respectively) in comparison with pure CB-PLA electrodes (0.93 and 11.3 µmol L-1, respectively). Besides, better-defined redox peaks were observed, especially for TNT, as well as increased sensitivity for both molecules.

2.
Mikrochim Acta ; 190(12): 461, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37926729

RESUMO

Microfluidic cotton thread-based electroanalytical devices (µTEDs) are analytical systems with attractive features such as spontaneous passive flow, low cost, minimal waste production, and good sensitivity. Currently, sample injection in µTEDs is performed by hand using manual micropipettes, which have drawbacks such as inconstant speed and position, dependence of skilled analysts, and need of physical effort of operator during prolonged times, leading to poor reproducibility and risk of strain injury. As an alternative to these inconveniences, we propose, for the first time, the use of electronic micropipettes to carry out automated injections in µTEDs. This new approach avoids all disadvantages of manual injections, while also improving the performance, experience, and versatility of µTEDs. The platform developed here is composed by three 3D-printed electrodes (detector) attached to a 3D-printed platform containing an adjustable holder that keeps the electronic pipette in the same x/y/z position. As a proof-of-concept, both injection modes (manual and electronic) were compared using three model analytes (nitrite, paracetamol, and 5-hydroxytryptophan) on µTED with amperometric detection. As result, improved analytical performance (limits of detection between 2.5- and 5-fold lower) was obtained when using electronic injections, as well as better repeatability/reproducibility and higher analytical frequencies. In addition, the determination of paracetamol in urine samples suggested better precision and accuracy for automated injection. Thus, electronic injection is a great advance and changes the state-of-art of µTEDs, mainly considering the use of more modern and versatile electronic pipettes (wider range of pre-programmed modes), which can lead to the development of even more automated systems.

3.
Mikrochim Acta ; 190(10): 409, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37733170

RESUMO

Alzheimer's disease (AD) is considered one of the main progressive chronic diseases in elderly individuals. Early diagnosis using related biomarkers, specifically beta-amyloid peptide (Aß), allows finding expected treatment routes. Here, we developed an electrochemical aptasensing platform for AD by employing a glassy carbon electrode (GCE) modified with a layer of jagged gold (JG) nanostructure (diameter: 60-185 nm) and graphene oxide-carboxylic acid functionalized multiwalled carbon nanotubes (GO-c-MWCNTs) nanocomposite. These surface modifications acted as the signal amplifier and provided an optimum nano-interface substrate for immobilizing aptamer strands. The measurements of Aß were performed via differential pulse voltammetry (DPV), and the aptasensor detected the analyte in a linear range from 0.1 pg mL-1 to 1 ng mL-1, with an estimated limit of detection (LOD) of about 0.088 pg mL-1 (S/N = 3). The aptasensor showed sufficient stability (11 days), reversibility (three times), and reproducibility (five times re-fabrication with relative standard deviation (RSD): 1.27). The potential interfering agents showed negligible impact on the sensing performance. Finally, the application of the aptasensor was evaluated in the presence of 10 serum samples, and the recovery values were from 93 to 110.1%.


Assuntos
Doença de Alzheimer , Nanocompostos , Nanotubos de Carbono , Idoso , Humanos , Doença de Alzheimer/diagnóstico , Reprodutibilidade dos Testes , Ouro
4.
Chemosphere ; 340: 139820, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37586499

RESUMO

Over the past decades, increasing research in metal-organic frameworks (MOFs) being a large family of highly tunable porous materials with intrinsic physical properties, show propitious results for a wide range of applications in adsorption, separation, electrocatalysis, and electrochemical sensors. MOFs have received substantial attention in electrochemical sensors owing to their large surface area, active metal sites, high chemical and thermal stability, and tunable structure with adjustable pore diameters. Benefiting from the superior properties, MOFs and MOF-derived carbon materials act as promising electrode material for the detection of food contaminants. Although several reviews have been reported based on MOF and its nanocomposites for the detection of food contaminants using various analytical methods such as spectrometric, chromatographic, and capillary electrophoresis. But there no significant review has been devoted to MOF/and its derived carbon-based electrodes using electrochemical detection of food contaminants. Here we review and classify MOF-based electrodes over the period between 2017 and 2022, concerning synthetic procedures, electrode fabrication process, and the possible mechanism for detection of the food contaminants which include: heavy metals, antibiotics, mycotoxins, and pesticide residues. The merits and demerits of MOF as electrode material and the need for the fabrication of MOF and its composites/derivatives for the determination of food contaminants are discussed in detail. At last, the current opportunities, key challenges, and prospects in MOF for the development of smart sensing devices for future research in this field are envisioned.


Assuntos
Estruturas Metalorgânicas , Nanocompostos , Estruturas Metalorgânicas/química , Metais/química , Nanocompostos/química , Adsorção , Eletrodos
5.
Biosens Bioelectron ; 239: 115614, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37607446

RESUMO

The emergence of the graphene-based hybrid electrical-electrochemical vertical device (EEVD) has introduced a promising nanostructured biosensor tailored for point-of-care applications. In this study, we present an innovative EEVD capable of simultaneously detecting the receptor binding domain (RBD) of the SARS-CoV-2 spike protein in both serum and saliva. The foundation of the EEVD lies in a poly-neutral red-graphene heterojunction, which has been enhanced with a bioconjugate of gold nanoparticles and antibodies. The biodevice demonstrates a remarkable limit of detection, registering at the femtomolar scale (2.86 fmol L-1 or 0.1 pg mL-1). Its sensitivity is characterized by a 6.1 mV/decade response, and its operational range spans 10-12 to 10-7 g mL-1 in both serum and saliva samples. With a 20.0 µL of biological samples and a rapid processing time of under 10 min, the EEVD achieves the feat of dual antigen detection. The tests achieved 100.0% specificity, accuracy, and sensitivity in saliva, and 100.0% specificity, 88.9% accuracy, and 80.0% sensitivity in serum. This study highlights the EEVD as a low-cost solution of rapid viral detection during the crucial initial phases of COVID-19 infections.


Assuntos
Técnicas Biossensoriais , COVID-19 , Grafite , Nanopartículas Metálicas , Humanos , SARS-CoV-2 , Saliva , COVID-19/diagnóstico , Ouro
6.
Talanta ; 265: 124900, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423177

RESUMO

Schistosomiasis is a neglected disease that strikes many people from tropical and subtropical countries where there are not satisfactory sanitation and wide access to clean water. Schistosoma spp., the causative agents of schistosomiasis, exhibit a quite complex life cycle that involves two hosts (humans and snails, respectively, the definitive and the intermediate), and five evolutive forms: cercariae (human infective form), schistosomula, adult worms, eggs, and miracidia. The techniques to diagnose schistosomiasis still have various limitations, mainly regarding low-intensity infections. Although various mechanisms associated with schistosomiasis have already been evidenced, there is still a need to fulfill the comprehension of this disease, especially to prospect for novel biomarkers to improve its diagnosis. Developing methods with more sensitivity and portability to detect the infection is valuable to reach schistosomiasis control. In this context, this review has gathered information not only on schistosomiasis biomarkers but also on emerging optical and electrochemical tools proposed in selected studies from about the last ten years. Aspects of the assays regarding the sensibility, specificity, and time needed for detecting diverse biomarkers are described. We hope this review can guide future developments in the field of schistosomiasis, contributing to improving its diagnosis and eradication.


Assuntos
Esquistossomose , Animais , Adulto , Humanos , Esquistossomose/diagnóstico , Caramujos , Biomarcadores
7.
Micromachines (Basel) ; 14(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37241682

RESUMO

Nowadays, there is no doubt about the high electrocatalytic efficiency that is obtained when using hybrid materials between carbonaceous nanomaterials and transition metal oxides. However, the method to prepare them may involve differences in the observed analytical responses, making it necessary to evaluate them for each new material. The goal of this work was to obtain for the first time Co2SnO4 (CSO)/RGO nanohybrids via in situ and ex situ methods and to evaluate their performance in the amperometric detection of hydrogen peroxide. The electroanalytical response was evaluated in NaOH pH 12 solution using detection potentials of -0.400 V or 0.300 V for the reduction or oxidation of H2O2. The results show that for CSO there were no differences between the nanohybrids either by oxidation or by reduction, unlike what we previously observed with cobalt titanate hybrids, in which the in situ nanohybrid clearly had the best performance. On the other hand, no influence in the study of interferents and more stable signals were obtained when the reduction mode was used. In conclusion, for detecting hydrogen peroxide, any of the nanohybrids studied, i.e., in situ or ex situ, are suitable to be used, and more efficiency is obtained using the reduction mode.

8.
Mikrochim Acta ; 190(4): 136, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36920574

RESUMO

A poly(thiophene acetic acid)/Au/poly(methylene blue) nanostructured interface was electrochemically assembled step-by-step on screen-printed carbon electrodes (SPCE) for label-free detection of p53 protein. The initial electrical conductive properties of the polymeric interface were increased with an additional layer of poly(methylene blue) electropolymerized in the presence of gold nanoparticles. The nano-immunosensing architecture was prepared by covalent immobilization of anti-p53 antibodies as bioreceptors through the poly(thiophene acetic acid) moieties. The nano-immunosensor assembly was extensively characterized by ultraviolet-visible spectrophotometry, dynamic and electrophoretic light scattering, scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, atomic force microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Under optimal conditions, p53 was specifically and selectively detected by square wave voltammetry in a linear range between 1 and 100 ng mL-1 with a limit of detection of 0.65 ng mL-1. In addition, the electrochemical nano-immunosensor detected p53 in spiked human serum samples and colorectal cancer cell lysates, and the results were validated with a standard spectrophotometric method using a paired samples t test, which did not exhibit significant differences between both methods. The resultant p53 nano-immunosensor is simple to assemble, robust, and has the potential for point-of-care biomarker detection applications.


Assuntos
Ácido Acético , Nanopartículas Metálicas , Humanos , Técnicas Eletroquímicas/métodos , Ouro/química , Nanopartículas Metálicas/química , Azul de Metileno , Tiofenos
9.
Curr Top Med Chem ; 23(4): 295-315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36239731

RESUMO

Determining the amount of medication used is essential for correctly managing treatment systems. The unauthorized use of drugs and the importance of determining the absorbed and required dose of drugs in target organs are essential factors that justify the design of new drug monitoring systems. Electrochemical sensors and biosensors based on nanomaterials have been developed for drug monitoring in the past few years. The use of nanomaterials to optimize the analyte detection process and facilitate electron transfer in electrochemical processes has enhanced intermolecular interactions and increased diagnostic sensitivity. Considering this review, in the first part, the evaluation of cancer drugs is examined, which can be used to determine the exact dose of the drug required in different stages of cancer. Accurate monitoring of cancer drugs can increase patient life expectancy, reduce side effects, and increase economic savings. In the next section, sensors and biosensors designed for antibiotics are examined. Accurate measurement of antibiotics for determining the effectiveness of the dose in controlling infections and preventing antibiotic resistance is possible with the help of these drug diagnostic platforms. In the next part, the diagnosis of different hormones is considered. Abnormal amounts (low/high) of hormones cause multiple physiological complications and various disabilities. Therefore, accurate determination of hormone levels can effectively treat hormonal changes. In the last section, other drugs, including drugs and analgesics for which the use of electrochemical diagnostic platforms can significantly help drug distribution and social health systems, are also discussed.


Assuntos
Antineoplásicos , Técnicas Biossensoriais , Nanoestruturas , Humanos , Monitoramento de Medicamentos , Técnicas Eletroquímicas , Nanoestruturas/química , Hormônios , Antibacterianos
10.
Mikrochim Acta ; 189(8): 278, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35829918

RESUMO

An electrochemical device using copper-based metalorganic franmeworks (MOF) associated with reduced graphene oxide to improve the charge transfer, stability, and adherence of the structures on the surface of the electrodes was developed. The syntheses of these materials were confirmed using scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, Fourier transform infrared and Raman spectroscopy. For the first time, this type of sensor was applied to a systematic study to understand the action mechanism of MOFs and reduced graphene oxide in the electrochemical detection of paraquat pesticide. Under optimized conditions, paraquat was detected in standard solutions by differential pulse voltammetry (- 0.8 to - 0.3 V vs Ag/AgCl), achieving a linear response range between 0.30 and 5.00 µmol L-1. The limits of detection and quantification were 50.0 nmol L-1 and 150.0 nmol L-1, respectively. We assessed the accuracy of the proposed device to determine paraquat in water and human blood serum samples by recovery study, obtaining recovery values ranging from 98 to 104%. Furthermore, the selectivity of the proposed electrode for paraquat detection was evaluated against various interferences, demonstrating their promising application in environmental analysis.


Assuntos
Estruturas Metalorgânicas , Cobre/química , Técnicas Eletroquímicas/métodos , Eletrodos , Grafite , Humanos , Limite de Detecção , Estruturas Metalorgânicas/química , Paraquat
11.
Mikrochim Acta ; 189(3): 94, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35132460

RESUMO

Recent research in the field of electrochemical biosensors equipped with peptides and nanomaterials have been categorized, reviewed, and critically analyzed. Indeed, using these innovative biosensors can revolutionize biomedical diagnostics in the future. Saving lives, time, and money in this field will be considered as some main benefits of this type of diagnosis. Here, these biosensors have been categorized and evaluated in four main sections. In the first section, the focus is on investigating the types of electrochemical peptide-based nanobiosensors applied to detect pathogenic microorganisms, microbial toxins, and viruses. In the second section, due to the importance of rapid diagnosis and prognosis of various cancers, the electrochemical peptide-based nanobiosensors designed to detect cancer biomarkers have been reviewed and analyzed. In the third section, the electrochemical peptide-based nanobiosensors, which were applied to detect the essential and effective biomolecules in the various diseases, and health control, including enzymes, hormones, biomarkers, and other biomolecules, have been considered. Finally, using a comprehensive analysis, all the used elements in these biosensors have been presented as conceptual diagrams that can effectively guide researchers in future developments. The essential factors in evaluating and analyzing these electrochemical peptide-based nanobiosensors such as analyte, peptide sequence, functional groups interacted between the peptide sequences and other biosensing components, the applied nanomaterials, diagnostic techniques, detection range, and limit of detection have also been included. Other analyzable items such as the type of used redox marker and the location of the peptide sequence against the signal transducer were also considered.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Neoplasias/diagnóstico , Peptídeos/química , Humanos , Listeria monocytogenes/isolamento & purificação , Nanoestruturas/química , Proteínas/análise , Staphylococcus aureus/isolamento & purificação
12.
Talanta ; 240: 123201, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34998146

RESUMO

Under controlled dispersion conditions, sample injection towards a detector opened essential fields for the Analytical Chemistry fast development methods. Flow injection analysis (FIA) and batch injection analysis (BIA) systems are crucial for injecting the sample in these analytical methods. The BIA system eliminated the flow manifold, with samples injected directly onto the detector inside the batch injection cell. Paper was slightly evaluated coupled to FIA, and no reports were found associated with BIA. Still, it can potentially reduce the BIA manifold by removing the batch injection cell based on the capillarity properties to disperse the injected solution over the detection system. Hence, this article reported the first work coupling batch-injection analysis and microfluidic paper-based analytical device (BIA-µPAD) with pencil-drawn electrodes directly attached to the paper using a CO2 laser pre-treated chromatographic paper. The laser pretreatment of the paper (optimized conditions: 6.5% laser power, 12 mm s-1 scan rate, and 12 mm output distance) was essential to enhance the electrochemical response for ferri/ferrocyanide redox couple and paracetamol (PAR), as shown by spectroscopic and electrochemical techniques. The proposed BIA-µPAD was evaluated using pharmaceutical paracetamol samples as proof-of-concept (optimized conditions: 15 µL injected volume and 6.4 µL s-1 dispensing rate), obtaining good linearity (R = 0.9961) and recovery values ranging from 95 to 103%. Repeatability (n = 16) and reproducibility (n = 9) tests with 1 mmol L-1 PAR also presented well relative standard deviation (RSD) results of 5.1% and 6.6%, respectively. A sampling frequency of 76 h-1 was obtained, which is a similar value compared with conventional BIA apparatus. Limits of detection and quantification were estimated in 0.046 and 0.154 mmol L-1, respectively. Additionally, an improvement in the current response and the sample throughput was observed when comparing FIA and BIA-µPADs, attesting the applicability of the proposed device and opening for new possibilities related to paper-based devices coupled with flow techniques.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Técnicas Eletroquímicas , Eletrodos , Dispositivos Lab-On-A-Chip , Papel , Reprodutibilidade dos Testes
13.
Biosens Bioelectron ; 199: 113875, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34922318

RESUMO

On-site monitoring the presence of pesticides on crops and food samples is essential for precision and post-harvest agriculture, which demands nondestructive analytical methods for rapid, low-cost detection that is not achievable with gold standard methods. The synergy between eco-friendly substrates and printed devices may lead to wearable sensors for decentralized analysis of pesticides in precision agriculture. In this paper we report on a wearable non-enzymatic electrochemical sensor capable of detecting carbamate and bipyridinium pesticides on the surface of agricultural and food samples. The low-cost devices (

Assuntos
Técnicas Biossensoriais , Praguicidas , Dispositivos Eletrônicos Vestíveis , Agricultura , Inocuidade dos Alimentos , Praguicidas/análise , Poliésteres
14.
Nanomaterials (Basel) ; 11(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201515

RESUMO

Enzyme inks can be inkjet printed to fabricate enzymatic biosensors. However, inks containing enzymes present a low shelf life because enzymes in suspension rapidly lose their catalytic activity. Other major problems of printing these inks are the non-specific adsorption of enzymes onto the chamber walls and stability loss during printing as a result of thermal and/or mechanical stress. It is well known that the catalytic activity can be preserved for significantly longer periods of time and to harsher operational conditions when enzymes are immobilized onto adequate surfaces. Therefore, in this work, horseradish peroxidase was covalently immobilized onto silica nanoparticles. Then, the nanoparticles were mixed into an aqueous ink containing single walled carbon nanotubes. Electrodes printed with this specially formulated ink were characterized, and enzyme electrodes were printed. To test the performance of the enzyme electrodes, a complete amperometric hydrogen peroxide biosensor was fabricated by inkjet printing. The electrochemical response of the printed electrodes was evaluated by cyclic voltammetry in solutions containing redox species, such as hexacyanoferrate (III/II) ions or hydroquinone. The response of the enzyme electrodes was studied for the amperometric determination of hydrogen peroxide. Three months after the ink preparation, the printed enzyme electrodes were found to still exhibit similar sensitivity, demonstrating that catalytic activity is preserved in the proposed ink. Thus, enzyme electrodes can be successfully printed employing highly stable formulation using nanoparticles as carriers.

15.
Micromachines (Basel) ; 12(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204953

RESUMO

(1) Background: Nanocrystals (NCs)-based electrochemical sensors have been proposed for biomarkers detection, although immunosensors using ZnO NCs decorated with copper are still scarce. (2) Methods: Electrochemical immunodetection of human salivary alpha-amylase (HSA) used ZnO, CuO, and ZnO:xCu (x = 0.1, 0.4, 1.0, 4.0, and 12.0) NCs. (3) Results: Substitutional incorporation of Cu2+ in the crystalline structure of ZnO and formation of nanocomposite were demonstrated by characterization. Graphite electrodes were used and the electrochemical signal increased by 40% when using ZnO:1Cu and 4Cu (0.25 mg·mL-1), in an immunosensor (0.372 mg·mL-1 of anti-alpha-amylase and 1% of casein). Different interactions of HSA with the alpha-amylase antibody were registered when adding the NCs together, either before or after the addition of saliva (4 µL). The immunosensor changed specificity due to the interaction of copper. The ZnO:1Cu and ZnO:4Cu samples showed 50% interference in detection when used before the addition of saliva. The immunosensor showed 100% specificity and a sensitivity of 0.00196 U·mL-1. (4) Conclusions: Results showed that the order of NCs addition in the sensors should be tested and evaluated to avoid misinterpretation in detection and to enable advances in the validation of the immunosensor.

16.
Heliyon ; 6(4): e03714, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32322714

RESUMO

Carvacrol (Carv) and thymol (TOH), components of essential oils, are known by their antimicrobial and antioxidant activity. However, Carv but not TOH seems to be the responsible of anti-inflammatory and inhibition of Cu corrosion properties. Since Carv and TOH are positional isomers, their identification is tricky and GC-MS is usually required. To find simple and inexpensive methods that allow the detection of Carv in presence of TOH (e.g. essential oils), cyclic voltammetry and chronoamperometry tests using Pt and Cu as electrodes in TOH and Carv containing mixtures and essential oils were made. Electrochemical and ATR-FTIR results show that pure phytocompounds and mixtures lead to the formation of polymeric layers on both metallic surfaces. Results show that only Cu is suitable for Carv detection. Potentiostatic and potentiodynamic detection is simple and conclusive in Carv + TOH mixtures and in essential oils due to the formation of a homogeneous blocking Carv electropolymeric layer on Cu.

17.
ACS Nano ; 13(11): 13325-13332, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31661258

RESUMO

Alzheimer's disease is a devastating condition characterized by a progressive and slow brain decay in elders. Here, we developed a paper-based lateral flow immunoassay for simultaneous and fast determination of Alzheimer's blood biomarkers, fetuin B and clusterin. Selective antibodies to targeted biomarkers were immobilized on gold nanoparticles (AuNPs) and deposited on paper pads. After adding the sample on the paper-based device, the biofluid laterally flows toward the selective antibody, permitting AuNP-Ab accumulation on the test zone, which causes a color change from white to pink. Image analysis was performed using a customized algorithm for the automatic recognition of the area of analysis and color clustering. Colorimetric detection was compared to electrochemical methods for the precise quantification of biomarkers. The best performance was found for the color parameter "L*". Good linearity (R2 = 0.988 and 0.998) and reproducibility (%RSD = 2.79% and 1.82%, N = 3) were demonstrated for the quantification of fetuin B and clusterin, respectively. Furthermore, the specificity of the immunosensor was tested on mixtures of proteins, showing negligible cross-reactivity and good performance in complex environments. We believe that our biosensor has a potential for early-stage diagnosis of Alzheimer's disease and toward a better understanding of Alzheimer's developing mechanisms.


Assuntos
Doença de Alzheimer/diagnóstico , Clusterina/análise , Colorimetria , Fetuína-B/análise , Imunoensaio , Papel , Técnicas Biossensoriais , Ouro/química , Humanos , Nanopartículas Metálicas/química
18.
Molecules ; 24(12)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212797

RESUMO

We report on two new electrochemical sensors which, coupled to differential pulse voltammetry, constitutes a useful tool for diagnosis of heavy metal pollution. The electrochemical sensors AgHgNf/Cu and the AgBiNf/Cu were obtained by deposition of bimetallic particles of AgHg or AgBi on copper electrodes covered with a Nafion (Nf) film, respectively. Micrographs of the electrode's surface showed evenly scattered bimetallic particles, with an approximate diameter of 150 nm, embedded in the Nafion (Nf) film. In order to test the electrodes, the hydrogen evolution signal according to the Brdicka reaction was measured for the determination of cysteine-rich peptides (CRp) produced by plants. To check the accuracy of the electrodes, real samples of Nicotiana tabacum cells exposed to cytotoxic levels of cadmium were tested. The AgHgNf/Cu electrode produced detection limits (DLs) of 0.088 µmol L-1 for Cysteine and 0.139µmol L-1 for Glutathione, while for the AgBiNf/Cu electrode DLs were 0.41 µmol L-1 for cysteine and 0.244 µmol L-1 for glutathione. Thus, the new electrodes could be a useful analytical electrochemical system very convenient for fieldwork. The electrodes were capable of direct, accurate, and sensitive detection of synthesized peptides, despite the complex matrix where the Nicotiana tabacum cells were grown.


Assuntos
Técnicas Biossensoriais , Cobre , Eletrodos , Nanopartículas Metálicas , Peptídeos , Cádmio/toxicidade , Cobre/química , Cisteína/química , Glutationa/análise , Nanopartículas Metálicas/química , Estrutura Molecular , Peptídeos/análise , Peptídeos/química , Nicotiana/química , Nicotiana/efeitos dos fármacos , Nicotiana/metabolismo
19.
Electrophoresis ; 39(17): 2188-2194, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29947145

RESUMO

This study describes the development of a new analytical method for the separation and detection of cocaine (COC) and its adulterants, or cutting agents, using microchip electrophoresis (ME) devices coupled with capacitively coupled contactless conductivity detection (C4 D). All the experiments were carried out using a glass commercial ME device containing two pairs of integrated sensing electrodes. The running buffer composed of 20 mmol/L amino-2-(hydroxymethyl) propane-1,3-diol and 10 mmol/L 3,4-dimethoxycinnamic acid provided the best separation conditions for COC and its adulterants with baseline resolution (R > 1.6), separation efficiencies ranging from (2.9 ± 0.1) to (3.2 ± 0.2) × 105 plates/m, and estimated LOD values between 40 and 150 µmol/L. The quantification of COC was successfully performed in four samples seized by the Brazilian Federal Police Department and all predicted values agree with values estimated by the reference method. Some other interfering species were detected in the seized samples during the screening procedure on ME-C4 D devices. While lidocaine was detected in sample 3, the presence of levamisole was observed in samples 2 and 4. However, their concentrations were estimated to be below the LOQ. ME-C4 D devices have proved to be quite efficient for the identification and quantification of COC with errors lower than 10% when compared to the data obtained by a reference method. The approach herein reported offers great potential to be used for on-site COC screening in seized samples.


Assuntos
Cocaína/análise , Eletroforese em Microchip/métodos , Detecção do Abuso de Substâncias/métodos , Cocaína/química , Contaminação de Medicamentos , Condutividade Elétrica , Modelos Lineares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
J Sep Sci ; 41(16): 3310-3317, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29956462

RESUMO

We describe the assembly of a hybrid electrophoresis device that contains fused silica capillaries interconnected to a microfabricated interface in a cross format for the determination of inorganic cations in biological samples. The sample transport in the proposed hybrid device was performed under gated injection mode and the separations were monitored with a capacitively coupled contactless conductivity detector. The capillary extremities were inserted into polypropylene tubes to create solution reservoirs. Sensing electrodes were produced using stainless-steel hypodermic needles previously cut with 2.0 mm length. The running composition and injection time were optimized and the best results were found using 50 mmol/L lactic acid, 20 mmol/L histidine and 3 mmol/L 18-crown-6 ether, and an electrokinetic injection time of 15 s. The separation of six inorganic cations was achieved with baseline resolution, and efficiencies were between 9.1 × 103 and 5.4 × 104 plates/m. The proposed hybrid device was explored for determining the concentration levels of inorganic cations in urine, saliva, and tear samples, employing Li+ as an internal standard. The achieved results were in good agreement with the data reported in the literature. The reliability of the proposed method ranged from 93 to 98%, thus suggesting satisfactory accuracy for bioanalytical applications.


Assuntos
Compostos de Amônio/análise , Líquidos Corporais/química , Metais Alcalinos/análise , Metais Alcalinoterrosos/análise , Cátions/análise , Condutividade Elétrica , Eletrodos , Eletroforese Capilar , Humanos , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA